光子晶体光纤制造工艺与特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤自1996年问世以来得到了迅速发展,理论分析不断完善,制造工艺不断提高,新型光子晶体光纤的设计不断出现,基于光子晶体光纤的应用也不断涌现。目前光子晶体光纤已成为当前世界范围内光电子学领域的研究热点。
     本文对光子晶体光纤的理论进行了系统、深入的研究;并对光子晶体光纤的制造工艺和关键技术进行了详细研究;对折射率导引光子晶体光纤的各种特性进行了理论分析和实验研究。本文取得的研究成果如下:
     1.采用矢量光束传输法和矢量有限元法两种精度较高的方法作为研究光子晶体光纤的理论分析工具,在理论上详细地分析了折射率导引光子晶体光纤的色散特性和非线性特性,与实验测得的数据能较好的相符,印证了这两种方法的正确性。
     2.对光子晶体光纤的制造工艺进行了深入研究,利用武汉长飞光纤光缆有限公司在光纤制造工艺的优势,采用毛细管堆积拉丝工艺制造了多种结构的光子晶体光纤,其中包括无截止单模光子晶体光纤、高双折射光子晶体光纤、高非线性光子晶体光纤、色散补偿光子晶体光纤、色散平坦光子晶体光纤等一系列光子晶体光纤。
     3.详细分析了光子晶体光纤的损耗特性,针对制造工艺对损耗的影响,对制造工艺提出了降低损耗的改进方法。其中,我们制造的无截止单模光子晶体光纤的损耗在1550nm处可以达到0.4dB/km,这是我们拉制的损耗最低的一种光子晶体光纤。随着制造工艺的不断改进,其损耗将进一步降低。
     4.理论分析了光子晶体光纤的结构参数对其色散特性的影响。经过理论模拟计算得出了结构参数与色散特性之间的变化关系,在此基础上设计了一种基于折射率导引光子晶体光纤的宽带色散补偿光子晶体光纤,能够对标准单模光纤进行有效的宽带色散补偿。
     5.详细研究了中心空气孔光子晶体光纤的色散特性,尤其是引入的中心空气孔对光子晶体光纤色散特性的影响。理论模拟计算得出了中心空气孔的变化对色散影响的规律,在此基础上设计了基于该结构的宽带色散补偿光子晶体光纤和超宽色散平坦光子晶体光纤。在理论研究的基础上,拉制了中心空气孔光子晶体光纤。对拉制的这种光纤进行了一系列的测试,其色散补偿特性的实验结果与理论分析的结果能够很好的相符,在1500~1625nm范围内能达到了-440~-480ps/(nm·km)。
     6.采用中心空气孔光子晶体光纤结构设计了一种超宽色散平坦光子晶体光纤。这种超宽色散平坦光子晶体光纤,在1200~1600nm的带宽内具有很低的色散值,并且具有极其平坦的色散特性。
     7.详细研究了光子晶体光纤的非线性系数与结构参数之间的变化关系,为实际的高非线性光子晶体光纤拉制提供了理论依据。在理论研究的基础上,拉制了高占空比的高非线性光子晶体光纤,对其特性进行了一系列的测试,获得了比较理想的实验结果。
Since the first photonic crystal fiber (PCF) was fabricated in 1996, the technology of PCF is developing rapidly. The theory of PCF is continuously consummating. And the new designs of PCF are continually appearing. The vast improvements of the fabrication process have been obtained in recent years. The applications of PCF are widely studied. Now the PCF has been widely used in advanced front research of fiber optics and optoelectronics.
     In this dissertation, the transmission properties of PCF are investigated systematically and deeply. The fabrication process of PCF is investigated, while the key technique of PCF fabrication is achieved. The main achievements of this dissertation are as follows:
     (1) We theoretically analyzed the properties of PCF by the vectorial beam propagation method and vectorial finite element method. Both of these methods are having satisfactory numerical accuracy and computational efficiency. And there is a reasonable agreement between the calculated result and the experimental result.
