微分估计器与控制器的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论述了经典微分器的估计精度、抗干扰能力、滤波特性,并通过MATLAB仿真说明了经典微分器存在的问题。分析了传统PID控制的结构和优、缺点。
     目前,PID控制或智能PID控制在工业控制过程中得到广泛的应用。PID控制通过考虑设定输入与闭环系统的输出之间误差的微分使系统达到期望的动态行为,其控制律是基于误差和误差微分的函数。但PID控制器仅涉及到误差一阶微分,却未涉及到误差的二阶以及高阶微分,因此PID控制器不能完全刻画系统的动态行为。
     通常实际被控对象是高阶非线性不确定系统,用逆系统的观点,控制器也应是输入、输出及其微分和高阶微分的函数,故仅含有信号及其一阶微分是不够的。
     高阶微分反馈控制不依赖系统模型,其控制目标是系统输出及其微分和高阶微分分别逼近设定输入及其微分和高阶微分,极大地提高了控制品质。基于这种思想,设计出一种高阶微分器(high order differentiator——HOD),其优点是能高品质地提取量测信号的微分和高阶微分,具有较好的抗高频干扰的能力和很高的估计精度,参数少,容易调节。此外,对带有未知扰动、模型未知的非线性SISO系统设计了基于HOD的高阶微分反馈自适应控制器(hjgh order differentials feedbackadaptive controller—HODFC),并给出了闭环系统稳定性和鲁棒性分析。同时,介绍了微分估计器的一些应用。
This thesis discusses differential estimator and controller and their application. It is a part of project that intelligent estimator and controller and their application in the system adjust speed by changing frequency which is sponsored by developing fund of science and technology in university of Tianjin city.
    The estimating precision , ability of disturbance-rejection and the filtering characteristic of classical differentiator are discussed in the paper. We point out it's problem based on simulation by MATLAB. The structure of traditional PID as well as its advantage and disadvantage are discussed.
    At present, the PID controller and the intelligent PID controller is widely used in the controlling process of industry. PID control can realize system's dynamic expectation property through the differential of the error between input signal and output signal of the closed-loop system. It's control rule bases on the function of error and error's differential. But PID controller only concerns error's one order differential only, does not concern the second and high order of error's differential, thus the PID controller can't depict dynamical behavior perfectly.
    Usually the controlled plant is nonlinear high order uncertainty system. According to the viewpoint of inverting system, the controller also should concern with the input output signal and it's differential and higher order differential, therefore it is not enough the controller concerns signal and it's one order differential only.
    High order differentials feedback controller doesn't depend on the model of the system, its control objective is that the output of the system and its differential and high differentials approximate the given reference input, and its differential and high order differentials. Improve largely requirement of the control quality. Based on the idea, design high order differentiator (HOD) that is well able to extract differential and high order differentials of measured signals, the HOD has preferable ability for resisting high frequency interferential signal, and is provided with perfect precision, the proposed HOD has a few parameters and is easily adjusted. Furthermore, presents high order differentials feedback adaptive controller (HODFC) for unknown model nonlinear SISO systems with unknown disturbance, and gives the analysis of stability and robustness of the closed system. At the same time, some applications of differentiator are introduced in the paper.
引文
[1] Chen F C and Hsieh C S. Optimal Multistage Kalman Estimators.IEEE Trans. On control, 2000 45(11):2182-2188
    [2] Kim Y R, Sul S K and Park M H. Speed Sensor-less Vector Control of an Induction Motors Using an Extended Kalman Filter. Conf.Rec.IEEE-IAS'92, 1992:954-959
    [3] Bastin G, Dochain D. On-line Estimation and Adaptive Control of Bioreactors. Amasterdam, Nethelands: Elseriver Science Publishers, 1990
