基于聚焦涡旋结构光的表面等离激元全光调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离激元(Surface Plasmons Polaritons, SPPs)光场局域、增强和控制在光信息处理,表面增强光谱和传感技术等方面的应用得到了广泛的关注。传统实现SPPs局域化和控制的方法一般利用金属纳米颗粒或者加工金属纳米结构。但是这种传统的方法激发SPPs具有操作复杂、很强的光散射和吸收损耗、及难以重构等方面的局限性,从而降低了SPPs的激发效率及可控性。因此研究新型全光方法替代金属结构来实现对SPPs场的激发、局域及调控具有重要的潜在应用价值。
     本文主要提出在均匀金属表面,全光方法局域调控表面等离激元。利用涡旋(Optical Vortices,简称OV)结构光螺旋相位特点,结合径向偏振光(“柱矢量光束”的一种)放射性轴对称及其聚焦去偏振特性,把光束整形技术引入到近场,对SPPs产生、传播、干涉等光学现象进行局域化全光调控,研究对SPPs纳米光束的整形优化,将SPPs调制为具有新颖的振幅和相位分布特点的近场光束,实现了具有螺旋相位的SPPs涡旋光。
     综上所述,基于光束整形与高数值孔径聚焦技术,本文主要的研究工作和创新点包括以下几个方面:
     本文首先设计了在满足SPPs共振条件下,线性偏振涡旋结构光束在均匀金属膜界面定点激发SPPs的有效荧光成像实验模式。利用物镜式全内反射荧光显微术(TIRFM)的倏逝波照明技术,调节实验参数满足SPR共振条件,激发金属界面处荧光分子对SPPs进行远场成像。进行定量分析了入射涡旋光束的光斑尺寸、形状、偏振、角度等入射条件对所形成SPPs局域化分布及其传播等特性的影响。
     其次,利用径向偏振和涡旋结构光束分布的特点,在定点激发SPPs的基础上,进一步研究了SPPs在均匀金属表面的定向传播、聚焦干涉特性。聚焦的SPPs场被调制成具有一定特殊几何图形并呈轴对称分布的超分辨SPPs点阵,实现了对SPPs场分布的优化整形。利用Richards-Wolf理论建立了高数值孔径条件下聚焦SPPs场的矢量衍射理论模型,对焦平面附件的SPPs场分布进行了详细而具体的研究。超衍射极限聚焦SPPs点阵FWHM可达到0.3λ左右。运用有限时域差分方法(FDTD),对比了以相同的入射条件下在没有金属膜样品的情况下的电场分布,进一步证明了在均匀金属膜上聚焦超分辨SPPs点阵的形成。
     最后,我们采用聚焦径向涡旋光束在金属膜表面对SPPs场相位结构进行调制,实现了具有螺旋相位结构的SPPs场分布。弥补于其他文献中所报道的螺旋槽和等离激元透镜结构产生SPPs旋涡的缺陷,我们提出全光方法实现远场涡旋光直接转化为高效率、动态可重构的等离激元涡旋光。基于FDTD模拟和理论分析方法,我们也详细地研究了等离激元场分布、波因廷矢量和聚焦效率。
     本课题通过对基于涡旋结构光束的动态SPPs荧光成像系统设计,径向偏振条件下SPPs全光调控整形、超分辨聚焦干涉效应研究,及SPPs OV的实现为研制全光控近场干涉传感器、超分辨显微成像、光学信息存储等纳米光子器件和新一代光信息处理应用提供了新的启迪。
Surface plasmon polaritions (SPPs) have received considerable attentions in diverse applications, such as optical signal process, surface enhanced spectroscopy and sensor technology, with specific contributions to control, enhancement and confinement of the surface field. Traditionally, the local SPPs can be created and controlled by nano-particles or patterning metal surface. But the conventional methods have some limitations to reduce the SPPs excitation efficiency and controllability, such as operational complexity, light scattering, absorption loss and unreconfigrability. Complementary to the patterned metal surface technique, the all-optical method for generating, localizing and controlling SPPs has important potential applications.