     (2) We investigated the fabrication process of PCF and achieved the key technique of PCF fabrication. And we successfully used the stack-and-draw fabrication technique to fabricated a series of PCFs, such as endlessly single mode PCF, high birefringent PCF, highly nonlinear PCF, dispersion compensating PCF, dispersion flattened PCF.
     (3) The loss property is analysed specifically, then we proposed the improvement to reduce the level of loss. The loss of endlessly single mode PCF our fabricated can reach 0.4dB/km at 1550nm, which is the lowest level of PCF our fabricated.
     (4) We discussed the dispersion property with pitch, air-filling fraction. Then we designed a broadband dispersion compensating PCF based the index-guiding structure. It can compensate the dispersion of the single mode fiber in C+L band.
     (5) We proposed a novel PCF with defected-core. The small central defect of air hole can flexibly control the chromatic dispersion properties of this kind of photonic crystal fiber. Then we designed the broadband dispersion compensating PCF and the ultra-low and ultra-flattened dispersion PCF based this PCF index-guiding structure. And we fabricated the broadband dispersion compensating PCF with air-core according to the theoretical studies. The dispersion compensating photonic crystal fiber with air-core we fabricated has broadband large negative chromatic dispersion, and the chromatic dispersion coefficient varies from -440 to -480ps/(nm·km) in the measured wavelength range of 1500-1625nm. The calculated chromatic dispersion curve is well match to the measured result.
     (6) We simulated the ultra-low and ultra-flattened dispersion properties of photonic crystal fibers with defected-core, and applied to design PCF with ultra-low and ultra-flattened dispersion in the wavelength range of 1200~1600nm.
     (7) The dependence of nonlinear coefficient with pitch, air-filling fraction, and wavelength is analyzed systematically, that can be provided the theoretical basis to the practice. According to the theoretical analysis, we fabricated the highly nonlinear PCF. And the measured results of the highly nonlinear PCF are suitable to the calculation.
引文
[1] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987,58(20): 2059-2062
    
    [2] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987,58(23): 2486-2489
    [3] J. C. Knight, T. A. Birks, P. St. J. Russell et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996,21(19): 1547-1549
    [4] J. C. Knight, J. Broeng, T. A. Birks et al. Photonic bandgap guidance in optical fibers. Science, 1998, 282(5393): 1476-1478
    
    [5] P. St. J. Russell. Photonic crystal fibers. Science, 2003, 299(5605): 358-362
    [6] J. C. Knight. Photonic crystal fibres. Nature, 2003,424(6950): 847-851
    [7] J. C. Knight, T. A. Birks, P. St. J. Russell et al. Pure silica single-mode fiber with hexagonal photonic crystal cladding. in: Optical Fiber Communication Conference, OSA, 1996. PD3,1-4
    [8] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997, 22(13): 961-963
    [9] J. Broeng, S. E. Barkou, A. Bjarklev et al. Highly increased photonic band gaps in silica/air structures. Opt. Commun., 1998,156: 240-244
    [10] R. F. Cregan, B. J. Mangan, J. C. Knight et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539
    
    [11] J. C. Knight, P. St. Russell. New ways to guide light. Science, 2002, 296(5566): 276-277
    
    [12] J. C. Knight, T. A. Birks, R. F. Cregan et al. Large mode area photonic crystal fiber. Electron. Lett., 1998,34(13): 1347-1348
    [13] J. C. Gates, C. W. J. Hillman, J. C. Baggett et al. Structure and propagation of modes of large mode area holey fibers. Opt. Express, 2004,12(5): 847-852
    [14] W. J. Wadsworth, R. M. Percival, G Bouwmans et al. Very high numerical aperture fibers. IEEE Photon. Technol. Lett., 2004,16(3): 843-845
    [15] N. A. Issa. High numerical aperture in multimode microstructured optical fibers. Appl. Opt., 2004,43(33): 6191-6197