    [4] Yang G H and Wang J L. Robust Nonfragile Kalman Filtering for Uncertain Linear Systems with Estimation Gain Uncertainty. IEEE Trans. On Control, 2001, 46(2):343-348
    [5] Sunil Elannyar V. T. and Yung C. Shin. Radial Basis Function Neural Network for Approximation and Estimation of Nonlinear Stochastic Dynamic Systems. IEEE Trans. Neural Networks 1994, 5(4):594-603
    [6] Chao C T and Teng C C. A Fuzzy neural network based extended Kalman filter. Int. J. System Science, 1996, 27(3):333-339
    [7] Harris C J, Wu Z Q and Gan Q. Neurofuzzy State Estimators and Their Applications. Annual Reviews in Control, 1999, 23:149-158
    [8] Alessandri A Baglietto and Parisini. Robust Modle-Based Fault Diognosis Using Neural Nonlinear Estimators[A]. Proceedings of the IEEE conference on Decision and Control, Tampa Florida USA, 1998, 1:72-77
    [9] Alessandri A, Parisini T and Zoppoli. A Convergent Neural State Estimator for Nonlinear Stochastic Systems[A]. Proceeding of 37~(th) IEEE Conference on Decision & Control, Tampa Florida USA, 1998:1076-1081
    [10] Marino, R and Tomei, P. Global adaptive observers for nonlinear systems via filtered transformations. IEEE Trans. On Automatic Control, 1992, 37(8):1239-1245
    [11] Marino R, Giovanni L, Santosusso and Tomei P. Robust adaptive observers for nonlinear systems with bounded disturbances. IEEE Trans. on Automatic Control, 2001, 46(6):967-972
    [12] Kim Y H and Lewis F L. A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems. Automatic, 1997, 33(8): 1539-1543
    
    
    [13] ustrm K J, Hgglund T. Automatic tuning of PID controllers. Research Triangle Park, North Carolina: Instrument Society of America, 1988
    [14] ustrm K J, Hgglund T. PID controllers: theory, design, and tuning, 2~(nd) Edition. Research Triangle Park, North Carolina: Instrument Society of America. 1995
    [15] Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems. Int. J. Contr. 1992,56:1007-1037
    [16] Teel A, Praly L. Global stabilizability and observability imply semi-global stabilizabilty by outputfeedback. Syst. Contr. Lett. 1994,22:313-325
    [17] Khalil H K. Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans. Auto. Contr. 1996,41 (2): 177-188
    [18] ustrm K J, Hgglund T and Wallendborg A. Automatic tuning of digital controllers with applications to HVAC plants. Automatic, 1993, 29(5): 1333-1343
    [19] Rajashekara K et al. Sensor-less control of AC motor drives, speed and position sensor-less operation. IEEE press, 1996
    [20] 张友民,戴冠中,张宏才.卡尔曼滤波算法的新进展.控制理论与应用,1995,12(5):529-538
    [21] 王伟,张晶涛,柴天佑.PID参数先进控制方法综述.自动化学报,2000,26(3):347-355
    [22] 齐国元,陈增强,袁著祉.非线性系统高阶微分反馈控制.中国工程科学,2003,5(8):35-44.
    [23] 韩京清.非线性PID控制器.自动化学报,1994,20 (4):487-490
    [24] 杨耕,陈伯时.交流感应电机无速度传感器的高性能控制方法综述.电气传动,2001,3:3-9
    [25] 陈伯时,冯晓刚,王晓东,夏承光.电气传动系统的智能控制.电气传动,1997,(1):3-8
    [26] 韩京清,张文革,大时滞系统的自抗扰控制.控制与决策,1999,14(4):354-358
    [27] 韩京清.自抗扰控制器及其应用.控制与决策.1998,13(1):19-23
    [28] 韩京清,王伟.非线性跟踪—微分器.系统科学与数学.1994,4(2):177-183
    [29] 韩京清,袁露林.跟踪—微分器的离散形式.系统科学与数学.1999,19(3):268-273
    [30] 韩京清.控制系统的非光滑综合.中国控制会议论文集.香港:香港城市大学,2000
    
    
    [31] 韩京清.非线性PID控制器.自动化学报.1994,20(4):487-490.
    [32] 韩京清.一类不确定对象的扩张状态观测器.控制与决策,1995,10(1):85-88
    [33] 韩京清.非线性状态误差反馈控制率NLSEF.控制与决策,1995,10(3):221-225
    [34] 韩京清.控制理论-模型论还是控制论.系统科学与数学,1989,9(4):328-335
    [35] 韩京清.线性系统的结构与反馈系统计算.全国控制理论及其应用会议论文集,北京:科学出版社,1981
    [36] 韩京清.反馈系统中的线性和非线性.控制与决策,1988,3(2):27-32
    [37] 黄焕袍,万辉,韩京清.安排过渡过程是提高闭环系统“鲁棒性、适应性、和稳定性”的一种有效方法.控制理论与应用,2001,18(增):89-94
    [38] G.J. Silva, A. Datta, S.P. Bhattacharyya. New Results on the synthesis of PID Controllers. IEEE Transactions on Automatic Control, 2002, 47 (2): 241-252.
