部分相干柱偏振矢量光束的表征、传输及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,柱偏振矢量光束由于其独特的紧聚焦特性引起了人们的广泛研究。该种光束在光束俘获,激光制造,暗场成像,数据存储等领域中具有重要的应用价值。为了得到特殊的紧聚焦光斑,通常需要对入射的柱偏振矢量光束进行振幅和位相的调控。
     在某些领域中,例如材料热处理,惯性约束核聚变的靶面辐射等情形下,我们需要降低激光的相干性,使得光斑能量分布更加均匀化。此外,在激光大气光通讯中,低相干性的激光受大气湍流的影响也较完全相干光要小。目前对于部分相干光的研究,主要集中在均匀偏振的光束,很少有人研究部分相干的柱偏振矢量光束
     本论文主要对柱偏振矢量光束的相干性进行调控,在完全相干的柱偏振矢量光束模型的基础上,提出了部分相干柱偏振矢量光束的理论模型,并研究了部分相干柱偏振矢量光束的傍轴与非傍轴传输特性。提出了产生部分相干柱偏振矢量光束的实验方案。并研究了部分相干角向偏振光通过高数值孔径透镜后的聚焦特性,研究了紧聚焦后的光束对瑞利微粒的辐射力,讨论了光束相干性对瑞利微粒俘获的影响。另外还研究了柱偏振矢量脉冲光束经过紧聚焦后对瑞利微粒的辐射力。
     在第一章中介绍了柱偏振矢量光束、部分相干光束和光镊的研究背景,同时介绍了本论文的主要研究内容和创新点。
     在第二章中介绍了激光的传输理论和通过高数值孔径透镜后的标量和矢量紧聚焦理论。
     在第三章中,我们提出了部分相干柱偏振矢量光束的理论模型,并且研究了部分相干柱偏振矢量光束的傍轴传输特性。结果表明,在传输过程中,部分相干的柱偏振矢量光束与完全相干情形很不一样。通过调控柱偏振矢量光束的相干性,我们可以控制其光斑形状和偏振结构。
     在第四章中,我们推导了非傍轴的部分相干柱偏振矢量光束在自由空间中传输的解析表达式。我们的数值结果显示,当光束的腰斑尺寸远大于光束波长时,利用非傍轴的传输公式所得结果与利用傍轴公式的结果基本吻合。而当光束的腰斑尺寸小到可以与波长相比拟时,两者之间就会出现很大的不同。通过改变光束的初始相干性,我们可以调控非傍轴部分相干柱偏振矢量光束的传输特性。另外,我们也推导了部分相干柱偏振矢量光束的傍轴度的解析表达式。结果显示,部分相干柱偏振矢量光束的傍轴度主要与光束的腰斑尺寸、初始相干性和光束的阶数有关。
     在第五章中,我们在实验上产生了部分相干柱偏振矢量光束,并且研究了不同相干性的柱偏振矢量光束经过薄透镜后的聚焦特性。我们的实验结果与理论预期能够很好的符合。
     在第六章中,我们推导了部分相干角向偏振光束通过高数值孔径透镜紧聚焦后在焦点附近的光场表达式,并对光束的初始相干性对聚焦特性的影响作了数值分析。结果表明,通过改变入射的角向偏振光束的相干性,可以实现对聚焦光斑的整形。另外我们还研究了紧聚焦后的部分相干角向偏振光对瑞利微粒的辐射力,可以发现,通过改变光束的初始相干性,我们可以俘获折射率比周围介质大或者小的瑞利微粒。
     在第七章中,我们研究了紧聚焦后的柱偏振矢量脉冲光束对瑞利微粒的辐射力。我们发现辐射力随着脉冲宽度的减小而迅速增大,径向偏振脉冲光束可以同时在横向和纵向稳定地俘获住微粒,而角向偏振光则能在横向稳定地俘获微粒。当脉宽很小时,线偏振脉冲光束对微粒的辐射力与柱偏振矢量脉冲光束情形很不一样,它可以用来纵向加速微粒。
     在第八章中我们进行了总结和展望。
In the past several years, cylindrical vector beam has been widely investigated due toits unique tightly focusing properties and has important applications in many fields, such asoptical trapping, laser making, dark field imaging and data storage, etc. To achieve specialtightly focusing spots, it needs to make amplitude or phase modulation to the incidentcylindrical vector beam.
     In some fields, such as material thermal processing, target surface radiation of inertialconfinement fusion, it needs to decrease the coherence of light to make the light energydistribution more homogeneous. Up to now, investigation of partially coherent beam ismainly focused on the uniformly polarized beam. Few people study the partially coherentcylindrical vector beam.
     In this thesis, we will modulate the coherence of cylindrical vector beam, andintroduce a theoretical mode of partially coherent cylindrical vector beam based on thecoherent cylindrical vector beam mode. The paraxial and nonparaxial propagationproperties are investigated. The experimental generation methods of partially coherentcylindrical vector beams are also introduced. The tightly focusing properties and theradiation forces on Rayleigh particles of a partially coherent azimuthally polarized beampassing through a high numerical aperture lens are studied, and the effect of spatialcoherence on optical trapping is illustrated. In the end, the radiation forces of tightlyfocused cylindrical vector pulse beams on Rayleigh particles are also investigated.
     In chapter1, we introduce the background of cylindrical vector beam, partiallycoherent beam, and optical tweezers. The main content and originality of this thesis arealso presented.
     In chapter2, we introduce the light propagation theory, scalar and vector tightlyfocusing theory when passing through a high numerical aperture lens.