    [16] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth et al. Highly birefringent photonic crystal fibers. Opt. Lett., 2000,25(18): 1325-1327
    [17] T. P. Hansen, J. Broeng, S. E. B. Libori et al. Highly birefringent index-guiding photonic crystal fibers. IEEE Photon. Technol. Lett., 2001,13(6): 588-590
    [18] N. G R. Broderick, T. M. Monro, P. J. Bennett et al. Nonlinearity in holey optical fibers: measurement and future opportunities. Opt. Lett., 1999,24(20): 1395-1397
    [19] J. R. Folkenberg, N. A. Mortensen, K. P. Hansen et at. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Opt. Lett., 2003, 28(20): 1882-1884
    [20} N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al. Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt. Lett., 2003,28(6): 393-395
    [21] K. Suzuki, H. Kubota, S. Kawanishi et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express, 2001,9(13): 676-680
    [22] A. Peyrilloux, T. Chartier, A. Hideur, et al. Theoretical and experimental study of the birefringence of a photonic crystal fiber. J. Lightwave Technol., 2003,21(2): 536-540
    [23] K. Saitoh, Y. Sato, M. Koshiba. Polarization splitter in three-core photonic crystal fibers. Opt. Express, 2004,12(17): 3940-3946
    [24] N. J. Florous, K. Saitoh, M. Koshiba. A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics. Opt. Express, 2005,13(19): 7365-7373
    [25] A. Wang, A. K. George, J. F. Liu et al. Highly birefringent lamellar core fiber. Opt. Express, 2005,13(16): 5988-5993
    [26] A. Ferrando, E. Silvestre. Designing the properties of dispersion-flattened photonic crystal fibers.Opt.Express,2001,9(13):687-689
    [27]J.C.Knight,J.Arriaga,T.A.Birks et al.Anomalous dispersion in photonic crystal fiber.IEEE Photon.Technol.Lett.,2000,12(7):807-809
    [28]Y.Li,B.Liu,Z.Wang et al.Influence on photonic crystal fiber dispersion of the size of air holes in different rings within the cladding.Chin.Opt.Lett.,2004,2(2):75-77
    [29]L.Shen,P.Huang,S.Jian et al.Design of photonic crystal fibers for dispersion-related applications.J.Lightwave Technol.,2003,21(7):1644-1651
    [30]M.Takashi,Z.Jian,N.Kazuhide.Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss.J.Lightwave Technol.,2005,23(12):4178-4183
    [31]L.W.Tzong,H.C.Chia.A novel ultraflattened dispersion photonic crystal fiber.J.Lightwave Technol.,2005,17(1):67-69
    [32]K.Saitoh,N.Florous,M.Koshiba.Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.Opt.Express,2005,13(21):8365-8371
    [33]T.Yamamoto,H.Kuboya,S.Kawanishi,Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber.Opt.Express,2003,11(13):1537-1540
    [34]T.Fujisawa,K.Saitoh,K.Wada et al.Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation.Opt.Express,2006,14(2):893-900
    [35]P.Petropoulos,K.Frampton,D.J.Richardson et al.Highly nonlinear and anomalously dispersive lead silicate glass holey fibers.Opt.Express,2003,11(26):3568-3573
    [36]刘洁,杨昌喜,金国藩等.一种新型高非线性色散平坦光子晶体光纤结构.光学学报,2006,26(10):1569-1574
    [37]王清月,胡明列,柴路.光子晶体光纤非线性光学研究新进展.中国激光,2006,33(1):57-66
    [38] K. Saitoh, T. Fujisawa, T. Kirihara et al. Approximate empirical relations for nonlinear photonic crystal fibers. Opt. Express, 2006,14(14): 6572-6582
    [39] A. O. Monux, J. G. W. Perez, I. M. Fernandez. Accurate analysis of photonic crystal fibers by means of the fast-fourier-based mode solver. IEEE Photon. Technol. Lett., 2007,19(6): 414-416
    [40] H. Li, A. Mafi, A. Schulzgen et al. Analysis and Design of photonic crystal fibers based on an improved effective-index method. J. Lightwave Technol., 2007, 25(5): 1224-1230
    [41] X. Zhao, L. Hou, Z. Liu et al. Improved fully vectorial effective index method in photonic crystal fiber. Appl. Opt., 2007,46(19): 4052-4056
    [42] F. Zhang, M. Zhang, X. Liu et al. Design of wideband single-polarization single-mode photonic crystal fiber. J. Lightwave Technol., 2007,25(5): 1184-1189
    [43] H. Ademgil, S. Haxha. Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses. J. Lightwave Technol., 2008, 26(4): 441-448
