新型矢量光束的调控及其应用技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光的基本性质中,频率、振幅、相位早已被深入研究并得到广泛应用。近些年,光的偏振性和对偏振态的调控成为了研究热点。对光场偏振态的调制,即刻意调制的非均匀偏振分布的矢量光束在光学系统以及光与物质相互作用等相关领域展现着独特的魅力。如径向偏振光紧聚焦后会出现强的纵向场,使其在光镊、光学存储、激光加工等领域发挥着重要的作用;径向偏振光激发的表面等离激元具有能量增强和局域的特点,使其在光学传感、拉曼增强、高分辨显微成像等领域扮演着重要的角色。然而,矢量光束的研究才刚起步,还存在许多未解决的科学和技术难题。本论文对矢量光束的生成和调控,及其在聚焦场整形和表面等离激元(Surface Plasmons Polaritons, SPPs)调控领域的应用进行了研究。主要内容如下:
     1.偏振可调矢量光束的生成。根据柱矢量光可由拓扑荷相反的右旋和左旋圆偏振光叠加而成的原理,我们用4-f干涉系统实现了偏振可调矢量光束的生成。由于引入特殊设计的相位型叉形光栅和Dammann光栅,与用空间光调制器或振幅光栅分束的干涉系统相比,该系统具有较高的能量利用率,且成本较低。通过在4-f系统的一路光中加入不同的相位片,可灵活产生柱矢量光和偏振混合矢量光;改变叉形光栅的拓扑荷,还可产生高阶矢量光,即用这种方法实现了偏振的调控,最后进行了实验验证。
     2.基于Richads-Wolf矢量衍射理论,分析了新型矢量光束,即偏振混合矢量光束和高阶矢量光束紧聚焦的特性。在此基础上,讨论了两种在聚焦场得到无衍射光的方法。第一种是径向偏振光经欧拉振幅调制得到无衍射光。分析表明,若考虑欧拉振幅透过率函数的权重因子,焦平面附近11λ范围内的能量分布更均匀,焦斑的能量半高全宽减小到0.535X,纵向分量所占比例达到71%。为了得到纵向分量占主要比例的亚波长无衍射光,我们提出了同时调制入射光偏振和振幅的新方法。用该方法得到的焦斑能量半高全宽为0.417λ,无衍射长度是径向偏振光的9.3倍,纵向分量所占的比例高达84%。两种方法各有优点,可满足不同的需要。
     3.通过对矢量光的偏振和相位进行调制,实现了SPPs光场的全光调控。根据聚焦结构激发SPPs与入射光偏振的关系,通过改变入射光中TE和TM偏振在光束横截面所占的比例及位置,SPPs焦斑会被拉伸或出现多个SPPs焦斑;同时,我们对这种偏振调制SPPs的方法进行了实验验证。最后,对矢量光束进行螺旋相位调制,实现了SPPs焦斑位置的移动,随着螺旋相位拓扑荷的增加SPPs焦斑移动的范围在增大。这种全光调控SPPs的方法仅需调制入射光的偏振和相位分布就可在金属薄膜表面实现SPPs光场的调控,具有易于实现和灵活调控的优点,在相位型差分干涉传感和纳米光子器件集成领域有着潜在的应用价值。
The characters of light involving the amplitude, phase and frequency have been deeply studied and widely used in various fields. In recent years, the polarization state of light and its manipulation have attracted much attention. Spatially arranging the polarization state of a light beam, purposefully and carefully, is expected to lead new phenomena and applications. One example is radially polarized (RP) vector beam, which has cylindrical symmetry polarization in beam's cross section. RP beam has a strong longitudinal field when focused by a high NA lens, which makes it the optimal polarization choice in various applications, such as particle trapping, second harmonic generation, optical data storage, laser cutting and surface plasmon excitation. Currently the research on vector beams is fresh and there remain many scientific and technological problems. Thus, this dissertation is focus on the generation and manipulation of vector beams, and the applications in focus shaping and surface plasmon poariton (SPPs) manipulation.
     The main contributions of this dissertation are as follows:
     1. A method of generating novel vector beams is proposed. Based on the principle that a general cylindrical vector beam is the superposition of a positive vortex encoded right circularly polarized beam and a negative vortex encoded left circularly polarized beam, we use a4-f interferometric system to generate vector beams. In this system, a special designed vortex phase grating and a Damman phase grating are used, which makes it higher energy conversion efficiency than the hologram reconstructed either by an SLM or amplitude-modulated diffractive elements. By introducing a special phase plate in one arm of the interferometer, hybride polarization states of the vector beam can be obtained accordingly. When the topological charge of the vortex phase grating is changed, vector beams with charge can be generated as well. This method shows higher energy conversion efficiency and easier polarization conversion for the vector beams.