     In chapter3, we have proposed a theoretical model to describe cylindrical vector partially coherent beam, and have studied its paraxial propagation properties. We havefound that the properties of a cylindrical vector partially coherent beam on propagation aremuch different those of a cylindrical vector coherent beam. By degrading the coherence ofa cylindrical vector beam, we can shape the beam profile of such beam, and alter itspolarization structure.
     In chapter4, we have derived analytical propagation formula of a nonparaxialcylindrical vector partially coherent field in free space. Our numerical results show thatwhen the beam width is much larger than the wavelength, the results calculated bynonparaxial propagation formulae agree well with that calculated by paraxial propagationformulae. When the beam width is comparable to the wavelength, significant differencesbetween paraxial and nonparaxial results appear. By varying the initial correlationcoefficients, one can modulate the statistical properties of a nonparaxial cylindrical vectorpartially coherent field. Furthermore, we also derived the analytical formula of the degreeof paraxiality of a partially coherent cylindrical vector beam. Our results show that thedegree of paraxiality of a partially coherent cylindrical vector beam is mainly determinedby beam waist, initial coherence and beam orders.
     In chapter5, we have experimentally generated partially coherent cylindrical vectorbeams. The focusing properties of partially coherent cylindrical vector beams withdifferent spatial coherence passing through a thin lens are also experimentally investigated.The experimental results agree well with theoretical predictions.
     In chapter6, the expressions of a partially coherent azimuthally polarized fieldfocused by a high numerical aperture lens near the focus have been derived. The effects ofspatial coherence on the intensity distribution have been illustrated numerically, and it wasfound that the beam spot of a tightly focused azimuthally polarized beam can be shaped byvarying the spatial coherence. Furthermore, the radiation forces on Rayleigh particlesinduced by a tightly focused partially coherent azimuthally polarized beam are also studied.It is found that a Rayleigh particle whose refractive index is larger or smaller than that ofthe ambient can be trapped by varying the initial spatial coherence of incident partiallycoherent azimuthally polarized field.
     In chapter7, we have investigated the dynamic radiation force produced by tightlyfocused cylindrical vector pulses acting on Rayleigh particles. It is found that the radiationforces of tightly focused cylindrical vector pulses increase greatly with the pulse durationdecreasing. The particles can be trapped stably both in transverse and longitudinal directionby radially polarized pulse, and can be trapped stably in transverse direction byazimuthally polarized pulse. We also find that the radiation forces of tightly focused linearpolarized pulse with short pulse duration are much different from cylindrical vector pulses.It may be used for accelerating the small particle in longitudinal direction.
     In chapter8, the conclusion of this thesis is drawn and some prospects are illustrated.
引文
1. Jordan R., Hall D., Free-space azimuthal paraxial wave equation: the azimuthalBessel-Gauss beam solution, Opt. Lett.,1994,19(7),429-431.
    2. Hall D., Vector-beam solutions of Maxwell’s wave equation, Opt. Lett.,1996,21(1),9-11.
    3. Tovar A., Production and propagation of cylindrically polarized Laguerre-Gaussianlaser beams, J. Opt. Soc. Am. A.,1998,15(10),2705-2711.
    4. Li C., Integral transformation solution of free-space cylindrical vector beams andprediction of modified Bessel-Gaussian vector beam, Opt. Lett.,2007,32(24),3543-3545.
    5. Pohl D., Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01, Appl.Phys. Lett.,1972,20(7),266-267.
    6. Mushiake Y., Matsumura K., Nakajima N., Generation of Radially Polarized OpticalBeam Mode By Laser Oscillation, Proc. IEEE,1972,60,1107-1109.
    7. Kozawa Y., Sato S., Generation of a radially polarized laser beam by use of a conicalBrewster prism, Opt. Lett.,2003,28,807-809.
    8. Ahmed M., Voss A., Vogel M., Graf T., Multilayer polarizing grating mirror used forthe generation of radial polarization in Yb:YAG thin-disk lasers, Opt. Lett.,2007,32,3272-3274.
    9. Vander S., Lipson S., Production of radially and azimuthally polarized polychromaticbeams, Opt. Lett.,2006,31,3405-3407.
    10. Maurer C., Jesacher A., Furhapter S., Bernet S., Ritsch-Marte M., Tailoring ofarbitrary optical vector beam, New J. Phys.,2007,9,78.
    11. Dorn R., Quabis S., Leuchs G., Sharper Focus for a Radially Polarized Light Beam,Phys. Rev. Lett.,2003,91,233901.
    12. Beversluis M., Novotny L., Stranick S., Programmable vector point-spread functionengineering, Opt. Express,2006,14,2650-2656.
    13. Zhan Q., Cylindrical vector beams: from mathematical concepts to applications, Adv.Opt. Photon.,2009,1(1),1–57.
    14. Sick B., Hecht B., Novotny L., Orientational Imaging of Single Molecules by AnnularIllumination, Phys. Rev. Lett.,2000,85,4482-4485.
    15. Novotny L., Beversluis M., Youngworth K., Brown T., Longitudinal Field ModesProbed by Single Molecules, Phys. Rev. Lett.,2001,86,5251-5254.
    16. Youngworth K., Brown T., Focusing of high numerical aperture cylindrical-vectorbeams, Opt. Express,2000,7(2),77–87.
    17. Zhan Q., Trapping metallic Rayleigh particles with radial polarization, Opt. Express,2004,12(15),3377-3382.
    18. Cai Y., Lin Q., Eyyubog lu H., Baykal Y., Average irradiance and polarizationproperties of a radially or azimuthally polarized beam in turbulent atmosphere, Opt.Express,2008,16(11),7665-7673.
    19. Fridman M., Machavariani G., Davidson N., Friesem A., Fiber lasers generatingradially and azimuthally polarized light, Appl. Phys. Lett.,2008,93(19),191104.