    [44] S. M. A. Razzak, Y. Namihira. Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photon. Technol. Lett., 2008, 20(4): 249-251
    [45] H. Subbaraman, T. Ling, Y. Jiang et al. Design of a broadband highly dispersive pure silica photonic crystal fiber. Appl. Opt., 2007,46(16): 3263-3268
    [46] J. C. Knight. Photonic crystal fibers and fiber lasers. J. Opt. Soc. Am. B, 2007, 24(8): 1661-1668
    [47] S. Li, S. Liu, Z. Song et al. Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers. Appl. Opt., 2007,46(22): 5183-5188
    [48] H. S. Jang, K. N. Park, K. S. Lee. Characterization of tunable photonic crystal fiber directional couplers. Appl. Opt., 2007,46(18): 3688-3693
    [49] K. Nakajima, T. Matsui, K. Kurokawa et al. High-speed and wideband transmission using dispersion-compensating/managing photonic crystal fiber and dispersion-shifted fiber. J. Lightwave Technol., 2007,25(9): 2719-2726
    [50] K. Kurokawa, K. Ieda, K. Tajima et al. Visible high-speed optical transmission over photonic crystal fiber. Opt. Express, 2007,15(2): 397-401
    [51] Y. Li, C. Wang, M. Hu. A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation. Opt. Commun., 2004, 238: 29-33
    [52] T. A. Birks, D. Mogilevtsev, J. C. Knight et al. The analogy between photonic crystal fibres and step index fibres. in: Optical Fiber Communication Conference, OSA, 1998. FG4,114-116
    [53] K. N. Park, K. S. Lee. Improved effective-index method for analysis of photonic crystal fibers. Opt. Lett., 2005,30(9): 958-960
    [54] J. C. Knight, T. A. Birks, P. St. J. Russell. Property of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A, 1998,15(3): 748-752
    [55] S.G Johnson, J.D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express, 2001, 8(3): 173-190
    [56] S. Guo, S. Albin. Simple plane wave implementation for photonic crystal calculations. Opt. Express, 2003,11(2): 167-175
    [57] S. Guo, S. Albin. Numerical techniques for excitation and analysis of defect modes in photonic crystals. Opt. Express, 2003,11(9): 1080-1089
    [58] K. M. Leung, Y. F. Liu. Photonic band structures: the plane-wave method. Phys. Rev. B, 1990, 41(14): 10188-10190
    [59] R. Zoli, M. Gnan, D. Castaldini et al. Reformulation of the plane wave method to model photonic crystals. Opt. Express, 2003, 11(22):2905-2910
    [60] T. P. White, R. C. McPhedran, L. C. Botten et al. Calculations of air-guided modes in photonic crystal fibers using the multipole method. Opt. Express, 2001, 9(13): 721-732
    [61] T. P. White, B. T. Kuhlmey, R. C. Mcphedran et al. Multipole method for microstructured optical fibers I: formulation. J. Opt. Soc. Am. B, 2002, 19(10) : 2322-2330
    [62] B. T. Kuhlmey, T. P. White, G. Renversez et al. Multipole method for microstructured optical fibers. II. Implementation and results. J. Opt. Soc. Am. B, 2002, 19(10): 2331-2340
    [63] Z. Zhu, T. G. Brown. Multipole analysis of hole-assisted optical fibers. Opt. Commun., 2002, 206: 333-339
    [64] S. Campbell, R. C. McPhedran, C. Martijn et al. Differential multipole method for microstructured optical fibers. J. Opt. Soc. Am. B, 2004, 21(11): 1919-1928
    [65] S. Guo, F. Wu, S. Albin et al. Loss and dispersion analysis of microstructured fbers by finite-difference method. Opt. Express, 2004,12(15): 3341-3352
    [66] Z. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express, 2002,10(17): 853-864
    [67] F. Fogli, L. Saccomandi, P. Bassi et al. Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers. Opt. Express, 2002,10(1): 54-59
    [68] C. E. Kerbage, B. J. Eggleton, P. S. Westbrook et al. Experimental and scalar beampropagation analysis of an air-silica microstructure fiber. Opt. Express, 2000, 7(3): 113-122
    [69] M. D. Feit, J. A. Fleck. Computation of mode properties in optical fiber waveguides by a propagating beam method. App. Opt., 1980,19(7): 1154-1164
    [70] R. Scarmozzino, A. Gopinath, R. Pregla, et al. Numerical Techniques for Modeling Guided-Wave Photonic Devices. J. Selected Topics in Quantum Electronics, 2000,6(1): 150-162