     In this paper, we propose to localize and control the SPPs all-optically on the flat metal surface. Owing to the axially symmetric, depolarization and significant electric field enhancement effect of radially polarized beam and spiral phase characteristic of optical vortices (OV), the SPPs could be shaped optimally into the complex field patterns of certain amplitude and phase profile. The generating, propagating and interfering of SPPs are controlled and modulated by focused radially polarized OV beam. And the SPPs vortices with spiral phase are generated on the metal surface
     From the above, based on the beam shaping and the focused beam technique, the major content and result are shown as follows:
     Firstly, the dynamic SPPs landscapes are generated in the predefined position by using a highly focused vortex beam imaged onto a uniform flat gold (Au) metal surface where the surface plasmon resonant (SPR) angle is satisfied. Using the total internal reflection fluorescence microscopy (TIRFM) technique, Fluorescence excited by the SPPs field near the metal-dielectric interface is used to image the surface plasmon patterns experimentally. The propagation and distribution of SPPs field depended on the incident conditions, such as the size, shape and polarization of incident beam and incident angle, are analyzed quantitatively.
     Secondly, without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. The focused SPPs field is modulated into the special axially symmetric array. FWHM of the SPPs spot on the primary intensity ring is calculated as being 0.3λ0.The proposed model of SPPs focusing by the vortex mode was described in detail based on the focused beam technique. We theoretically discuss the physics involved in the beyond-diffraction-limit focusing phenomenon and the unique characteristics of dynamic focused SPPs patterns using the vectorial diffraction theory. By performing the 3D-FDTD simulations, the proposed focusing model was verified by comparing the difference of field distributions with and without the metal film.
     Lastly, SPPs vortices excited by a highly focused radially polarized optical vortices beam on a metal surface are proposed with analytical and numerical verifications. Complementary to the spiral grooves and plasmonic vortex lens for generation SPPs vortices reported in literature, the proposed method reveals a direct transform from optical vortices to surface plasmonic ones with dynamic, reconfigurable and high efficiency advantages. The plasmonic field pattern, phase distributions, Poynting vector and focusing efficiency of SPP vortices are demonstrated in detail.
     Through the investigation of all-optical modulation and control of SPPs by optical structure light-vortex beam, the conclusions draw in this thesis is helpful to the design of near-field interference sensor, super-resolution microscopy and optical data storage applications.
引文
[1]. U. Kreibig, M. Vollmer. Optical Properties of Metal Cluster. Spinger-Verlag, Berlin, Germany,1995
    [2]. H. Raether. Surface Plasmons on Smooth and Rough Surface and on Gratings. Springer Tracts in Modern Physics,1998,111
    [3]. S. Underwood, P. Mulvaney. Effect of the Solution Refractive Index on the Color of Gold Colloids. Langmuir 1994,10:3427
    [4]. P. Mulvaney. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996,12:788
    [5]. Barnes, W. L., Dereux, A. and Ebbesen. T.W. Surface plasmon subwavelength optics. Nature,2003,424:824-830
    [6]. Nie, S. and Emory, S. T. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,275:1102-1106