    20. Chen W., Abeysinghe D., Nelson R., Zhan Q., Plasmonic Lens Made of MultipleConcentric Metallic Rings under Radially Polarized Illumination, Nano Lett.,2009,9(12),4320-4325.
    21. Zhang Y., Ding B., Suyama T., Trapping two types of particles using adouble-ring-shaped radially polarized beam, Phys. Rev. A.,2010,81,023831.
    22. Wang H., Shi L., Lukyanchuk B., Sheppard C., Chong C., Creation of a needle oflongitudinally polarized light in vacuum using binary optics, Nat. Photonics,2008,2,501-505.
    23. Sheppard C., Choudhury A., Annular pupils, radial polarization, and superresolution,Appl. Opt.,2004,43(22),4322-4327.
    24. Kitamura K., Sakai K., Noda S., Sub-wavelength focal spot with long depth of focusgenerated by radially polarized, narrow-width annular beam, Opt. Express,2010,18(5),4518-4525.
    25. Lin J., Yin K., Li Y., Tan J., Achievement of longitudinally polarized focusing withlong focal depth by amplitude modulation,2011,36(7),1185-1187.
    26. Lin H., Jia B., Gu M., Generation of an axially super-resolved quasi-spherical focalspot using an amplitude-modulated radially polarized beam, Opt. Lett.,2011,39(13),2471-2473.
    27. Kozawa Y., Sato S., Focusing property of a double-ring-shaped radially polarizedbeam, Opt. Lett.,2006,31(6),820-822.
    28. Tian B., Pu J., Tight focusing of a double-ring-shaped, azimuthally polarized beam,Opt. Lett.,2011,36(11),2014-2016.
    29. Zhang Z., Pu J., Wang X., Tight focusing of radially and azimuthally polarized vortexbeams through a uniaxial birefringent crystal, Appl. Opt.,2008,47(12),1963-1967.
    30. Hao X., Kuang C., Wang T., Liu X., Phase encoding for sharper focus of theazimuthally polarized beam, Opt. Lett.,2010,35(23),3928-3930.
    31. Zhao Y., Edgar J., Jeffries G., McGloin D., Chiu D., Spin-to-Orbital AngularMomentum Conversion in a Strongly Focused Optical Beam, Phys. Rev. Lett.,2007,99,073901.
    32. Shu J., Pu J., Liu Y., Angular momentum conversion of elliptically polarized beamsfocused by high numerical-aperture phase Fresnel zone plates, Appl. Phys. B,2011,104,639-646.
    33. Sun C., Liu C., Ultrasmall focusing spot with a long depth of focus based onpolarization and phase modulation, Opt. Lett.,2003,28(2),99-101.
    34. Khonina S., Volotovsky S., Controlling the contribution of the electric fieldcomponents to the focus of a high-aperture lens using binary phase structures, J. Opt.Soc. Am. A,2010,27(10),2188-2197.
    35. Jahn K., Bokor N., Intensity control of the focal spot by vectorial beam shaping, Opt.Commu.,2010,283,4859-4865.
    36. Roxworthy B., Toussaint Jr K., Optical trapping with π-phase cylindrical vector beams,New J. Phys.,2010,12,073012.
    37. Born M., Wolf E., Principle of Optics, Pergammon Press,1999.
    38. Wolf E., Collett E., Partially coherent sources which produce the same for-fieldintensity distribution as a laser, Opt. Commun.,1978,25,293-396.
    39. Gori F., Guattari G., Padovani C., Modal expansion for J0-correlated Schell-modelsources, Opt. Commun.,1987,64,311-316.
    40. Ponomarenko S., A class of partially coherent beams carrying optical vortices, J. Opt.Soc. Am. A,2001,18,150-156.
    41. Lajunen H., Saastamoinen T., Propagation characteristics of partially coherent beamswith spatially varying correlations, Opt. Lett.,2011,36,4104-4106.
    42. Sahin S., Korotkova O., Light sources generating far fields with tunable flat profiles,Opt. Lett.,2012,37(14),2970-2972.
    43. P kk nen P., Turunen J., Vahimaa P., Friberg A., Wyrowski F., Partially coherentGaussian pulses, Opt. Commu.,2002,204,53-58.
    44. Lin Q., Wang L., Zhu S., Partially coherent light pulse and its propagation, Opt.Commu,2003,219,65-70.
    45. Grella R., Synthesis of generalized collett-wolf sources, J. Optics(Paris),1982,13,127-131.
    46. Carter W., Bertolotti M., An analysis of the far-field coherence and radiant intensity oflight scattered from liquid crystals, J. Opt. Soc. Am.,1978,68,329-333.
    47. Deshamps J., Courjon D., Bulabois J., Gaussian Schell-model sources: an example andsome perspectives, J. Opt. Soc. Am.,1983,73,256-261.
    48. Eichler H., Enterlein G., Langhans D., Investigation of the spatial coherence of a laserbeam by laser beam by laser-induced grating method, Appl. Phys.,1980,23,299-302.
    49.王立刚,蔡阳健,江晓清,林强,利用腔内位相调制改善固体激光器的光束质量,中国激光,2001,28,966-970.
    50. Gori F., Santarsiero M., Piquero G., Borghi R., Mondello A., Simon R., Partiallypolarized Gaussian Schell-model beams, J. Opt. A, Pure Appl. Opt.,2001,3(1),1-9.
    51. Wolf E., Unified theory of coherence and polarization of random electromagneticbeams, Phys. Lett. A.,2003,312,263-267.
    52. Shirai T., Korotkova O., Wolf E., A method of generating electromagnetic GaussianSchell-model beams, J. Opt. A, Pure Appl. Opt.,2005,7(5),232–237.
