电磁散射分析中的快速方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
军事民用技术的发展,迫切要求精确高效地分析电大尺寸复杂目标的散射特性。随着计算机科技的迅猛发展,以及全波快速分析方法的不断提出与改进,许多以前只能用传统高频近似方法求解的问题,现在能够在单台普及型计算机上进行高精度的分析。本论文研究的正是电磁领域最近发展起来的几种快速全波分析方法。
     第一种快速方法是快速傅里叶变换(FFT)加速电磁分析算法。我们将它应用到分析介质体散射的离散偶极子近似方法及体积分方程的矩量法中,并且讨论了文献中报道的FFT技术结合迭代解法求解体积分方程几种不同实现方案的优缺点。
     第二种快速方法是不等间距的快速傅里叶变换(NUFFT)加速电磁分析算法,它保留了等间距FFT方法的优点,将存储量减少到了O(N),而计算复杂度降低到了O(NlogN),但突破了等间距网格离散的要求,给不少实际问题的分析带来了方便。论文中详细讨论了不等间距FFT的正、逆变换的实现过程,并改进了逆变换的实现效率。还将这一算法结合弱形式的积分方程,应用到金属平板及一维、二维和三维介质体的散射分析。
     第三种快速方法是多层快速多极子加速电磁分析算法,它应用在时谐电磁场问题时将存储量及计算复杂度都降低到O(NlogN),并且适用于任意形状的网格离散,具有很强的灵活性,文中将这一加速算法应用到金属体、介质体、以及无限大底板的微带结构的电磁散射特性分析中。在分析介质体散射时,论文详细研究了体积积分方程中的无散度基函数的使用与实现。论文还讨论了将矢量有限元法结合快速多极子技术来分析电大尺寸的带有有耗介质涂层的金属体的散射,详细地讨论了吸收边界条件预条件矩阵的对称特性的形成和预条件矩阵方程的快速求解。
     然而,上述技术并不能减少Krylov子空间迭代解法的总的迭代步数,它是由积分方程算子或离散线性系统矩阵的谱的分布特性决定的,本文还研究了在采用不同积分方程求解方法时,如何选择效率高的迭代算法以及采用高效的预条件技术来降低迭代步数。大量数值算例验证了不同方法中我们提出的迭代解法及预条件技术方法的准确性与高效性。
The accurate and efficient analyses of electromagnetic scattering of complex objectswith electrically large size are urgently required by the quick development of technologyfor military and civil use. Fortunately, the combination of the modern computer technologyand the fast algorithm for rigorous full-wave analysis make it possible to givehigh-performance researches for numerous practical problems in a popular personalcomputer, which traditionally can only be analyzed by use of high-frequency approximateapproaches.
     The dissertation investigates three kinds of fast algorithms to achieve the low memorycost and low operation complexity in the electromagnetic analyses.
     First is the fast Fourier transform technique. We apply this technique into theimplementation of discrete dipole approximation method, and the method of moment ofvolume integral equation. The FFT technique combined with iterative solvers reported inthe literatures is compared for the ordinary volume integral equation and weakform ones.
     The second is a newly developed scheme called non-uniform FFT (NUFFT). Itinherits the efficiency of the FFT and removes the limitation of the uniform mesh grid. Theprocedure for the inverse transform is improved. The applications in the analyses ofelectricmagnetic scattering from conductor plates and dielectric objects are discussed. Thememory requirement and computational complexity is O(N) and O(NlogN), respectively.
     The third fast algorithm investigated is multilevel fast multipole approach (MLFMA).It is powerful and flexible since the arbitrary mesh partition can be permitted. Thedissertation discusses in detail on the implementation of the algorithm, and applies it toanalyze the scattering from the conductor objects, dielectric objects, and microstrip patchantenna. The solenoidal basis functions are adopted in the scattering analysis of dielectricobjects, which lead to a less number of unknowns for the same mesh as in the traditionalSchaubert-Wilton-Glisson basis functions.
     The vector-edge finite element method combined with boundary integral (FE-BI)technique with MLFMA accelerator is also investigated in the dissertation. This hybridapproach is able to analyze various complicated problems with the advantages of bothFEM and MLFMA. It has been considered as one of the most powerful schemes to theelectromagnetic problems.