    [71] F. Fogli, G. Bellanca, P. Bassi, et al. Highly efficient full-vectorial 3-D BPM modeling of fiber to planar waveguide couplers. J. Lightwave Technol., 1999,17(1): 136-143
    [72] T. Fujisawa, M. Koshiba. Finite element characterization of chromatic dispersion in nonlinear holey fibers. Opt. Express, 2003,11(13): 1481-1489
    [73] M. Koshiba, K. Saitoh. Structural dependence of effective area and mode field diameter for holey fibers. Opt. Express, 2003,11(15): 746-1756
    [74] K. Saitoh, M. Koshiba. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE J. Quantum Electron., 2002, 38(7): 927-933
    [75] A. Cucinotta, S. Selleri, L. Vincetti, et al. Holey fiber analysis through the finite element method. IEEE Photon. Technol. Lett., 2002,14(11): 1530-1532
    [76] S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikati. New full vectorial numerically efficient propagation algorithm based on the finite element method. J. Lightwave Technol., 2002,18(3): 409-415
    [77] M. D. Feit, J. A. Fleck. Light propagation in graded-index optical fibers. Appl. Opt., 1978,17(24): 3990-3998
    [78] T. B. Koch, J. B. Davies, D. Wickramasinghe. Finite element/finite difference propagation algorithm for integrated optical device. Electron Lett., 1989, 25(8): 461- 462
    [79] F. Brechet, J.Marcou, D. Pagnoux, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method. Optical Fiber Technology, 2000, 6:181-191
    [80] M. Koshiba, Y. Tsuji. Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems. J. Lightwave Technol, 2000,18(5): 737-743.
    [81] M. Koshiba, K. Inoue. Simple and efficient finite-element analysis of microwave and optical waveguides. IEEE Trans. Microwave Theory Tech., 1992, 40(2): 371-377
    [82] F. L. Teixeira, W. C. Chew. General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microwave Guided Wave Lett., 1998, 8(6): 223-225
    [83] K. Saitoh, M. Koshiba. Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. J. Lightwave Technol., 2001,19(3): 405-413
    [84] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994,114 (10): 185-200
    [85] W. P. Huang, C. L. Xu, W. Lui, et al . The perfectly matched layer (PML) boundary condition for the beam propagation method. IEEE Photon. Technol. Lett., 1996 ,18(5): 649-651
    [86] U. Pekel, R. Mittra. An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problem. Microwave Guided Lett., 1995,5(8): 258-260
    [87] J. C. Knight, T. A. Birks, P. StJ. Russell et al. Alt-silica single-mode fiber with photonic crystal cladding. Opt. Lett., 1996,21(19): 1547-1549
    [88] J. C. Knight, T. A. Birks, P. StJ. Russell et al. All-silica single-mode fiber with photonic crystal cladding: Errata. Opt. Lett., 1997, 22(7): 484-485
    [89] S. Fevrier, R. Jamier, J. M. Blondy. Low-loss singlemode large mode area all-silica photonic bandgap fiber. Opt. Express, 2006,14(2): 562-569
    [90] T. A. Birks. Reducing losses in photonic crystal fibres. in: Optical Fiber Communication Conference, OSA, 2006. OFC7,1-3
    [91] K. Tajima, J. Zhou. Ultra low loss and long length photonic crystal fiber. IEICE Trans. Electron., 2005, E88-C(5): 870-875
    [92] K. M. Kiang, K. Frampton, T. M. Monro et al. Extruded singlemode non-silica glass holey optical fibres. Electron. Lett., 2002,38(12): 546-547
    [93] T. M. Monro, Y.D. West, D.W. Hewak et al. Chalcogenide holey fibres. Electron. Lett., 2000,36(24): 1998-2000
    [94] A. K. George, W. H. Reeves, J. C. Knight et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express, 2002, 10(25): 1520-1525
    [95] X. Feng, T. M. Monro, P. Petropoulos et al. Solid microstructured optical fiber. Opt. Express, 2003,11(18): 2225-2230
    [96] L. Brilland, F. Smektala, G. Renversez, et al. Fabrication of complex structures of Holey Fibers in Chalcogenide glass. Opt. Express, 2006,14(3): 1280-1285
    [97] M. Eijkelenborg, M. Large, A. Argyros et al. Microstructured polymer optical fibre. Opt. Express, 2001,9(7): 319-327
    [98] A. Argyros, I. M. Bassett, J. Zagari, et al. Ring structures in microstructured polymer optical fibres. Opt. Express, 2001,9(13): 813-820.