    53. Korotkova O., Wolf E., Changes in the state of polarization of a randomelectromagnetic beam on propagation, Opt. Commun.,2005,246(1-3),35–43.
    54. Korotkova O., Scintillation index of a stochastic electromagnetic beam propagating inrandom media, Opt. Commun.,2008,281,2342–2348.
    55. Cai Y., Korotkova O., Eyyubo lu H., Baykal Y., Active laser radar systems withstochastic electromagnetic beams in turbulent atmosphere, Opt. Express,2008,16(20),15834–15846.
    56. Korotkova O., Cai Y., Watson E., Stochastic electromagnetic beams for LIDARsystems operating through turbulent atmosphere, Appl. Phys. B,2009,94(4),681–690.
    57. Gao W., Korotkova O., Changes in the state of polarization of a randomelectromagnetic beam propagating through tissue, Opt. Commun.,2007,270(2),474–478.
    58. Yao M., Cai Y., Eyyubo lu H., Baykal Y., Korotkova O., Evolution of the degree ofpolarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,Opt. Lett.,2008,33(19),2266–2268.
    59. Korotkova O., Yao M., Cai Y., Eyyubo lu H., Baykal Y., State of polarization of astochastic electromagnetic beam in an optical resonator, J. Opt. Soc. Am. A,2008,25(11),2710–2720.
    60. Tong Z., Korotkova O., Cai Y., Eyyubo lu H., Baykal Y., Correlation properties ofrandom electromagnetic beams in laser resonators, Appl. Phys. B,2009,97(4),849–857.
    61. Zhao C., Cai Y., Korotkova O., Radiation force of scalar and electromagnetic twistedGaussian Schell-model beams, Opt. Express,2009,17(24),21472–21487.
    62. Tong Z., Cai Y., Korotkova O., Ghost imaging with electromagnetic stochastic beams,Opt. Commun.,283(20),3838–3845.
    63. Zhang L., Wang F., Cai Y., Korotkova O., Degree of paraxiality of a stochasticelectromagnetic Gaussian Schell-model beam, Opt. Commun.,284(5),1111–1117.
    64. Liu P., Yang H., Rong J., Wang G., Wang J., Focusing of stochastic electromagneticGaussian Schell-model beams through a high numerical aperture objective, Opt.Commun.,284(4),909–914.
    65. Ashkin A., Acceleration and trapping of particles by radiation pressure, Phys. Rev.Lett.,1970,24,156-159.
    66. Keir K., Block S., Optical trapping, Rev. Sci. Instru.,2004,75,2787-2809.
    67. Albaladejo S., Marques M., laroche M., Saenz J., Scattering Forces from the Curl ofthe Spin Angular Momentum of a Light Field, Phys. Rev. Lett.,2009,102,113602.
    1.季家镕,高等光学教程,科学出版社,2007.
    2. Born M., Wolf E., Principle of Optics, Pergammon Press,1980.
    3. Goodman J., Introduction to Fourier Optics, McGraw-Hill Press,1968.
    4. Collins S., lens-systems diffraction integral written in terms of matrix optics, J. Opt.Soc. Am.,1970,60,1168-1177.
    5.卢亚雄,吕百达,矩阵光学,大连理工大学出版社,1988.
    6. Gu M., Advanced Optical Imaging Theory, Springer Series in Optical Sciences75,Springer-Verlag,2000.
    7. Richards B., Wolf E., Electromagnetic Diffraction in Optical Systems. II. Structure ofthe Image Field in an Aplanatic System, Proc. R. Soc. Lond. Ser. A,1959,253,358-379.
    8. Youngworth K., Brown T., Focusing of high numerical aperture cylindrical-vectorbeams, Opt. Express,2000,7(2),77–87.
    1. Zhan Q., Cylindrical vector beams: from mathematical concepts to applications, Adv.Opt. Photon.,2009,1(1),1–57.
    2. Zhan Q., Radiation forces on a dielectric sphere produced by highly focused cylindricalvector beams, J. Opt. A, Pure Appl. Opt.,2003,5(3),229–232.
    3. Roxworthy B., Toussaint Jr K., Optical trapping with π-phase cylindrical vector beams,New J. Phys.,2010,12,073012.
    4. Kozawa Y., Sato S., Optical trapping of micrometer-sized dielectric particles bycylindrical vector beams, Opt. Express,2010,18(10),10828–10833.
    5. Gu Y., Korotkova O., Gbur G., Scintillation of nonuniformly polarized beams inatmospheric turbulence, Opt. Lett.,2009,34(15),2261–2263.
    6. Biss D., Youngworth K., Brown T., Dark-field imaging with cylindrical-vector beams,Appl. Opt.,2006,45(3),470–479.
    7. Wang X., Ding J., Qin J., Chen J., Fan Y., Wang H., Configurable three-dimensionaloptical cage generated from cylindrical vector beams, Opt. Commun.,2009,282(17),3421–3425.
    8. Maurer C., Jesacher A., Furhapter S., Bernet S., Ritsch-Marte M., Tailoring of arbitraryoptical vector beams, N. J. Phys.,2007,9(3),78.
    9. Zheng R., Gu C., Wang A., Xu L., Ming H., An all-fiber laser generating cylindricalvector beam, Opt. Express,2010,18(10),10834–10838.
    10. Moh K., Yuan X., Bu J., Low D., Burge R., Direct noninterference cylindrical vectorbeam generation applied in the femtosecond regime, Appl. Phys. Lett.,2006,89(25),251114.
    11. Kurti R., Halterman K., Shori R., Wardlaw M., Discrete cylindrical vector beamgeneration from an array of optical fibers, Opt. Express,2009,17(16),13982–13988.