    [7]. Jordan, P. et al. Surface enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. Opt. Express,2005,13:4148-4153
    [8]. Svedberg, F., Li, Z., Xu, H. & Kall, M. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett, 2006.6:2639-2641
    [9]. McFarland A. D., Van Duyne, P. Single silver nanoparticles a real-time optical sensing sensor with zeptomole sensitivity. Nano Lett,2003,3:1057-1062
    [10]. J. W. Goodman. Introduction to Fourier Optics. McGraw-Hill,1968
    [11]. J. Zenneck. Fortplfanzung ebener elektromagnetischer Wellen langs einer ebenen Leiterflache. Ann. Phys.1907,23:846
    [12]. A. Sommerfield. Ausbreitung der Wellen i n der drahtlosen Telegraphie Ann. Phys. 1909,28:665-737
    [13]. G. Mie. Beitrage zur optik triiber medien, speziell kolloidaller metallosungen. Ann. Phys.1908,25:377-445
    [14]. P. Debye. Der Lichtdrack auf Kugeln von beliebigem Material. Ann. Phys.1909, 30:57-136
    [15]. U. Fano. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces J. Opt. Soc. Am.1941,31:213
    [16]. H. A. Bethe. Theory of Diffraction by Small Holes. Phys. Rev.1944,66:163-82
    [17]. G. Binning and et al. Surface studies by scanning tunneling microscopyPhys. Rev. Lett. 1982,49:57-61
    [18]. H. Raether. Surface Plasmons. Berlin:Springer.1988
    [19]. L. Salomon and et al. Local excitation of surface plasmon polaritons at discontinuities of a metal film:Theoretical analysis and optical near-field measurements. Phys. Rev. B.2002,65:125409
    [20]. B. Hecht and et al. Local Excitation, Scattering, and Interference of Surface Plasmons. Phys. Rev. Lett.1996,77:1889
    [21]. Hiroshi Kano, Seiji Mizuguchi, and Satoshi Kawata. Excitation of surface-plasmon polaritons by a focused laser beam. J. Opt. Soc. Am. B.1998,15:1381-1386
    [22]. R. H. Ritchie. Plasma Losses by Fast Electrons in Thin FilmsPhys. Rev.1957,106:874
    [23]. D. Sarid. Long-range surface-plasmon waves on very thin metal film. Phys. Rev. Lett. 1981,47:1927-1930
    [24]. Bathe H A. Theory of Diffraction by Small Holes. Phys Rev.1944,66(7):163
    [25]. Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature.1998,391(6668):667
    [26]. S. Y. Wu, H. P. Ho, W. C. Law, et al. Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration. Optics Letters.2009,29:2378
    [27]. Fang N, Lee H, Sun C, et al. Sub-Diffraction-Limited Optical Imaging with a Silver Superlens. Science.2005,308(5721):534
    [28]. A. V. Nesterov, and V. G. Niziev. Laser beams with axially symmetric polarization. Journal of Physics D:Applied Physics.2000,33:1817-1822
    [29]. R. Dorn, S. Quabis, and G. Leuchs. Sharper Focus for a Radially Polarized Light Beam. Physical Review Letters.2003,91:233901-233901
    [30]. S. Quabis, R. Dorn, M. Eberler, et al. Focusing light to a tighter spot. Optics Communications,2000,179:1-7
    [31]. I. Moshe, S. Jackel, and A. Meir. Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects. Optics Letters.2003,28:807-809
    [32]. V. G. Niziev, and A. V. Nesterov. Influence of beam polarization on laser cutting efficiency. Journal of Physics D:Applied Physics.1999,32:1455-1461
    [33]. K. Okamoto. Fundamentals of Optical Waveguides. Academic Press.2005
    [34]. S. C. Tidwell, D. H. Ford, and W. D. Kimura. Generating radially polarized beams interferometrically. Applied Optics.1990,29:2234-2239
    [35]. O. Ram, B. Shmuel, D. Nir, et al. The formation of laser beams with pure azimuthal or radial polarization. Applied Physics Letters,2000,77:3322-3324
    [36]. K. J. Moh, X.-C. Yuan, J.Bu, et al. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Applied optics.2009,46:7544