     All the above fast algorithms can only accelerate the speed of every iteration, however,they do not reduce the total iteration number. Among the various Krylov subspace iterativesolvers, different solver for the certain problems is discussed. Some preconditioningschemes are proposed to further reduce the computational time of solvers. A lot ofnumerical examples illustrate the efficiency and accuracy of the fast algorithms studied inthis dissertation.
引文
[1].E.F.克拉特著,阮颖铮.陈海译:雷达散射截面—预估,测量和简缩.第1版,北京:电子工业出版社,1988年11月
    [2].王茂光.几何绕射理论.西安:西安电子科技出版社,1994
    [3]. J. M. Rius, M. Ferrando, and L. Jofre, "GRECO: graphical electromagnetic computing for RCS prediction in real time," IEEE Antennas and Propagation Magazine, 1993(35): 7-17
    [4]. D. Andersh, J. Moore, S. Kosanovich, D. Kapp, R. Bhalla, R. Kipp, T. Courtney, A. Nolan, F. German, J. Cook, and J. Hughes, "Xpatch 4: the next generation in high frequency electromagnetic modeling and simulation software," Alexandria, VA: Radar Conference 2000:844-849
    [5]. H. Ling, R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation. 1989(37): 194-205
    [6]. R. F. Harrington. Field Computation by Moment Methods. Malabar, Florida: Krieger Publishing Company, 1983
    [7]. E. K. Miller, L.M. Mitschang, and E. H. Newman, Eds., Computational Electromagnetics: Frequency-Domain Method of Moments. New York: IEEE Press, 1992
    [8]. J. J. H. Wang, Generalized Moment Methods in Electromagnetics, New York: Wiley, 1991
    [9]. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed., New York: John Wiley & Sons, Inc., 2002
    [10]. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2 ed., Boston, MA: Artech House, 2000
    [11]. J. W. Cooley and J. W. Tukey, "Algorithm for the machine computation of complex Fourier series," Math. Comp. 1965(19): 297-301.
    [12]. M. F. Catedra, R. P. Torres, J. Basterrechea, E. Gago. The CG-FFT Method: Application of Signal Processing Techniques to Electromagnetics. Norwood, MA: Artech House, 1995
    [13]. C. H. Chan and L. Tsang, "A sparse-matrix canonical-grid method for scattering by many scatterers," Microwave Opt. Technol. Lett., 1995(8): 114-118
    [14].孙玉发,陈志豪.分析三维随机介质目标散射问题的SMCG方法.中国科学技术大学学报(自然科学版),2003(33):345-350
    [15]. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz. "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems.," Radio Sc, ience, 1996(31): 1225-1251
    [16]. X.C. Nie, Y. Ning, L. W. Li, Y. B. Gan, and Y. Tat Soon, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Transactions on Antennas and Propagation, 2005(53): 818-824.
    [17]. S. M. Seo and J. F. Lee; "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics 2005(41): 1476-1479
    [18]. Q. H. Liu, X. M. Xu, B. Tian, and Z. Q. Zhang, "Applications of nonuniform fast transform algorithms in numerical solutions of differential and integral equations," IEEE Transactions on Geoscience and Remote Sensing, 2000(38): 1551-1560
    [19]. E. Michielssen and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Transactions on Antennas and Propagation, 1996(44). 1086-1093
    [20]. J. M. Song and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Tech. Lett., 1995(10): 14-19
    [21]. B. Hu, "Fast Inhomogeneous Plane wave Algorithm for Electromagnetic Scattering Problems", Thesis, University of Illinois at Urbana-Champaign, 2001
    [22]. T. K. Sarkar. Application of Conjugate Gradient Method to Electromagnetics and Signal Analysis. New York: Elsevier, 1991
    [23]. Y. Saad, Iterative Methods for Sparse Linear systems, PWS Publishing Company:, 1996
    [24]. T. F. Eibert and J. L. Volakis, "Fast spectral domain algorithm for rapid solution of integral equations," Electronics Letters 1998(34): 1297-1299
    [25]. J. Troelsen; P. Meincke, O. Breinbjerg, "Frequency sweep of the field scattered by an inhomogeneous structure using method of moments and asymptotic waveform evaluation, " IEEE International Symposium Antennas and Propagation Society 2000. (3): 1830-1833