    12. Volpe G., Petrov D., Generation of cylindrical vector beams with few-mode fibersexcited by Laguerre-Gaussian beams, Opt. Commun.,2004,237(1-3),89–95.
    13. Wang X., Ding J., Ni W., Guo C., Wang H., Generation of arbitrary vector beams witha spatial light modulator and a common path interferometric arrangement, Opt. Lett.,2007,32(24),3549–3551.
    14. Tovar A., Production and propagation of cylindrically polarized Laguerre–Gaussianlaser beams, J. Opt. Soc. Am. A,1998,15(10),2705–2711.
    15. Li C., Integral transformation solution of free-space cylindrical vector beams andprediction of modified Bessel-Gaussian vector beams, Opt. Lett.,2007,32(24),3543–3545.
    16. Biss D., Brown T., Cylindrical vector beam focusing through a dielectric interface, Opt.Express,2001,9(10),490–497.
    17. Zhan Q., Leger J., Focus shaping using cylindrical vector beams, Opt. Express,2002,10(7),324–331.
    18. Chen W., Zhan Q., Three-dimensional focus shaping with cylindrical vector beams,Opt. Commun.,2006,265(2),411–417.
    19. Youngworth K., Brown T., Focusing of high numerical aperture cylindrical-vectorbeams, Opt. Express,2000,7(2),77–87.
    20. Cheng W., Haus J., Zhan Q., Propagation of vector vortex beams through a turbulentatmosphere, Opt. Express,2009,17(20),17829–17836.
    21. Ohtsu A., Kozawa Y., Sato S., Calculation of second-harmonic wave pattern generatedby focused cylindrical vector beams, Appl. Phys. B,2010,98(4),851–855.
    22. Mandel L., Wolf E., Optical coherence and quantum optics, Cambridge UniversityPress,1995.
    23. Brosseau C., Fundamentals of Polarized Light: A Statistical Approach, Wiley Press,1998.
    24. Wolf E., Unified theory of coherence and polarization of random electromagneticbeams, Phys. Lett. A.,2003,312(5-6),263–267.
    25. Wolf E., Introduction to the Theory of Coherence and Polarization of Light, CambridgeUniversity Press,2007.
    26. Gori F., Santarsiero M., Piquero G., Borghi R., Mondello A., Simon R., Partiallypolarized Gaussian Schell-model beams, J. Opt. A, Pure Appl. Opt.,2001,3(1),1–9.
    27. Korotkova O., Salem M., Wolf E., Beam conditions for radiation generated by anelectromagnetic Gaussian Schell-model source, Opt. Lett.,2004,29(11),1173–1175.
    28. Gori F., Santarsiero M., Borghi R., Ramírez-Sánchez V., Realizability condition forelectromagnetic Schell-model sources, J. Opt. Soc. Am. A,2008,25(5),1016–1021.
    29. Shirai T., Korotkova O., Wolf E., A method of generating electromagnetic GaussianSchell-model beams, J. Opt. A, Pure Appl. Opt.,2005,7(5),232–237.
    30. Korotkova O., Wolf E., Changes in the state of polarization of a randomelectromagnetic beam on propagation, Opt. Commun.,2005,246(1-3),35–43.
    31. Zhu S., Cai Y., Korotkova O., Propagation factor of a stochastic electromagneticGaussian Schell-model beam, Opt. Express,2010,18(12),12587–12598.
    32. Korotkova O., Scintillation index of a stochastic electromagnetic beam propagating inrandom media, Opt. Commun.,2008,281,2342–2348.
    33. Cai Y., Korotkova O., Eyyubo lu H., Baykal Y., Active laser radar systems withstochastic electromagnetic beams in turbulent atmosphere, Opt. Express,2008,16(20),15834–15846.
    34. Korotkova O., Cai Y., Watson E., Stochastic electromagnetic beams for LIDARsystems operating through turbulent atmosphere, Appl. Phys. B,2009,94(4),681–690.
    35. Gao W., Korotkova O., Changes in the state of polarization of a randomelectromagnetic beam propagating through tissue, Opt. Commun.,2007,270(2),474–478.
    36. Zhu S., Cai Y., Spectral shift of a twisted electromagnetic Gaussian Schell-model beamfocused by a thin lens, Appl. Phys. B,2010,99(1-2),317–323.
    37. Yao M., Cai Y., Eyyubo lu H., Baykal Y., Korotkova O., Evolution of the degree ofpolarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,Opt. Lett.,2008,33(19),2266–2268.
    38. Korotkova O., Yao M., Cai Y., Eyyubo lu H., Baykal Y., State of polarization of astochastic electromagnetic beam in an optical resonator, J. Opt. Soc. Am. A,2008,25(11),2710–2720.
    39. Tong Z., Korotkova O., Cai Y., Eyyubo lu H., Baykal Y., Correlation properties ofrandom electromagnetic beams in laser resonators, Appl. Phys. B,2009,97(4),849–857.
    40. Zhu S., Zhou F., Cai Y., Zhang L., Thermal lens effect induced changes of polarization,coherence and spectrum of a stochastic electromagnetic beam in a Gaussian cavity,Appl. Phys. B,2011,102,953-961.
    41. Zhu S., Cai Y., M2-factor of a stochastic electromagnetic beam in a Gaussian cavity,Opt. Express,2010,18(26),27567–27581.
    42. Tong Z., Cai Y., Korotkova O., Ghost imaging with electromagnetic stochastic beams,Opt. Commun.,2010,283(20),3838–3845.
    43. Zhao C., Cai Y., Korotkova O., Radiation force of scalar and electromagnetic twistedGaussian Schell-model beams, Opt. Express,2009,17(24),21472–21487.