    [37]. M. R. Beversluis, L. Novotny, and S. J. Stranick. Programmable vector point-spread function engineering. Optics Express.2006,14,2650-2656
    [38]. L. Novotny, M. R. Beversluis, K. S. Youngworth, and et al. Longitudinal Field Modes Probed by Single Molecules. Physical Review Letters.2001,86,5251-5254
    [39]. E. Yew, and C. Sheppard. Effects of axial field components on second harmonic generation microscopy. Optics Express.2006,14,1167-1174
    [40]. N. Hayazawa, Y. Saito, and S. Kawata. Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy. Applied Physics Letters.2004,85, 6239-6241
    [41]. K. J. Moh, X.-C. Yuan, J. Bu, and et al. Radial polarization induced surface plasmon virtue probe for two-photon fluorescence microscopy. Optics Letters.34:971-973
    [42]. K. J. Moh, X.-C. Yuan, J. Bu, and et al. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Optics Express.2008, 16:20734-20741
    [43]. D. P. Biss, K. S. Youngworth, and T. G. Brown. Dark-field imaging with cylindrical-vector beams. Applied Optics.2006,45,470-479
    [44]. N. Bokor, and N. Davidson. Toward a spherical spot distribution with 4pi focusing of radially polarized light. Optics Letters.2004,29,1968-1970
    [45]. Bokor, and N. Davidson. Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam. Optics Letters.2006,31,149-151
    [46]. L. E. Helseth. Roles of polarization, phase and amplitude in solid immersion lens systems. Optics Communications.2001,191,161-172
    [47]. T. H. Lan, and C. H. Tien. Servo Study of Radially Polarized Beam in High Numerical Aperture Optical Data Storage System. Japanese Journal of Applied Physics.2007, 46,3758-3760
    [48]. Tzu Hsiang Lan, and C. H. Tien. Servo Study of Radially Polarized Beam in High Numerical Aperture Optical Data Storage System. Japanese Journal of Applied Physics.2007,46:3758-3760
    [49]. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A.1992. 45:8185-8189
    [50]. J. F. Nye, M. V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A.1974,336: 165-190
    [51]. M. V. Berry, Singularities in waves and rays. In Physics of Defect, Les Houches Sessions, R. Balian, M. Klemen, J. P. Poirier, North Holland, Amsterdam,1981: 453-543
    [52]. N. B. Baranova, A. V. Mamaev, N. F. Pilipetskii, et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. J. Opt. Soc. Am. 1983,73:525-528
    [53]. P. Coullet, L. Gill, F. Rocca. Optical vortices. Opt. Commun.1989,73:403-408
    [54]. S. M. Barnet, L. Allen, Orbital angular momentum and nonparaxial light beams. Opt. Commun.1994,110:679-688
    [55]. H. He, M. E. J. Friese, N. R. Heckenberg, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett.1995,75:826-829
    [56]. N. B. Simpson, L. Dholakia, L. Allen, et al. Mechanical equivalence of spin and orbital angular momentum of light:an optical spanner. Opt. Lett.1997,22:52-54
    [57]. J. E. Curtis, D.G. Grier. Structure of Optical Vortices. Phys. Rev. Lett.2003,90: 133901
    [58]. I. V. Basistiy, V. Y. Bazhenov, M. S. Soskin, and et al. Optics of Light-Beams with Screw Dislocations. Optics Communications.1993,103,422-428
    [59]. R. J. Voogd, M. Singh, and J. J. M. Braat. The use of orbital angular momentum of light beams for optical data storage. Optical Data Storage.2004,387-392
    [60]. K. Ladavac, and D. G. Grier. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Optics Express.2004,12:1144-1149
    [61]. David L. Andrews. Structured Light and Its Applications. Academic Press is an imprint of Elsevier (Elsevier, USA,2008).