    [99] R. T. Bise, R. S. Windeler, K. S. Kranz, et al. Tunable photonic band gap fiber. in Proc. OFC, OSA Technical Digest, 2002. 466-467
    [100] A. K. George, J. C. Knight, P. St.J. Russell, et al. Tellurite photonic crystal fiber. Opt. Express, 2003,11(20): 2641-2645
    [101] R. Bise, D. J. Trevor. Sol-gel derived microstructured fiber: Fabrication and characterization. in presented at the Conf. Optical FiberCommun. (OFC), Anaheim, CA, 2005. 6-11
    [102] Samsung Electronics Co, Ltd. Method for fabricating holey optical fiber. USA, US6705126B2, 2001.1-6
    [103] Lucent Technologies Inc. Microstructured multimode fiber. USA, US6594429B1, 2000. 1-17
    [104] P. Falkenstein, C. D. Merritt, B. L. Justus. Fused preforms for the fabrication of photonic crystal fibers. Opt. Lett., 2004,29 (16): 1858-1860
    [105] P. J. Bennett, T. M. Monro, D. J. Richardson. Toward practical holey fiber technology: fabrication, splicing, modeling and characterization. Opt. Lett., 1999, 24(17): 1203-1205
    [106] J. H. Chong, M. K. Rao, Y. Zhu, et al. An effective splicing method on photonic crystal fiber using CO2 laser. IEEE Photon. Technol. Lett., 2003,15(7): 942-944
    [107] J. H. Chong, M. K. Rao. Development of a system for laser splicing photonic crystal fiber. Opt. Express, 2003,11(12): 1365-1370
    [108] B. Bourliaguet, C. Pare, F. Emond, et al. Microstructured fiber splicing. Opt. Express, 2003,11(25): 3412-3417
    [109] A. D. Yablon, R. T. Bise. Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses. IEEE Photon. Technol. Lett., 2005,17(1): 118-120
    [110] K. Tajima, J . Zhou, K. Nakajima et al. Ultralow loss and long length photonic crystal fiber. J. Lightwave Technol., 2004, 22 (1): 7-10
    [111] K. Tajima, J. Zhou, K. Nakajima, et al. Ultra low loss and long length photonic crystal fiber. in: Conference Digest of OFC '03,2003, pp. 1-3, paper PD1.