     2. Based on the Richads-Wolf vecor diffraction theory, we analysis the focusing property of vector beams with hybride polarization states and with high topotogical charge. Then two methods for focal field shaping are discussed. The first method is using the Eular transmission function to modulate amplitude distribution of RP beams. We find that by introducing a group of optimized constant factors for the Eular amplitude transmission function, the depth of the focal field (DOF) is enlarged to11λ, the focal spot is reduced to0.535X, and the ratio of longitudinal field to total field is increased to71%. In order to maintain the long DOF and reduce the size of focal spot, we study the second method of both polarization and amplitude modulation for incident beams. By this method, a subwavelength focal spot (0.4171) with long DOF is achieved, and the ratio of longitudinal field to total field is as high as84%.
     3. By analysis the property of surface palsmon excitated by focused vector beams with hybride polarization states, we propose an all-optical method to localize and cotntrol the SPPs electric field distribution. Calculation results show that, SPPs focal spot can be elonged and splited into focal spot array when change the area ratio of the TE to TM polarization in the incident beam's cross section. When the vector beam with different topological charge m is focused on the metal surface, focal spot array also can be achieved, and the relationship between the topological charge m and the number of SPPs focal spots is described by2(m-1). Meawhile, the method of polarization manipulation of the SPPs is confirmed in experiment. At last, we realize all-optical dynamic control of SPPs focal spot by combining the vortex phase with RP vector beams, and.find moving distance of the SPPs spot is enlarged when increasing the topological charge of the vortex phase. Compared to manipulation by metal nano-structures, the all-optical manupulation of SPPs has the advanteges of easy implementation and flexible control, leads to potential applications in phase-SPR biosensor and integrated nanophotonic device.
引文
[1]M. Born, E. Wolf. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light. CUP Archive,1999
    [2]J. N. Damask. Polarization optics in telecommunications. Springer Verlag,2004
    [3]E. Collett. Polarized light:Fundamentals and applications. Optical Engineering, New York: Dekker,1992
    [4]Q. Zhan. Cylindrical vector beams:from mathematical concepts to applications. Adv. Opt. Photon,2009,1(1):1-57
    [5]S. Yan, B. Yao. Accurate description of a radially polarized Gaussian beam. Physical Review A,2008,77(2):023827
    [6]H. Luo, S. Liu, Z. Lin, et al. Method for accurate description of a radially polarized Gaussian laser beam beyond the paraxial approximation. Optics Letters,2007,32(12): 1692-1694
    [7]W. C. Kim, N. C. Park, Y. J. Yoon, et al. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage. Optical Review,2007,14(4): 236-242
    [8]Y. Liu, D. Cline, P. He. Vacuum laser acceleration using a radially polarized CO2 laser beam. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1999,424(2):296-303
    [9]D. N. Gupta, N. Kant, D. E. Kim, et al. Electron acceleration to GeV energy by a radially polarized laser. Physics Letters A,2007,368(5):402-407
    [10]E. Y. S. Yew, C. J. R. Sheppard. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams. Optics Communications,2007,275(2): 453-457
    [11]Y. Kozawa, S. Sato. Observation of the longitudinal field of a focused laser beam by second-harmonic generation. J. Opt. Soc. Am. B,2008,25(2):175-179
    [12]D. P. Biss, T. G. Brown. Polarization-vortex-driven second-harmonic generation. Optics Letters,2003,28(11):923-925
    [13]V. G. Niziev, A. V. Nesterov. Influence of beam polarization on laser cutting efficiency. Journal of Physics D:Applied Physics,1999,32(13):1455
    [14]M. Kraus, M. A. Ahmed, A. Michalowski, et al. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Optics Express,2010,18(21): 22305-22313
    [15]Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Optics Express, 2004,12(15):3377-3382
    [16]H. Kawauchi, K. Yonezawa, Y. Kozawa, et al. Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam. Optics Letters,2007,32(13):1839-1841
    [17]S. Yan, B. Yao. Radiation forces of a highly focused radially polarized beam on spherical particles. Physical Review A,2007,76(5):053836
    [18]Nieminen T A, Heckenberg N R, Rubinsztein-Dunlop H. Forces in optical tweezers with radially and azimuthally polarized trapping beams. Optics Letters,2008,33(2):122-124.