    [62]. F. Flossmann, U. T. Schwarz, and M. Maier. Optical vortices in a Laguerre-Gaussian LG(1)(0) beam. Journal of Modern Optics.2005,52:1009-1017
    [63]. G. A. Turnbull, D. A. Robertson, G. M. Smith, et al. The generation of free-space Laguerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phase plate. Opt. Comm.1996,127:183-188
    [64]. J. Arlt, K. Dholakia, L. Allen, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opt.1998,45:1231-1237
    [65]. Q. Wang, X. W. Sun, P. Shum. Generating doughnut-shaped beams with large charge numbers by use of liquid-crystal spiral phase plates. Appl. Opt.2004,43:2292-2297
    [66]. T. Watanabe, M. Fujii, Y. Watanabe, et al. Generation of a doughnut-shaped beam using a spiral phase plate. Rev. Sci. Inst.2004,75:5131-5135
    [67]. J. Durnin. Exact solutions of nondiffraction beams.1. The scarlar teory. J. Opt. Soc. Am. A,1987,4:651-654
    [68]. J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phy. Rev. Lett.1987,58: 1499-1501
    [69]. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, et al. Hypergeometric modes. Opt. Lett. 2007,32:742-744
    [70]. V. V. Kotlyar, A. A. Kovalev. Family of hypergeometric laser beams. J. Opt. Soc. Am. A,2008,25:262-270
    [71]. A. Jesacher, S. Furhapter, S. Bernet and et al. Size selective trapping with optical "cogwheel" tweezers. Opt. Express.2004,12,4129-4135
    [72]. D.W. Zhang and X.-C. Yuan. Entangled double-helix phase. Opt. Lett.2003,28:1864
    [73]. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 1999,24,608
    [74]. K. T. Gahagan and G. A. Swartzlander Jr. Optical vortex trapping of particles. Opt. Lett. 1996,21:827-829
    [75]. S. H. Tao, X. C. Yuan, J. Lin, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams. J. Appl. Phys.2006,100: 043105
    [76]. Maria Dienerowitz, Michael Mazilu, Peter J. Reece, et al. Optical vortex trap for resonant confinement of metal nanoparticles. Optics Express.2008,16:4991-4999
    [77]. S. Underwood. P. Mulvaney. Effect of the Solution Refractive Index on the Color of Gold Colloids. Langmuir.1994,10:3427-4340
    [78]. P. Mulvaney. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996,12:788
    [79]. Martin-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett.2001,86:1114-1117
    [80]. T. Thio, K. M. Pellerin, R. A. Linke, and et al. Enhanced light transmission through a single subwavelength aperture. Opt. Lett.2001,26:1972
    [81]. Eliza Hutter and Janos H. Fendler. Exploitation of localized surface Plasmon resonance. Adv. Mater.2004,16:1685-1706
    [82]. P. F. LIAO, J. G. Bergman, D. S. Chemla, et al. Surface-enhanced Raman scattering from microlithographic silver particle surfaces. Chemical Physics Letters.1981,82: 355-359
    [83]. Giobvanni Volpe, Romain Quidant, Goncal Badenes, and et al. Surface Plasmon radiation forces. Phys. Rev. Lett.2006,96:238101
    [84]. Maurizio Righini, Anna S. Zelenina, Christian Girard and et al. Parallel and selective trapping in a patterned plasmonic landscape. Nature physics.2007,3:447
    [85]. Hirsehfeld T. Optical microscopic observation of single small molecules[J]. Applied Optics.1976,15:2965-2968
    [86]. Sclnnleitner A, Mannuzzu L M, Terakawa S, et al. Structural rearrangements in single ion channels detected optically in living cells[J]. PNAS.2002,99:12759.
    [87]. Ueda M, Sako Y, Tanaka T, et al. Single-molecule analysis of chemotactic signaling in Dietyostelium cels[J]. Science.2001,294:864-867
    [88]. J. Lin, X.-C. Yuan, S. H. Tao, et al. Variable-radius focused optical vortex with suppressed sidelobes. Opt. Lett.31,1600(2006).