    44. Zhang L., Wang F., Cai Y., Korotkova O., Degree of paraxiality of a stochasticelectromagnetic Gaussian Schell-model beam, Opt. Commun.,2011,284(5),1111–1117.
    45. Liu P., Yang H., Rong J., Wang G., Wang J., Focusing of stochastic electromagneticGaussian Schell-model beams through a high numerical aperture objective, Opt.Commun.,2011,284(4),909–914.
    46. Lin Q., Cai Y., Tensor ABCD law for partially coherent twisted anisotropicGaussian-Schell model beams, Opt. Lett.,2002,27(4),216–218.
    47. Cai Y., Chen C., Paraxial propagation of a partially coherent Hermite-Gaussian beamthrough aligned and misaligned ABCD optical systems, J. Opt. Soc. Am. A,2007,24(8),2394–2401.
    48. Erdelyi A., Magnus W., Oberhettinger F., Tables of Integral Transforms, McGraw-HillPress,1954.
    49. Abramowitz M., Stegun I., Handbook of Mathematical Functions with Formulas,Graphs, and Mathematical Tables, U. S. Department of Commerce Press,1970.
    50. Wang F., Cai Y., Korotkova O., Partially coherent standard and elegantLaguerre-Gaussian beams of all orders, Opt. Express,2009,17(25),22366–22379.
    51. Yin J., Gao W., Zhu Y., Generation of dark hollow beams and their applications, inProgress in Optics, E. Wolf, ed., North-Holland,2003, Vol.44, pp.119–204.
    1. Deng D., Nonparaxial propagation of radially polarized light beams, J. Opt. Soc. Am.B,2006,23(6),1228–1234.
    2. Laabs H., Propagation of Hermite–Gaussian beams beyond the paraxial approximation,Opt. Commun.,1998,147(1-3),1–4.
    3. Borghi R., Santarsiero M., Nonparaxial propagation of spirally polarized optical beams,J. Opt. Soc. Am. A,2004,21(10),2029–2037.
    4. Duan K., Lü B., Partially coherent nonparaxial beams, Opt. Lett.,2004,29(8),800–802.
    5. Zhang Y., Lü B., Propagation of the Wigner distribution function for partially coherentnonparaxial beams, Opt. Lett.,2004,29(23),2710–2712.
    6. Duan K., Lü B., Partially coherent vectorial nonparaxial beams, J. Opt. Soc. Am. A,2004,21(10),1924–1932.
    7. Li X., Cai Y., Nonparaxial propagation of a partially coherent dark hollow beam, Appl.Phys. B,2011,102(1),205–213.
    8. Zhang L., Cai Y., Propagation of a twisted anisotropic Gaussian-Schell model beambeyond the paraxial approximation, Appl. Phys. B,2011,103(4),1001–1008.
    9. Zhang L., Cai Y., Statistical properties of a nonparaxial Gaussian Schell-model beamin a uniaxial crystal, Opt. Express,2011,19(14),13312–13325.
    10. Gawhary O., Severini S., Degree of paraxiality for monochromatic light beams, Opt.Lett.,2008,33,1360–1362.
    11. Gawhary O., Severini S., Localization and paraxiality of pseudo-nondiffracting fields,Opt. Comm.,2010,283,2481–2487.
    12. Gawhary O., Severini S., Dependence of the degree of paraxiality on field correlations,Opt. Lett.,2008,33,1866–1868.
    13. Wang F., Cai Y., Korotkova O., Degree of paraxiality of a partially coherent field, J.Opt. Soc. Am. A,2010,27,1120–1126.
    14. Zhang L., Wang F., Cai Y., Korotkova O., Degree of paraxiality of a stochasticelectromagnetic Gaussian Schell-model beam, Opt. Comm.,2011,284,1111–1117.
    15. Wolf E., Introduction to the theory of coherence and polarization of light, CambridgeUniversity Press,2007.
    16. Ellis J., Dogariu A., Ponomarenko S., Wolf E., Degree of polarization of statisticallystationary electromagnetic fields, Opt. Commun.,2005,248(4-6),333–337.
    17. Luneburg R., Mathematical Theory of Optics, University of California Press,1966.
    18. Korotkova O., Wolf E., Spectral degree of coherence of a random three-dimensionalelectromagnetic field, J. Opt. Soc. Am. A,2004,21(12),2382–2385.
    19. Zhang Z., Pu J., Wang X., Focusing of partially coherent Bessel-Gaussian beamsthrough a high-numerical aperture objective, Opt. Lett.,2008,33(1),49–51.
    20. Dong Y., Cai Y., Zhao C., Degree of polarization of a tightly focused partially coherentdark hollow beam, Appl. Phys. B,2011,105(2),405–414.
    21. Goodman J., Introduction to Fourier Optics, McGraw-Hill Press,1968.
    22. Marchand E., Wolf E., Angular correlation and the farzone behavior of partiallycoherent fields, J. Opt. Soc. Am.,1972,62,379–385.
    23. Porras M., Non-paraxial vectorial moment theory of light beam propagation, Opt.Comm.,1996,127,79-95.
    24. Mandel L., Wolf E., Optical Coherence and Quantum Optics, Cambridge UniversityPress,1995.
    1. Pohl D., Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01, Appl.Phys. Lett.,1972,20(7),266-267.
    2. Kozawa Y., Sato S., Generation of a radially polarized laser beam by use of a conicalBrewster prism, Opt. Lett.,2003,28,807-809.
    3. Ahmed M., Voss A., Vogel M., Graf T., Multilayer polarizing grating mirror used forthe generation of radial polarization in Yb:YAG thin-disk lasers, Opt. Lett.,2007,32,3272-3274.