    [26]. Miller, E. K.; "Model-based parameter estimation in electromagnetics. Ⅲ. Applications to EM integral equations," IEEE Antennas and Propagation Magazine, 1998(40): 49-66
    [27]. http://www.feko.info
    [28]. A. Tzoulis and T. F. Eibert, "Hybridization of multilevel fast. multipole method and uniform geometrical theory of diffraction for radiation and scattering computations," IEEE Antennas and Propagation Society International Symposium, 2005(4A): 159-162
    [29]. A. Tzoulis and T. F. Eibert, "A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects," IEEE Transactions on Antennas and Propagation, 2005(53): 3358-3366
    [30].朱伯芳.现代工程数学手册.第37章,加权余量法.武汉:华中工学院出版社,1986
    [31]. T. Sarkar, A. Djordjevic, and E. Arvas, "On the choice of expansion and weighting functions in the numerical solution of operator equations," IEEE Transactions on Antennas and Propagation, 1985(33): 988-996
    [32]. L. Gurel, K. Sertel, and I. K. Sendur, "On the choice of basis functions to model surface electric current densities in computational electromagnetics," Radio Science, 1999(34): 1373-1387
    [33]. A. Greenbaum, Iterative Methods for Solving Linear Systems. Philadelphia, PA: SIAM, 1997
    [34]. R. W. Freund, N. M. Nachtigal. "QMR: A quasi-minimal residual variant of the Bi-SGSTAB algorithm for nonsymmetric systems," SIAM J Sci Comput, 1994(15): 338-347
    [35]. R. W. Freund and N. M. Nachtigal, "QMRPACK, a package of QMR algorithms," ACM TOMS 1996(22): 46-77
    [36]. R. W. Freund, "Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, " SIAM J Sci Statist Comput 1992(13): 425-448
    [37]. P. SONNEVELD, "CGS, a fast Lanczos-type solver for nonsymmetric linear systems," SIAM J. Sci. Statist. Comput., 1989(10): 36-52
    [38]. R. W. Freund, "A Transpose-Free Quasi-Minimal Residual algorithm for non-Hermitian linear system," SIAM J. on Sci. Comp. 1993(14): 470-482
    [39]. H. A. Van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. SCI. STAT. Comput.. 1992(13): 631-644
    [40]. T. F. Chart, E. Gallopoulos, V. Simoncini, T. Szeto and C.H. Tong, "QMRCGSTAB: a quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, "Tech. Rep. CAM 92-26, Dept. of Maths., UCLA, June 1992.
    [41]. S. L. Zhang, "GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems," SIAM J Sci Comput 1997(18): 537-551
    [42]. Y. Saad and M. H. Schultz. "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, 1986(7): 856-869
    [43]. A. H. Baker. On Improving the Performance of the Linear Solver Restarted GMRES. Ph. D Dissertation of University of Colorado, 2003
    [44]. Y. Saad, "A flexible inner-outer preconditioned GMRES algorithm," SIAM Journal on Scientific Computing 1993(14): 461-469
    [45]. R. J. Adams. "Physical and analytical properties of a stabilized electric field integral equation," IEEE transaction on Antennas Propagation, 2004(52): 362-372
    [46]. R. M. Gray, "Toeplitz and Circulant Matrices: A review", Foundations and Trends in Communications and Information Theory, 2006(2): 155-239
    [47]. E. M. Purcell and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains, "Astrophys J 1973(186): 705-714
    [48]. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains, "Astrophys J 1988(333): 848-872
    [49]. K. Lumme and J. Rahola, "Light scattering by porous dust particles in the discrete-dipole approximation, "Astrophys J 1994(425): 653-667
    [50]. J. J. Goodman, B. T. Draine, and P. J. Flatau, "Application of fast-Fourier-transform techniques to the discrete dipole approximation, " Opt Lett 1990(16): 1198-1200
    [51]. P. J. Flatau, G. L. Stephens, and B. T. Draine, "Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-Toeplitz structure," J Opt Soc Am A 1990(7): 593-600
    [52]. J. Rahola, "Solution of dense systems of linear equations in the discrete-dipole approximation, "SIAM J Sci Statist Comput, 1996(17): 78-89