    [89]. V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer. Sidelobe contrast reduction for optical vortex beams using a helical axicon. Opt. Lett.2007,32:921
    [90]. S.Quabis, R. Dorn, M .Eberler, et al. Focusing light to a tighter spot. Optics Communication.2000,179:1
    [91]. E. Wolf. Electromagnetic diffraction in optical systemsl. An integral representation of the image field. Proc. R. Soc. Ser. A.1959,253:349
    [92]. B. Richards and E.Wolf. Electromagnetic diffraction in optical systems Ⅱ. Structure of the image field in an aplanatic system. Proc. Roy. Soc. A.1959,253:358
    [93]. K. Youngworth, and T. Brown. Focusing of high numerical aperture cylindrical-vector beams. Optics Express.2000,7:77-87
    [94]. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Optics Communications 2001,191:161-172
    [95]. L. E. Helseth. Focusing of atoms with strongly confined light potentials. Optics Communications.2002,212:343-352
    [96]. Gilad M. Lerman, Avner Yanai, and Uriel Levy. Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light. Nano Lett. 2009,9:2139-2143
    [97]. Q. Zhan. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Opt. Lett.2006,31:1726-1728
    [98]. W. B. Chen and Q. Zhan. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt. Lett.2009,34: 722-724
    [99]. Lezec H. J., Degiron A., Devaux E., et al. Beam light from a subwavelength aperture. Science.2002,297:820
    [100]. Hwi Kim and Byoungho Lee. Diffractive slit patterns for focusing surface plasmon polaritons. Optics Express.2008,16:8969-8980
    [101]. Leilei Yin, Vitali K. Vlasko-Vlasov, John Pearson, et al. Subwavelength focusing and guiding of surface plasmons. Nano Letters.2005,5:1399-1420
    [102]. Gilad M. Lerman, Avner Yanai, and Uriel Levy. Demonstration of nanofocusing by the use of plasmonic lens illunminated with radially polarized light. Nano Letters. 2009,9:2139-2143
    [103]. Zhaowei Liu, Jennifer M. Steele, Werayut Srituravanich, et al. Focusing surface plasmons with a plasmonic lens. Nano Letters.2005,5:1726-1729
    [104]. E. Descrovi, V. Paeder, L. Vaccaro, and H.-P. Herzig. A virtual optical probe based on localized Surface Plasmon Polaritons. Opt. Express.2005,13:7017-7027
    [105]. Q. Wang, X. Yuan, P. Tan, et al. "Phase modulation of surface plasmon polaritonsby surface relief dielectric structures," Opt. Express 16,19271-19276 (2008).
    [106]. L. Novotny, M. R. Beversluis, K. S. Youngwort, et al. Longitudinal Field Modes Probed by Single Molecules, Phys. Rev. Lett.86(2001),5251-5254
    [107]. P. Torok, P. Varga, and G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. Ⅰ," J. Opt. Soc. Am. A 12,2136-2144 (1995).
    [108]. P. Torok, P. Varga, A. Konkol, et al, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices; structure of the electromagnetic field. Ⅱ," J. Opt. Soc. Am. A 13,2232-2238 (1996).
    [109]. D. Biss, and T. Brown. Cylindrical vector beam focusing through a dielectric interface. Opt. Express.2001,9:490-497.
    [110]. Q. Zhan and J. R. Leger. Focus shaping using cylindrical vector beams. Opt. Express. 2002,10:324-331
    [111]. H. Kim, J. Park, S. W. Cho, S. Y. Lee, et al. Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens. Nano Lett.2010,10:529
    [112]. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman. Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures. Physical Review Letters.2008, 101:043903
    [113]. S. Y. Yang, W. B. Chen, R. L. Nelson, et al. Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett.2009,34:3047
    [114]. Arfken, G. B., Weber, H. J. Mathematical methods for physicists,4th ed. Academic Press:New York.1995.
    [115]. Yuri Gorodetski, Nir Shitrit, Itay Bretner, et al. Observation of optical spin symmetry breaking in nanoapertures. Nano Letters.2009,9:3016-3019
    [116]. Q. Zhan. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams. J. Opt. A:Pure Appl. Opt.2003,5:229-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700