    [19]S. E. Skelton, M. Sergides, R. Saija, et al. Trapping volume control in optical tweezers using cylindrical vector beams. Optics Letters,2013,38(1):28-30
    [20]W. Chen, D. C. Abeysinghe, R. L. Nelson, et al. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination. Nano Letters,2009,9(12):4320-4325
    [21]W. Chen, Q. Zhan. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Optics Letters,2009,34(6):722-724
    [22]Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism. Optics Letters,2005,30(22):3063-3065
    [23]K. Yonezawa, Y. Kozawa, S. Sato. Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal. Optics Letters,2006,31(14):2151-2153
    [24]R. Oron, S. Blit, N. Davidson, et al. The formation of laser beams with pure azimuthal or radial polarization. Applied Physics Letters,2000,77(21):3322-3324
    [25]Z. Bomzon, G. Biener, V. Kleiner, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Optics Letters,2002,27(5):285-287
    [26]S. Quabis, R. Dom, G Leuchs. Generation of a radially polarized doughnut mode of high quality. Applied Physics B,2005,81(5):597-600
    [27]M. Stalder, M. Schadt. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters,1996,21(23):1948-1950
    [28]K. J. Moh, X. C. Yuan, J. Bu, et al. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Applied Optics,2007,46(30):7544-7551
    [29]S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating'radially polarized beams interferometrically. Applied Optics,1990,29(15):2234-2239
    [30]Maurer C, Jesacher A, Furhapter S, et al. Tailoring of arbitrary optical vector beams. New Journal of Physics,2007,9(3):78
    [31]X. L. Wang, J. Ding, W. J. Ni, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Optics Letters,2007, 32(24):3549-3551
    [32]K. Youngworth, T. Brown. Focusing of high numerical aperture cylindrical-vector beams. Optics Express,2000,7(2):77-87
    [33]S. Quabis, R. Dom, M. Eberler, et al. The focus of light-theoretical calculation and experimental tomographic reconstruction. Applied Physics B,2001,72(1):109-113
    [34]S. Quabis, R. Dorn, Eberler M, et al. Focusing light to a tighter spot. Optics Communications,2000,179(1):1-7
    [35]R. Dorn, S. Quabis, G Leuchs. Sharper focus for a radially polarized light beam. Physical Review Letters,2003,91(23):233901
    [36]M. Rashid, O. M. Maragd, P. H. Jones. Focusing of high order cylindrical vector beams. Journal of Optics A:Pure and Applied Optics,2009,11(6):065204
    [37]Z. Chen, L. Hua, J. Pu. Tight Focusing of Light Beams:Effect of Polarization, Phase, and Coherence. Progress in Optics,2012,57:219
    [38]K. B. Rajesh, P. M. Anbarasan. Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon. Chinese Optics Letters, 2008,6(10):785-787
    [39]K. Huang, P. Shi, X. Kang, et al. Design of DOE for generating a needle of a strong longitudinally polarized field. Optics Letters,2010,35(7):965-967
    [40]C. C. Sun, C. K. Liu. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Optics Letters,2003,28(2):99-101
    [41]H. Wang, L. Shi, B. Lukyanchuk, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nature Photonics,2008,2(8):501-505
    [42]Lin J, Yin K, Li Y, et al. Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation. Optics Letters,2011,36(7):1185-1187.
    [43]G. H. Yuan, S. B. Wei, X. C. Yuan. Nondiffracting transversally polarized beam. Optics Letters,2011,36(17):3479-3481
    [44]G. H. Yuan, S. B. Wei, X. C. Yuan. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram. J. Opt. Soc. Am. A, 2011,28(8):1716-1720
    [45]B. Tian, J. Pu. Tight focusing of a double-ring-shaped, azimuthally polarized beam. Optics Letters,2011,36(11):2014-2016
    [46]K. J. Moh, X. C. Yuan, J. Bu, et al. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy. Optics Letters,2009,34(7):971-973
    [47]K. J. Moh, X. C. Yuan, J. Bu, et al. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Optics Express,2008,16(25):20734-20741
    [48]J. Yan, Y. Lu, P. Wang, et al. Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam excitation. Chinese Optics Letters,2009,7(10):909-911
    [49]R. Wang, C. Zhang, Y. Yang, et al. Focused cylindrical vector beam assisted microscopic pSPR biosensor with an ultra wide dynamic range. Optics Letters,2012,37(11):2091-2093
    [50]C. Zhang, R. Wang, C. Min, et al. Experimental approach to the microscopic phase sensitive surface plasmon resonance biosensor. Applied Physics Letters,2013,102(1): 011114