    4. Vander S., Lipson S., Production of radially and azimuthally polarized polychromaticbeams, Opt. Lett.,2006,31,3405-3407.
    5. Maurer C., Jesacher A., Furhapter S., Bernet S., Ritsch-Marte M., Tailoring of arbitraryoptical vector beam, New J. Phys.,2007,9,78.
    6. Dorn R., Quabis S., Leuchs G., Sharper Focus for a Radially Polarized Light Beam,Phys. Rev. Lett.,2003,91,233901.
    7. Beversluis M., Novotny L., Stranick S., Programmable vector point-spread functionengineering, Opt. Express,2006,14,2650-2656.
    8. Santis P., Gori F., Guattari G., Palma C., An example of a Collett-Wolf source, Opt.Commun.,1979,26,256-260.
    9. Wang F., Cai Y., Experimental observation of fractional Fourier transform for apartially coherent optical beam with Gaussian statistics, J. Opt. Soc. Am. A,2007,24,1937-1944.
    10. Wolf E., Introduction to the Theory of Coherence and Polarization of Light, CambridgeUniversity Press,2007.
    11. Mandel L., Wolf E., Optical Coherence and Quantum Optics, Cambridge UniversityPress,1995.
    12. Zhan Q., Cylindrical vector beams: from mathematical concepts to applications, Adv.Opt. Photon.,2009,1(1),1–57.
    13. Wolf E., Unified theory of coherence and polarization of random electromagneticbeams, Phys. Lett. A,2003,312,263-267.
    14. Coutts D., Double-pass copper vapor laser master-oscillator power-amplifier systems:generation of flat-top focused beams for fiber coupling and percussion drilling, IEEE J.Quantum Electron.,2002,38,1217-1224.
    15. Wang F., Cai Y., Experimental generation of a partially coherent flat-topped beam, Opt.Lett.,2008,33,1795-1797.
    16. Zhan Q., Trapping metallic Rayleigh particles with radial polarization, Opt. Express,2004,12,3377-3382.
    17. Zhang Y., Ding B., Suyama T., Trapping two types of particles using a double-ring-shaped radially polarized beam, Phys. Rev. A,2010,81,023831.
    18. Zhao C., Cai Y., Wang F., Lu X., Wang Y., Generation of a high-quality partiallycoherent dark hollow beam with a multimode fiber, Opt. Lett.,33,1389-1391.
    19. Zhao C., Cai Y., Trapping two types of particles using a focused partially coherentelegant Laguerre-Gaussian beam, Opt. Lett.,2011,36,2251-2253.
    1. Zhan Q., Cylindrical vector beams: from mathematical concepts to applications, Adv.Opt. Photon.,2009,1(1),1–57.
    2. Dorn R., Quabis S., Leuchs G., Sharper focus for a radially polarized light beam, Phys.Rev. Lett.,2003,91,233901.
    3. Wang H., Shi L., Lukyanchuk B., Sheppard C., Chong C., Creation of a needle oflongitudinally polarized light in vacuum using binary optics, Nat. Photonics,2008,2,501-505.
    4. Fridman M., Machavariani G., Davidson N., Friesem A., Fiber lasers generatingradially and azimuthally polarized light, Appl. Phys. Lett.,2008,93,191104.
    5. Youngworth K., Brown T., Focusing of high numerical aperture cylindrical-vectorbeams,Opt. Express,2000,7,77-87.
    6. Quabis S., Dorn R., Eberler M., Glokl O., Leuchs G., Focusing light to a tighter spot,Opt. Commun.,2000,179,1-7.
    7. Biss D., Brown T., Cylindrical vector beam focusing through a dielectric interface, Opt.Express,2001,9(10),490-497.
    8. Zhan Q., Leger J., Focus shaping using cylindrical vector beams, Opt. Express,2002,10,324-331.
    9. Yew E., Sheppard C., Tight focusing of radially polarized Gaussian and Bessel–Gaussbeams, Opt. Lett.,2007,32(23),3417-3419.
    10. Hao X., Kuang C., Wang T., Liu X., Phase encoding for sharper focus of theazimuthally polarized beam, Opt. Lett.,2010,35(23),3928-3930.
    11. Tian B., Pu J., Tight focusing of a double-ring-shaped, azimuthally polarized beam,Opt. Lett.,2011,36(11),2014-2016.
    12. Wrobel P., Pniewski J., Antosiewicz T., Szoplik T., Focusing Radially Polarized Lightby a Concentrically Corrugated Silver Film without a Hole, Phys. Rev. Lett.,2009,102,183902.
    13. Chen W., Nelson R., Zhan Q., Geometrical phase and surface plasmon focusing withazimuthal polarization, Opt. Lett.,2012,37(4),581-583.
    14. Jiao X., Liu S., Wang Q., Gan X., Li P., Zhao J., Redistributing energy flow andpolarization of a focused azimuthally polarized beam with rotationally symmetricsector-shaped obstacles, Opt. Lett.,2012,37(6),1041-1043.
    15. Zhan Q., Trapping metallic Rayleigh particles with radial polarization, Opt. Express,2004,12(15),3377-3382.
    16. Yan S., Yao B., Radiation forces of a highly focused radially polarized beam onspherical particles, Phys. Rev. A,2007,76,053836.
    17. Peng F., Yao B., Yan S., Zhao W., Lei M., Trapping of low-refractive-index particleswith azimuthally polarized beam, J. Opt. Soc. Am. B,2009,26(12),2242-2247.
    18. Zhang Y., Ding B., Suyama T., Trapping two types of particles using a double-ring-shaped radially polarized beam, Phys. Rev. A,2010,81,023831.