    [39] Zeng-Guang Hou, Bao, P., Jing-Qing Han. A neural method for dynamical hierarchical optimal control of large-scale systems with multiple time delays. The 1998 IEEE International Joint Conference on, 1998,2:1667-1672
    [40] Zeng-Guang Hou, Yuancan Huang, Jing-Qing Han. Active noise cancellation with a nonlinear control mechanism Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, 1998,2:1577-1578
    [41] Bao-Zhu Guo, Jing-Qing Han. A linear tracking-differentiator and application to the online estimation of the frequency of a sinusoidal signal. Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on, 2000,: 9-13
    [42] 陈景良,近代分析数学概要.北京:清华大学出版社,1987
    [43] 韩京清.继电器加PID的控制规律.全国控制理论与应用年会(西安)论文集.1989.10
    [44] 要晓梅,王庆林,韩京清.大纯滞后纯积分对象的二阶自抗扰控制.控制工程,2002,9 (6):7-9
    [45] 胡飞,李言俊,蔡小斌.飞机减速板模拟气动力加载控制系统的设计与实现.西北工业大学学报,1999,17(2):263-268
    [46] 韩京清,黄远灿.二阶跟踪-微分器的频率特性[J].数学的实践与认识,2003,33(3):71-74
    [47] 韩京清.利用非线性特性改进PID控制率[J].信息与控制,1995,24(6):356-364
    [48] 朱发国,陈学允.同步发电机的串级非线性PID励磁控制.电力系统自动化,1999,23(5):21-24
    
    
    [49] 朱发国,姚玉斌,陈学允.发电机组汽门的新型非线性PID控制器设计.电网技术,1999,23(5):24-27
    [50] 朱发国,陈学允.非线性跟踪—微分器的分析与改进.控制理论与应用,1999,16(6):898-902
    [51] 冯光,黄立培,朱东起.采用自抗扰控制器的高性能异步电机调速系统.中国电机工程学报,2001,21(10):55-58
    [52] 黄一,张文革.自抗扰控制器的发展.控制理论与应用,2002,19 (4):485-492
    [53] 王新华,陈增强,袁著祉.非线性跟踪—微分器的性能分析及其改进.控制与决策,2002,17(增):752-754
    [54] 邱宇,陈学允.用于静止无功补偿器的非线性PID控制器.中国电机工程学报,2002,22(11):41-44
    [55] 宋金来,甘作新,韩京清.自抗扰控制技术滤波特性的研究.控制与决策,2003,18(1):110-112
    [56] 韩京清.从PID技术到“自抗扰控制技术”.控制工程,2002,9 (3):13-18
    [57] 韩京清.非线性控制系统中状态反馈的实现.控制与决策,1991,(3):161-167
    [58] 韩京清.一类不确定系统的控制与滤波.系统仿真学报,1992,(增):1-7
    [59] 韩京清.一种新型控制器—NLPID.控制与决策,1994,9 (6):401-407
    [60] 韩京清,候增广.利用跟踪微分器构造未知函数的寻优器及求根器.控制与决策,2000,15(3):365-367
    [61] 曾岳南,冯垛生,章云,陈伯时.电压控制型异步电动机无速度传感器的矢量控制方法.控制理论与应用,1999,16(2):279-282
    [62] 孙炳达,黎芳.基于模式智能自适应控制的交流调速系统研究.电力电子技术,1998,(2):79-83
    [63] 焦连伟,陈寿孙,王晓丰.电力系统自抗扰控制器.清华大学学报,1999,39(3):27-29
    [64] 张献文,韩京清.柔臂振动的非线性张力反馈控制.系统工程理论与实践,1999,(4):83-89
    [65] 韩京清,张荣.二阶扩张状态观测器的误差分析.系统科学与数学,1999,19(4):465-471
    [66] 张文革,韩京清.跟踪微分器用于连续系统辨识.控制与决策,1999,14(增):557-560
    
    
    [67] 张荣,韩京清.串联型扩张状态观测器构成的自抗扰控制器.控制与决策,2000,15(1):122-124
    [68] 何济民.转速闭环变频调速系统的建模与调节器参数设计.电气传动自动化,2000,22(1):15-17
    [69] 王庆林,姜增如,刘喜梅.线性跟踪—微分器及其在状态反馈控制中的应用.北京理工大学学报,1999,19(2):203-206
    [70] 张荣,韩京清.用模型补偿自抗扰控制器进行参数辨识.控制理论与应用,2000,17(1):79-81
    [71] 李崇坚,郭国晓,高龙,李发海.电力系统非线性PID励磁控制器.清华大学学报,2000,40(3):48-51
    [72] 张献文,韩京清.加载柔性臂振动的非线性应力反馈控制.系统仿真学报,2000,12(2):168-171
    [73] 佟绍成,李庆国,柴天佑.基于神经网络的一 类非线性系统自适应输出跟踪.自动化学报,2000,26(3):296-302
    [74] 佟绍成,周军.非线性模糊间接和直接自适应控制器的设计和稳定性分析.控制与决策,2000,15(3):293-296
    [75] 候增广,韩京清.滑模寻优机构非线性改造及其在自寻最优点控制中的应用.控制与决策,2000,15(4):473-475
    [76] 黄一,韩京清.非线性连续二阶扩张状态观测器的分析与设计.科学通报,2000,45(13):1373-1379
    [77] 张文革,韩京清.跟踪微分器用于零点配置.自动化学报,2001,27(5):724-727
    [78] 焦连伟,陈寿孙,张宝霖.新型非线性鲁棒直流输电调制器的研究.清华大学学报,1997,37(7):70-73
    [79] 陈翰馥,朱允民.随机逼近.上海科学技术出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700