    [51]L. Du, G. Yuan, D. Tang, et al. Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy. Plasmonics,2011,6(4):651-657
    [52]N. Hayazawa, Y. Saito, S. Kawata. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters,2004,85(25):6239-6241
    [53]Y. Saito, M. Kobayashi, D. Hiraga, et al. z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light. Journal of Raman Spectroscopy,2008, 39(11):1643-1648
    [54]L. Yin, V. K. Vlasko-Vlasov, J. Pearson, et al. Subwavelength focusing and guiding of surface plasmons. Nano Letters,2005,5(7):1399-1402
    [55]E. Ozbay. Plasmonics:merging photonics and electronics at nanoscale dimensions. Science, 2006,311(5758):189-193
    [56]H. Kano, S. Mizuguchi, S. Kawata. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B,1998,15(4):1381-1386
    [57]H. Kano, W. Knoll. Locally excited surface-plasmon-polaritons for thickness measurement of LBK films. Optics Communications,1998,153(4):235-239
    [58]H. Kano, D. Nomura, H. Shibuya. Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam. Applied Optics,2004,43(12):2409-2411
    [59]Q. Zhan. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters,2006,31(11):1726-1728
    [60]K. Okamoto. Fundamentals of optical waveguides. Academic Press,2010,50
    [61]胡志健.基于聚焦涡旋结构光的表面等离激元全光调控研究.天津:南开大学,2010
    [62]I. Moshe, S. Jackel, A. Meir. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects. Optics Letters,2003,28(10):807-809
    [63]Moh, Kenjin Jonathan. Radially Polarized Beams for Surface Plasmon Microscopy. Singapore:NanYang Technological University,2009
    [64]A. V. Nesterov, V. G. Niziev, V. P. Yakunin. Generation of high-power radially polarized beam. Journal of Physics D:Applied Physics,1999,32(22):2871-2875
    [65]J. Hamazaki, A. Kawamoto, R. Morita, et al. Direct production of high-power radially polarized output from a side-pumped Nd:YVO4 bounce amplifier using a photonic crystal mirror. Optics Express,2008,16(14):10762-10768
    [66]H. Kawauchi, Y. Kozawa, S. Sato. Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal. Optics Letters,2008,33(17):1984-1986
    [67]V. G. Niziev, R. S. Chang, A. V. Nesterov. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer. Applied Optics,2006,45(33):8393-8399
    [68]Z. Bomzon, A. Niv, G. Biener, et al. Nondiffracting periodically space-variant polarization beams with subwavelength gratings. Applied Physics Letters,2002,80(20):3685-3687
    [69]U. Levy, C. H. Tsai, L. Pang, et al. Engineering space-variant inhomogeneous media for polarization control. Optics Letters,2004,29(15):1718-1720
    [70]Z. Zhou, Q. Tan, Q. Li, et al. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings. Optics Letters,2009,34(21): 3361-3363
    [71]G. Machavariani, Y. Lumer, I. Moshe, et al. Efficient extracavity generation of radially and azimuthally polarized beams. Optics Letters,2007,32(11):1468-1470
    [72]P. B. Phua, W. J. Lai. Simple coherent polarization manipulation scheme for generating high power radially polarized beam. Optics Express,2007,21(15):14251-14256
    [73]H. Kawauchi, Y. Kozawa, S. Sato, et al. Simultaneous generation of helical beams with linear and radial polarization by use of a segmented half-wave plate. Optics Letters,2008, 33(4):399-401
    [74]W. J. Lai, B. C. Lim, P. B. Phua, et al. Generation of radially polarized beam with a segmented spiral varying retarder. Optics Express,2008,16(20):15694-15699
    [75]H. Ren, Y. H. Lin, S. T. Wu. Linear to axial or radial polarization conversion using a liquid crystal gel. Applied Physics Letters,2006,89(5):051114
    [76]K. Xu, Y. Yang, Y. He, et al. Liquid crystal retarder modulation for generating real time non-uniformly polarized beams. J. Opt. Soc. Am. A,2010,27(3):572-577
    [77]Shih-Wei Ko, Chi-Lun Ting, Andy Y.-G. Fuh, et al. Polarization converters based on axially symmetric twisted nematic liquid crystal. Opt. Express,2010,18(4):3601-3607
    [78]S. C. Tidwell, G. H. Kim, W. D. Kimura. Efficient radially polarized laser beam generation with a double interferometer. Applied Optics,1993,32(27):5222-5229
    [79]K. C. Toussaint Jr, S. Park, J. E. Jureller, et al. Generation of optical vector beams with a diffractive optical element interferometer. Optics Letters,2005,30(21):2846-2848
    [80]N. Passilly, R. de Saint Denis, and K. Ait-Ameur. Simple interferometric technique for generation of a radially polarized light beam. J. Opt. Soc. Am. A,2005,22(5):984-991