    19. Coutts D., IEEE J. Quantum Electron., Double-pass copper vapor lasermaster-oscillator power-amplifier systems: generation of flat-top focused beams forfiber coupling and percussion drilling,2002,38,1217-1224.
    20. Albaladejo S., Marqu′es M., Laroche M., S′aenz J., Scattering Forces from the Curl ofthe Spin Angular Momentum of a Light Field, Phys. Rev. Lett.,2009,102,113602.
    21. Harada Y., Asakura T., Radiation forces on a dielectric sphere in the Rayleigh scatteringregime, Opt. Commun.,1996,124,529-541.
    22. Li J., Lü B., Zhu S., Spatial distributions of the energy and energy flux density ofpartially coherent electromagnetic beams in atmospheric turbulence, Opt. Express,2009,17(14),11399-11408.
    23. Zhang L., Wang F., Cai Y., Korotkova O., Degree of paraxiality of a stochasticelectromagnetic Gaussian Schell-model beam, Opt. Commun.,2011,284,1111-1117.
    24. Mandel L., Wolf E., Optical Coherence and Quantum Optics, Cambridge UniversityPress,1995.
    25. Okamoto K., Kawata S., Radiation Force Exerted on Subwavelength Particles near aNanoaperture, Phys. Rev. Lett.,1999,83,4534.
    1. Ashkin A., Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett.,1970,24(4),156–159.
    2. Zhao C., Wang L., Lu X., Radiation forces on a dielectric sphere produced by highlyfocused hollow Gaussian beams, Phys. Lett. A.,2007,363(5-6),502–506.
    3. Dienerowitz M., Mazilu M., Reece P., Krauss T., Dholakia K., Optical vortex trap forresonant confinement of metal nanoparticles, Opt. Express,2008,16(7),4991–4999.
    4. Zhao C., Wang L., Lu X., Radiation forces of highly focused Bessel-Gaussian beamson a dielectric sphere, Optik (Stuttg.),2008,119(10),477–480.
    5. Wang L., Zhao C., Wang L., Lu X., Zhu S., Effect of spatial coherence on radiationforces acting on a Rayleigh dielectric sphere, Opt. Lett.,2007,32(11),1393–1395.
    6. Zhao C., Cai Y., Lu X., Eyyubo lu H., Radiation force of coherent and partiallycoherent flat-topped beams on a Rayleigh particle, Opt. Express,2009,17(3),1753–1765.
    7. Ambardekar A., Li Y., Optical levitation and manipulation of stuck particles withpulsed optical tweezers, Opt. Lett.,2005,30(14),1797–1799.
    8. Deng J., Wei Q., Wang Y., Li Y., Numerical modeling of optical levitation andtrapping of the stuck particles with a pulsed optical tweezers, Opt. Express,2006,13(10),3673-3680.
    9. Little H., Brown C., Sibbett W., Dholakia K., Optical guiding of microscopic particlesin femtosecond and continuous wave Bessel light beams, Opt. Express,2004,12(11),2560-2565.
    10. Agate B., Brown C., Sibbett W., Dholakia K., Femtosecond optical tweezers for in-situcontrol of two-photon fluorescence, Opt. Express,2004,12(13),3011-3017.
    11. Shane J., Mazilu M., Lee W., Dholakia K., Effect of pulse temporal shape on opticaltrapping and impulse transfer using ultrashort pulsed lasers, Opt. Express,2010,18(7),7554-7568.
    12. De A., Roy D., Dutta A., Goswami D., Stable optical trapping of latex nanoparticleswith ultrashort pulsed illumination, Appl. Opt,2009,48(31), G33-G37.
    13. Wang L., Zhao C., Dynamic radiation force of a pulsed gaussian beam acting onrayleigh dielectric sphere, Opt. Express,2007,15(17),10615–10621.
    14. Wang L., Chai H., Revisit on dynamic radiation forces induced by pulsed Gaussianbeams, Opt. Express,2011,19(15),14389-14402.
    15. Gu M., Advanced Optical Imaging Theory, Springer Series in Optical Sciences75,Springer-Verlag,2000.
    16. Chen B., Zhang Z., Pu J., Tight focusing of partially coherent and circularly polarizedvortex beams, J. Opt. Soc. Am. A,2009,26(4),862–869.
    17. Helseth L., Strongly focused polarized light pulse, Phys. Rev. E Stat. Nonlin. SoftMatter Phys.,2005,72(4),047602.
    18. Richards B., Wolf E., Electromagnetic Diffraction in Optical Systems. II. Structure ofthe Image Field in an Aplanatic System, Proc. R. Soc. Lond. Ser. A,1959,253,358-379.
    19. Youngworth K., Brown T., Focusing of high numerical aperture cylindrical-vectorbeams, Opt. Express,2000,7(2),77-87.
    20. Gordon J., Radiation Forces and Momenta in Dielectric Media, Phys. Rev. A,1973,8(1),14-21.
    21. Harada Y., Asakura T., Radiation forces on a dielectric sphere in the Rayleighscattering regime, Opt. Commun.,1996,124(5-6),529-541.
    22. Albaladejo S., Marqués M., Laroche M., Sáenz J., Scattering Forces from the Curl ofthe Spin Angular Momentum of a Light Field, Phys. Rev. Lett.,2009,102,113602.
    23. Okamoto K., Kawata S., Radiation force exerted on Subwavelength Particles near aNonoaperture, Phys. Rev. Lett.,1999,83,4534-4537.
    24. Kestin J., Sokolov M., Wakeham W., Viscosity of Liquid Water in the Range-8°C to150°C, J. Phys. Chem. Ref. Data.,1978,7,941–948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700