    [112] J. Zhou, K. Tajima, K. Nakajima, et al. Progress on low loss photonic crystal fibers. Opt. Fiber Tech., 2005,11:101-110
    [113] B. Yao, K. Ohsono, Y. Kurosawa, et ah Low-loss holey fiber. Hitachi Cable Review, 2005, 24:1-5
    [114] M. Ohashi, K. Shiraki, K. Tajima. Optical loss property of silica-based single-mode fibers. J. Lightwave Technol., 1992,10(5): 539-543
    [115] K. Tsujikawa, K. Tajima, M. Ohashi. Rayleigh scattering reduction method for silica-based optical fiber. J. Lightwave Technol., 2000,18(11): 1528-1532
    [116] T. P. White, R. C. Mcphedran, C. M. Desterke. Confinement losses in microstructured optical fibers. Opt. Lett., 2001,26(21): 1660-1662
    [117] A. Hochman, Y. Leviatan. Calculation of confinement losses in photonic crystal fibers by use of a source-model technique. J. Opt. Soc. Am. B, 2005,22(2): 474-480
    [118] M. Chen, R. Yu, A. Zhao. Confinement losses and optimization in rectangular-lattice photonic crystal fibers. J. Lightwave Technol., 2005 ,23 (9): 2707-2712
    [119] J. Broeng, D. Mogilevstev, S. E. Barkou et al. Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol., 1999,5 (3): 305-330.
    [120] M. D. Nielsen, C. Jacobsen, N. A. Mortensen et al. Low-loss photonic crystal fibers for transmission systems and their dispersion properties. Opt. Express, 2004, 12(7): 1372-1376
    [121] J. Legsgaard, A. Bjarklev, S. E. B. Libori et al. Chromatic dispersion in photonic crystal fibers:fast and accurate scheme for calculation.J.Opt.Soc.Am.B,2003,20(3):443-448
    [122]P.J.Roberts,B.J.Mangan,H.Sabert et al.Control of dispersion in photonic crystal fibers.J.Opt.Fiber.Commun.Rep.,2005,2:435-461
    [123]李曙光,刘晓东,侯蓝田.光子晶体光纤的导波模式与色散特性.物理学报,2003,52(11):2811-2817。
    [124]A.Ferrando,E.Silvestre,P.Andres et al.Design the Properties of Dispersion-flattened Photonic Crystal Fibers.Opt.Express,2001,9(13):687-697
    [125]吴重庆.光波导理论.第一版.北京:清华大学出版社,2000.69-70
    [126]吴铭,刘海荣,黄德修.高非线性光子晶体光纤色散特性的研究.光学学报,2008,28(3):539-542
    [127]Y.Ni,L.Zhang,L.An et al.Dual-core photonic crystal fiber for dispersion compensation.IEEE Photon.Technol.Lett.,2004,16(6):1516-1518
    [128]F.Gerome,J.L.Auguste,J.M.Blondy.Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber.Opt.Lett.,2004,29(23),2725-2727
    [129]T.A.Birks,J.C.Knight,P.St.J.Russell.Dispersion compensation using single-material fibers.IEEE Photon.Technol.Lett.,1999,11(6):674-676
    [130]L.P.Shen,W.P.Huang,G.X.Chen et al.Design and optimization of photonic crystal fibers for broad-band dispersion compensation.IEEE Photon.Technol.Lett.,2003,15(4):540-542
    [131]S.Yang,Y.Zhang,L.He et al.Broadband dispersion-compensating photonic crystal fiber.Opt.Lett.,2006,31(19):2830-2832
    [132]A.Huttunen,P.Torma.Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area.Opt.Express,2005,13(2):627-635
    [133]T.Fujisawa,K.Saitoh,K.Wada et al.Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers.Opt.Express,2006,14(2):893-900
    [134] Ming Wu, Hairong Liu, Dexiu Huang, Weijun Tong, Huifeng Wei. Design of broadband dispersion compensating fiber with the small core photonic crystal fiber. in: Asia-Pacific Optical Communications Conference (APOC), Proceeding of SPIE, China, 2007. 6781,3U-1~3U-8
    [135] K. Saitoh, N. Florous, M. Koshiba. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses. Opt. Express, 2005,13(21): 8365-8371
    [136] Ming Wu, Dexiu Huang, Hairong Liu, Weijun Tong. Broadband dispersion compensating fiber using index-guiding photonic crystal fiber with defected-core. Chinese Optics Letters, 2008,6(1): 22- 24
    [137] ITU-T Recommendation G652, 2003 Characteristics of a Single-Mode Optical Fiber and Cable (Geneva: International Telecommunication Union)
    [138] D. Ouzounov, D. Homoelle, W.Zipfel et al. Dispersion measurements of microstructured fibers using femtosecond laser pulses. Opt. Commun., 2001, 192: 219-223