    [53]. S. Koc and W. C. Chew, "MLFMA for the discrete dipole approximation, " IEEE Antennas and Propagation Society International Symposium 1999(1): 640-643
    [54]. P. J. Flatau, "Improvements in the discrete-dipole approximation, method of computing scattering and absorption, "Opt Lett 1997(22): 1205-1207
    [55]. B. T. Draine and P. J. Flatau, "User Guide to the Discrete Dipole Approximation Code DDSCAT 6.1," http://arxiv.org/abs/astro-ph/0409262, 2004(1): 1-57
    [56]. R. S. Chen, Z. H. Fan and E. K. N. Yung, "Analysis of electromagnetic scattering of three-dimensional dielectric bodies using Krylov subspace FFT iterative methods, "Microwave Opt Technol Lett 2003(39): 261-267
    [57]. B. T. Draine and J. Goodman, "Beyond Clausius-Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation," Astrophys J 1993(405): 685-697
    [58]. G. H. Goedecke and S. G. O'Brien, "Scattering by irregular inhomogeneous particles via the digitized Green's function algorithm, " Appl Opt 1988(27): 2431-2438
    [59]. J. I. Hage and J. M. Greenberg, "A model for the optical properties of porous grains," Astrophys J 1990(361): 251-259
    [60]. D. Gutkowicz-Krusin and B. T. Draine, "Propagation of electromagnetic waves on a rectangular lattice of polarizable points, "http://xxx.arxiv.org/abs/astro-ph/0403082, 2004(1):1-17
    [61]. A. Rahmani, P. C. Chaumet, and G. W. Bryant, "Coupled dipole method with an exact long-wavelength limit and improved accuracy at finite frequencies," Opt Lett 2002(27): 2118-2120
    [62]. A. Rahmani, P. C. Chaumet and G. W. Bryant, "On the importance of local-field corrections for polarizable particles a finite lattice: application to the discrete dipole approximation, "Astrophysical J. 2004(607): 873-878
    [63]. M. J. Collinge and B. T. Draine, "Discrete-dipole approximation with polarizabilities that account for both finite wavelength and target geometry," J Opt Soc AreA. 2004(21): 2023-2028
    [64]. R. D. da Cunha, T. Hopkins, PIM2.2: The Parallel Iterative Methods package for Systems of Linear Equations, User's Guide (Fortran 77 version), 2003
    [65]. X.M. Xu, Q. H. Liu, and Z. Q. Zhang, "The stabilized biconjugate gradient fast Fourier transform method for electromagnetic scattering, "J Appl Computat Electromag Soc, 2002(17): 97-103
    [66]. D. Z. Ding, R. S. Chen, D. X. Wang, E. K. N. Yung, C. H. Chan, "The application of the generalized product-type method based on Bi-CG to accelerate the sparse-matrix/canonical grid method, " International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 2005(18): 383-397
    [67]. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley, New York, 1983
    [68]. D. E. Livesay and K. M. Chen, "Electromagnetic Fields Induced Inside Arbitrarily Shaped Biological Bodies," IEEE Transactions on Microwave Theory and Techniques. 1974(212): 1273-1280
    [69]. Su, C. -C., "Electromagnetic scattering by a dielectric body with arbitrary inhomogeneity and anisotropy", IEEE Transactions on Antennas and Propagation, 1989(37): 384-389
    [70]. Lee, S. W., J. Boersma, C. L. Law, and G. A. Descharnps, "Singularity in Green's function and its numerical evaluation," IEEE Trans. Antennas Propagat., 1980(28): 311-317
    [71]. G. Gao, C. Torres-Verdin and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green's functions," Progress In Electromagnetics Research, 2005(52): 47-80
    [72].周后型.大型电磁问题快速算法的研究(全文).南京:东南大学博士论文,2002
    [73].金建铭著,王建国译.电磁场有限元方法.西安:西安电子科技大学出版社,2001
    [74]. C. C. Su, "The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT", IEEE Transactions on Microwave Theory and Techniques, 1993(41): 510-515
    [75]. H. Massoudi; C. H. Durney; M. F. Iskander, "Limitations of the Cubical Block Model of Man in Calculating SAR Distributions", IEEE Transactions on Microwave Theory and Techniques, 1984(32): 746-752