    [81]K. Venkatakrishnan, B. Tan. Interconnect microvia drilling with a radially polarized laser beam. Journal of Micromechanics and Microengineering,2006,16(12):2603
    [82]Y. Zhao, Q. Zhan, Y. P. Li. Design of DOE for the control of optical "bubble" generated by highly focused radially polarized beam. Proc. of SPIE Vol.2004,5514:617
    [83]L. Novotny, M. R. Beversluis, K. S. Youngworth, et al. Longitudinal field modes probed by single molecules. Physical Review Letters,2001,86(23):5251-5254
    [84]D. P. Biss, T. G. Brown. Polarization-vortex-driven second-harmonic generation. Optics Letters,2003,28(11):923-925
    [85]D. P. Biss, K. S. Youngworth, T. G Brown. Dark-field imaging with cylindrical-vector beams. Applied Optics,2006,45(3):470-479
    [86]T. H. Lan, C. H. Tien. Servo study of radially polarized beam in high numerical aperture optical data storage system. Japanese Journal of Applied Physics,2007,46:3758-3760
    [87]S. A. Maier. Plasmonics:fundamentals and applications. Springer Science+Business Media, 2007
    [88]M. Vollmer, Kreibig U. Optical properties of metal clusters. Springer Ser. Mat. Sci,1995,25
    [89]C. L. Haynes, R. P. Van Duyne. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B,2001, 105(24):5599-5611
    [90]C. Sonnichsen, S. Geier, N. E. Hecker, et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Applied Physics Letters,2000,77(19):2949-2951
    [91]Y. H. Huang, H. P. Ho, S. Y. Wu, et al. Detecting phase shifts in surface plasmon resonance: A review. Advances in Optical Technologies,2012,471957
    [92]Y. H. Huang, H. P. Ho, S. Y. Wu, et al. Phase sensitive SPR sensor for wide dynamic range detection. Optics Letters,2011,36(20):4092-4094
    [93]S. J. Oldenburg, C. C. Genick, K. A. Clark, et al. Base pair mismatch recognition using plasmon resonant particle labels. Analytical Biochemistry,2002,309(1):109-116
    [94]R. Zia, J. A. Schuller, A. Chandran, et al. Plasmonics:the next chip-scale technology. Materials Today,2006,9(7):20-27
    [95]W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 2003,424(6950):824-830
    [96]H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics,1988,111
    [97]L. Salomon, G Bassou, H. Aourag, et al. Local excitation of surface plasmon polaritons at discontinuities of a metal film:Theoretical analysis and optical near-field measurements. Physical Review B,2002,65(12):125409
    [98]C. Zhou, L. Liu. Numerical study of Dammann array illuminators. Applied Optics,1995, 34(26):5961-5969
    [99]I. Moreno, J. A. Davis, D. M. Cottrell, et al. Encoding generalized phase functions on Dammann gratings. Optics Letters,2010,35(10):1536-1538
    [100]B. Richards, E.Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1959,253(1274):358-379
    [101]E.Wolf. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1959,253(1274):349-357
    [102]刘正涛.矢量光束的紧聚焦特性研究.哈尔滨:哈尔滨工业大学,2010
    [103]S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science, 1983,220(4598):671-680
    [104]蒋卓强.基于遗传模拟退火算法的静态路径规划研究.重庆:重庆大学,2007
    [105]G M. Lerman, A. Yanai, U. Levy. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Letters,2009,9(5):2139-2143
    [106]H. Kim, J. Park, S. W. Cho, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Letters,2010,10(2):529-536
    [107]Z. Liu, J. M. Steele, W. Srituravanich, et al. Focusing surface plasmons with a plasmonic lens. Nano Letters,2005,5(9):1726-1729
    [108]P. Torok, P. Varga, and G R. Booker. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices:structure of the electromagnetic field. J. Opt. Soc. Am. A 1995(12):2136-2144
    [109]L. E. Helseth. Roles of polarization, phase and amplitude in solid immersion lens systems. Optics Communications.2001(191):161-172
    [110]D. Biss, T. Brown. Cylindrical vector beam focusing through a dielectric interface. Optics Express,2001,9(10):490-497
    [111]L. J. Guo, C. J. Min, G H. Yuan, et al. Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons. Optics Express, 2012,20(22):24748-24753
    [112]A. Imre, V. K. Vlasko-Vlasov, J. Pearson, et al. Multiplexing surface plasmon polaritons on nanowires. Appl. Phys. Lett.2007,91(8):083115
    [113]G H.Yuan, X.-C. Yuan, J. Bu, et al. Manipulation of surface plasmon polaritons by phase modulation of incident light. Optics Express 2011,19(1):224-229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700