    [139] J. P. Meunier, Z. Wang, S. I. Hosain. Evaluation of splice loss between two nonidentical single-mode graded-index fiber. IEEE Photon. Tech. Lett., 1994, 6(8): 998-1000
    [140] K. Lai, S. G. Leon-Saval, A. Witkowska et al. Wavelength-independent all-fiber mode converters. Opt. Lett., 2007,32(4): 328-330
    [141] Y. Fang, T. Shen.Coupling of two defect modes in photonic crystal fiber. Chinese Optics Letters, 2005, 3(5): 261-263
    [142] P. Petropoulos, T. M. Monro, W. Belardi, et al. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber. Opt. Lett., 2001,26(16): 1233-1235
    [143] J. E. Sharping, M. Fiorentino, P. Kumar et al. All-optical switching based on cross-phase modulation in microstructure fiber. IEEE Photon. Technol. Lett., 2002,14: 77-79
    [144] J. E. Sharping, M. Fiorentino, A. Coker et al. Four-wave mixing in microstructure fiber. Opt. Lett., 2001, 26(14): 1048-1050
    [145] S. Wabnitz. Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths. J. Lightwave Technol, 2006, 24(4): 1732-1738
    [146] D. Akimov, T. Siebert, W.Kiefer et al. Optical parametric amplification of a blueshifted output of a photonic-crystal fiber. J. Opt. Soc. Am. B, 2006, 23(9): 1988-1993
    [147] T. V. Andersen, K. M. Hilligsoe, C. K. Nielsen et al. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths. Opt. Express, 2004,12(7): 4113-4122
    [148] A. Zhang, M. S. Demokan. Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber. Opt. Lett., 2005, 30(18): 2375-2377
    [149] T. Yang, C. Shu, C. Lin. Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber. Opt. Express, 2005, 13(14): 5409-5415
    [150] Z. Yusoff, J. H. Lee, W. Belardi et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Opt. Lett., 2002, 27(6): 424-426
    [151] K. Nakajima, C. Fukai, K. Kurokawa et al. Raman amplification characteristics at 850nm in a silica-based photonic crystal fiber. IEEE Photon. Technol. Lett., 2006, 18(3): 451-453
    [152] S. K. Varshney, T. Fujisawa, K. Saitoh et al. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Opt. Express, 2006,14(8): 3528-3540
    [153] T. Kato, Y. Suetsugu, M. Nishimura. Estimation of nonlinear refractive index in various silica-based glasses for optical fibers. Opt. Lett., 1995, 20(22): 2279-2281
    [154] N. A. Mortensen. Effective area of photonic crystal fibers. Opt. Express, 2002, 10(7): 341-348
    [155] M. Koshiba, K. Saitoh. Structural dependence of effective area and mode field diameter for holey fibers. Opt. Express, 2003,11(15): 1746-1756
    [156] TIATSB 62-23-2001, Measurement of nonlinear coefficient of SM fibers.
    [157] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000, 25(1): 25-27
    [158] T. M. Monro, D. J. Richardson, P. J. Bennett. Developing holey fibres for evanescent field devices. Electronics Lett., 1999,35(14): 1188-1189
    [159] S. Coen, A. Chau, R. Leonhardt et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Opt. Soc. Am. B, 2002,19(4) :753-763
    [160] A. V. Husakou, J. Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 2001,87 (20): 20390121-20390124
    [161] J. Herrmann, U. Griebner, N. Zhavoronkov et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett., 2002, 88(17): 17390121-17390124
    [162] M. Lehtonen, G. Genty, H. Ludvigsen. Supercontinuum generation in a highly birefringent microstructured fiber. Appl. Phys. Lett., 2003,82 (14): 2197-2199
    [163] K. M. Hilligse, T. V. Andersen, H. N. Paulsen et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt. Express, 2004,12(6): 1045-1054
    [164] K. P. Hansen, J. R. Jensen, C. Jacobsen et al. Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55μm. in: Optical Fiber Communication Conference, OSA, 2002. FA9,1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700