    [76]. M. J Hagmann, "Limitations of the Cubical Block Model of Man in Calculating SAR Distributions (Comments)", IEEE Transactions on Microwave Theory and Techniques, 1985(33): 347-350
    [77]. A. Glisson, D. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces", IEEE Transactions on Antennas and Propagation, 1980(28): 593-603
    [78]. M. F. Catedra et al, "A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate gradient method and the fast fourier transform, " IEEE Transactions on Microwave Theory and Techniques, 1989(37): 528-537
    [79]. P. Zwamborn and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Transactions on Microwave Theory and Techniques 1992(40): 1757-1766
    [80]. H. Gan and W.C. Chew, "A discrete BCG-FFT algorithm for solving3Dinhomogeneousscatterproblems," J. Electromagn. Waves Applicat. 1995(9): 1339-1357
    [81]. Z. Q. Zhang, Q. H. Liu, and X.M. Xu, "RCS Computation of Large Inhomogeneous Objects Using a Fast Integral Equation Solver," IEEE Trans. On Antennas and. Propagation, 2003 (51): 613-618
    [82]. P. L. Rui, R. S. Chen, Z.H. Fan, E.K.N. Yung, and et al., "Fast analysis of electromagnetic scattering of 3-D dielectric bodies with augmented GMRES-FFT method," IEEE Transactions on Antennas and Propagation. 2005(53): 3848-3852
    [83].姚海英.介质以及涂敷介质结构电磁散射特性的基础研究—积分方程法及其快速求解.成都:电子科技大学博士论文,2002
    [84].盛新庆.计算电磁学要论.北京:科学出版社,2004
    [85]. Z. Q. Zhang and Q. H. Liu, "Three-dimensional weak-form conjugate-and biconjugate-gradient FFT methods for volume integral equations," Microwave Opt. Tech. Lett., 2001(29): 350-356
    [86]. A. Dutt, V. Rokhin. "Fast Fourier transforms for nonequispaced data," SIAM J. Sci. Stat. Comput. 1993(14): 1368-1393
    [87]. A. Dutt, V. Rokhin. "Fast Fourier transforms for nonequispaced data Ⅱ," Appl. Comput. Harmonic Anal. 1995(2): 85-100
    [88]. Q. H. Liu, N. Nguyen. "An accurate algorithm for nonuniform fast Fourier transforms, "IEEE Microwave Guided Wave Lett. 1998(8): 18-20
    [89]. N. Nguyen, Q. H. Liu. The regular Fourier matrices and nonuniform fast Fourier transforms. New Mexico State University Technical Report, 1997
    [90]. J. -Y. Lee, L. Greengard, "The type 3 nonuniform FFT and its applications, "Journal of Computational Physics 2005 (206): 1-5
    [91]. G. Beylkin. "On the fast Fourier transform of functions with singularities," Appl. Comput. Harmon. Anal. 1995(2): 362-382
    [92]. W.C. Chew and J. M. Song, "Fast Fourier transform of sparse spatial data to sparse fourier data," in IEEE Antennas and Propayatzon International Syniposium, 2000(4): 2324-2327
    [93]. S. Kunis, D. Potts, G. Steidl. Fast Fourier transform at nonequispaced knots. software package, C subroutine library, http://www.math.uni-luebeck.de/potts/nfft
    [94]. D. Potts, G. Steidl, M. Tasche. Fast Fourier transforms for nonequispaced data: A tutorial. In J. J. Benedetto, P.J.S.G.Ferrerira ed., Modern Sampling Theory: Mathematics and Applications., pp.247-270,Boston,2001
    [95]. G. Steidl. "A note on fast Fourier transforms for nonequispaced grids," Adv. Comput. Math, 1993(9):337-353
    [96]. A.J.W. Duijndam, M. A. Schonewille. "Nonuniform fast Fourier transform. Geophysics," 1999(64):539-551
    [97]. J.A. Fessler, B.P. Sutton, "Nonuniform Fast Fourier transforms using min-max interpolation, "IEEE Trans. Signal Proc 2003(51): 560-574
    [98]. Q. H. Liu, X Y Tang. "Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT)," Electronics Letters. 1998(34): 1913-1914
    [99]. X.Y. Tang, Q. H. Liu. "CG-FFT for Nonuniform Inverse Fast Fourier Transforms (NU-IFFT's)," Intl. IEEE/AP-S symposium Digest, Atlanta, GA, June 1998
    [100]. X. M. Xu and Q, H. Liu, "The conjugate-gradient nonuniform fast Fourier transform (CG-NUFFT) method for one- and two-dimensional media," Microw. Opt. Technol. Lett., 2000(24): 385-389
    [101]. Q. H. Liu, N, Nguyen. "An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's) and its applications," Proc. 14th Annual Review of Progress in Applied Computational Electromagnetics, Monterey, CA, March 1998
    [102]. Q.H. Liu, N. Nguyen. "Nonuniform fast Fourier transforms (NUFFT) algorithm and its applications," Intl. IEEE/AP-S Symposium Digest, Atlanta, GA, June 1998
    [103]. C.T. Tai, Dyadic Green Functions in Electromagnetic theory, 2nd ed., IEEE Press, 1993
    [104]. J.H. Richmond, "Scattering by a Dielectric Cylinder of Arbitrary Cross Sectoin Shape," IEEE Trans. On Antennas and Propagation 1965:334-341
    [105]. P. Zwambom and P. M. van den Berg, "A Weak Form of the Conjugate Gradient FFT Method for Two-Dimensional TE Scattering Problems," IEEE Transactions on Microwave Theory and Techniques, 1991(39): 953 - 960
    [106]. A. P. M. Zwarmborn and P. M. van den Berg, "A weak form of the conjugate gradient FFT method for plate problems," IEEE Transactions on Antennas and Propagation, 1991(39). 224 - 228
    [107]. K-Y. Su and J-T. Kuo, "An Efficient Analysis of Shielded Single and Multiple Coupled Microstrip Lines With the Nonuniform Fast Fourier Transform (NUFFT) Technique," IEEE Transactions on Microwave Theory and Techniques, 2004(52): 90-96
    [108]. S. Rao, D. Wiltion, A.Glisson, "ELectromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, 1982(30).409- 418
    [109]. A. Helaly and H. M. Fahmy, "Combined-field integral equation," Electronics Letters. 1993(29): 1678-1679
    [110]. J. R. Mautz and R. F. Harrington, "H-field, E-field, and combined-field solutions for conducting body of revolution," AEU, 1978(32): 157-164
    [111]. X. Q. Sheng and J.-M Jin et. al., "Solution of Combined-Field Integral Equation Using Multilevel Fast Multipole Algorithm for Scattering by Homogeneous Bodies," IEEE Trans. Antennas Propagat., 1998(46): 1718-1726
    [112]. D. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Transactions on Antennas and Propagation, 1984( 32): 276-281
    [113]. R. D Graglia, "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle." IEEE Transactions on Antennas and Propagation, 1993 (41):1448-1455
    [114]. T.F. Eibert and V.Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Transactions on Antennas and Propagation, 1995(43): 1499 -1502
    [115]. P. Arcioni, M. Bressan, and L. Perregrini, "On the Evaluation of the Double Surface Integrals Arising in the Application of the Boundary Integral Method to 3-D Problems," IEEE Transactions on Microwave Theory and Techniques, 1997(45): 436-439
    [116]. P. Yla-Oijala and M. Taskinen, "Calculation of CFIE Impedance Matrix Elements With RWG and n×RWG Functions", IEEE Transactions on Antenna and Propagation, 2003(51): 1837-1846
    [117]. R. E. Hodges and Y. Rahmat-Samii,"The evaluation of mfie integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, 1997(14): 9-14
    [118]. W. H. Tang and S. D. Gedney, "An efficient evaluation of near singular surface integrals via the Khayat-Wilton transform," Microwave and Optical Technology Letters, 2006(48): 1583-1586
    [119]. M. G. Duffy, "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," J. Numer. Anal., 1982(19): 1260-1262
    [120]. D. A. Dunavant, "High degree efficient symmetrical gaussian quadrature rules for the trian.gle," Int. Journal for Numerical methods in engineering, 1985(21), 1129-1148
    [121].王浩刚.电大尺寸含腔体复杂目标矢量电磁散射一体化精确建模与高效算法研究.四川成都:电子科技大学博士学位论文,2001年6月
    [122].万继响,张玉,项铁铭,梁昌洪,FMM结合改进自适应MBPE技术快速求解单站RCS,电波科学学报,2004(19):72-76
    [123]. A. C. Woo, H. T.G. Wang, M. J. Schuh, et al.,"Benchrnark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, 1993(35): 84-89
    [124]. V. Rokhlin, "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., vol. 86, pp. 414-439, Feb. 1990
    [125]. N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., vol. 40, pp. 634-641, June 1992
    [126]. R. Coifman, V. Rokhlin and S. Wandzura, "The fast multi-pole Method for the wave Equation: A Pedestrain Prescription," IEEE Antennas and Propagation Magazine. 1993, 35(3): 7-12.
    [127]. J. M. Song and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Tech. Lett., 1995, 10(1): 14-19
    [128]. C. C. Lu, W. C. Chew, "Fast algorithm for solving hybrid integral equations.," IEE Proc. H, 1993, 140(6): 455-460
    [129]. W. C. Chew, J. M. Jin, Eric Michielssen, J. M. Song. Fast and efficient algorithms in computational electromagnetics. Artech House Publishers, 2001
    [130]. Eric Darve, "The Fast Multipole Method: Numerical Implementation," Journal of Computational Physics, 2000(160): 195-240
    [131]. Martin Nilsson, Iterative Solution of Maxwell's Equations in Frequency Domain, Sweden: Uppsala University, Ph. D thesis, June 2002
    [132].聂在平,胡俊,姚海英等.用于复杂目标三维矢量散射分析的快速多极子方法.电子学报,1999(27):104-109
    [133].胡俊.复杂目标矢量电磁散射的高效方法-快速多极子方法及其应用.四川成都:电子科技大学博士学位论文,2000年5月
    [134].陆卫兵.复杂电磁问题的快速算法研究和软件实现.南京:东南大学博士论文,2005年3月
    [135]. Song J M, Lu C C, Chew W C, Lee S W. "Fast Illinois Solver Code (FISC)," IEEE Antennas and Propagation Magazine, 1998 (40): 27-34
    [136]. http://www.ansys.com
    [137]. http://www.mscsoftware.com/products/patran.cfm
    [138]. H. Samet, Design and Analysis of Spatial Data Structures. Reading, MA: Addison-Wesley, 1990
    [139]. T. F. Eibert, "Iterative Near-Zone Preconditioning of Iterative Method of Moments Electric Field Integral Equation Solutions," IEEE Antennas and Wireless Propagation Letters, 2003(2): 101-102
    [140]. M. L. Hastriter, A study of MLFMA for Large-Scale Scattering Problems, University of Illinois at Urbana-Champaign Ph.D dissertation, 2003
    [141]. E. Chow and Y. Saad. Experimental study of ILU preconditioners for indefinite matrices. Journal of Computational and Applied Mathematics, 1997(86): 387-414
    [142]. M. M. monga Made, R. Beauwens, and G. Warzee. "Preconditioning of discrete Helrnholtz operators perturbed by a diagonal complex matrix, " Communications in Numberical Methods in Engineering, 2000(11): 801-817
    [143]. D. H. Schaubert, D. R. Wilton and A. W. Glisson. "Atetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation, 1984(32): 77-85
    [144]. K. Sertel, "'Multilevel fast multipole method for modeling permeable structures using conformal finite elements, "University of Michigan doctoral dissertation, 2003
    [145]. L. S. Mendes and S. A. Carvalho. "Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions," Microwave optical technology Letter, 1996(12): 327-337
    [146]. S. A Carvalho and L. S. Mendes. "Scattering of EM waves by inhomogeneous dielectrics with the use of the method of moments and 3-D solenoidal basis functions," Microwave and optical technology letters, 1999(23): 42-46
    [147]. S. Kulkarni, R. Lemdiasov, R. Ludwig, and S. Makarov. "Comparison of two sets of low-order basis function for tetrahedral VIE modeling," IEEE Transactions on Antennas and Propagation, 2004(52): 2789-2794
    [148]. C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: SIAM, 2000
    [149]. T.A. Davis. "Algorithm 832: UMFPACK-an unsymmetric-pattern multifrontal method with a column pre-ordering strategy," ACM Trans. Math. Software, 2004(30): 196-199
    [150]. C. F. Wang, F. Ling, and J. M. Jin, "A Fast Full-Wave Analysis of Scattering and Radiation from Large Finite Arrays of Microstrip Antennas," IEEE Transactions on Antennas and Propagation, 1998(46): 1467-1474
    [151]. F. Ling and J. M. Jin, "Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem," Microwave and Optical Technology Letters, 1997(16): 212-216
    [152]. F. Ling. Fast Electromagnetic Modeling of Multilayer Microstrip Antennas and Circuits. Ph.D Dissertation of University of Illinois Urbana-Champaign, 2000
    [153].万继响.多层微带结构的MoM及其快速算法研究.西安:西安电子科技大学博士论文,2004
    [154].方大纲.天线理论与微带天线.北京:科学出版社,2006
    [155]. T. Itoh, "Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microwave Theory Tech, 1980(28): 733-736
    [156]. J. R. Mosig, "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microwave Theory Tech, 1988(36): 314-323
    [157]. D. G. Fang, J. J. Yang, and G. Y. Delisle, "Discrete image theory for horizontal electric dipole in a multiplayer medium," Proc. IEE 1988(135): 297-303
    [158].余显烨.微波集成电路的格林函数法计算.北京:国防工业出版社,1996
    [159]. Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "Closed-form spatial Green's function for the thick substrate," IEEE Trans. Microwave Theory Tech, 1991(39): 588-592
    [160]. Y. L chow and W. C. Tang, "3-D Green's functions of microstrip separated into simpler terms-behavior, mutual interaction, and formulas of the terms", IEEE transactions on microwave theory and techniques, 2001(49): 1483-1491
    [161]. M. I. Aksun, "A Robust Approach for the Derivation of Closed-Form Green's Functions," IEEE Trans. on Microwave Theory and Techniques, 1996(44)::651-657
    [162]. T. K. Sarkar, O. Pereira. "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine. 1995(37): 48-55
    [163]. J. X. Wan, T.M. Xiang and C. H. Liang, "Fast Multipole Method for Analysis of Large-Scale Microstrip Antennas Arrays," Progress In Electromagnetics Research 2004(49): 239-255
    [164].莫磊.微带电路和天线阵列的快速电磁仿真,南京:南京理工大学博士论文,2005
    [165]. Y. Ji, Development and Applications of a Hybrid Finite-Element Method/Method-of-Moments(FEM/MOM) Tool to Model Electromagnetic Compatibility and Signal Integrity Problems, University of Missouri-Rolla, Ph. D dissertation, 2000
    [166]. M. M: Botha, D. B. Davidson, "Application of the Fast Multipole Method to the FE-BI Analysis of Cavity Backed Structures with Comprehensive FMM Error Control," Electromagnetics, 2002(22): 393—404
    [167]. M. W. Ali, T. H. Hubing and J. L. Drewniak, "A Hybrid FEM/MOM Technique for Electromagnetic Scattering and Radiation from Dielectric Objects with Attached Wires," IEEE Transactions on Electromagnetic Compatibility, 1997(39): 304-314
    [168]. M.M. Botha and J. M. Jin, "On the Variational Formulation of Hybrid Finite Element-Boundary Integral Techniques for Electromagnetic Analysis," IEEE Transactions on Antennas and Propagation, 2004(52): 3037-3047
    [169]. M. N. Vouvakis, S. C. Lee, K. Zhao, and J. F. Lee, "A Symmetric FEM-IE Formulation With a Single-Level IE-QR Algorithm for Solving Electromagnetic Radiation and Scattering Problems," IEEE Transactions on Antennas and Propagation, 2004(52): 3060-3070
    [170]. J. L. Volakis, T. Ozdemir, and J. Gong, "Hybrid Finite-Element Methodologies for Antennas and Scattering," IEEE Transactions on Antennas and Propagation, 45(3):493-507, 1997
    [171]. X.Q. Sheng and E. K. N. Yung, "Implementation and Experiments of a Hybrid Algorithm of the MLFMA-Enhanced FE-BI Method for Open-Region Inhomogeneous Electromagnetic Problems," IEEE Trans. Antennas Propagat., 2002 (50): 163-167
    [172]. T. Eibert and V. Hansen, "Calculation of unbounded field problemsin free space by a 3-D FEM/BEM-hybrid approach," J. Electromagn.Waves Applicat., 1996(10): 61-78
    [173]. X.-Q. Sheng, J.-M. Jin, J. Song, C.-C. Lu, and W. C. Chew, "On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering," IEEE Trans. Antermas Propagat., 1998(46): 303-311
    [174]. J. Liu and J.-M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. Antennas Propagat., 2001(49): 1794-1806
    [175]. J. Liu and J.-M. Jin, "A highly effective preconditioner for solving the finite eiementboundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., 2002(50): 1212-1221
    [176]. M. M. Botha, "Efficient finite element electromagnetic analysis of antennas and microwave devices: The FE-BI-FMM formulation and a posteriori error estimation for p adaptive analysis," Ph.D. dissertation, Univ. Stellenbosch, Stellenbosch, South Africa, 2002.
    [177]. J. Liu, Higher-order finite element-boundary integral methods for electromagnetic scattering and radiation analysis, Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois, 2002
    [178]. X.-M. Pan and X.-Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," J. of Electromagn. Waves and Appl., 2006(20): 1081-1092
    [179].谭云华.含各向异性介质的三维复杂目标电磁散射的边棱元—快速多极子混合算法研究.北京:北京大学博士学位论文,2003
    [180]. R.S.Chen, Edward.K.N.Yung, C.H.Chan, D.X.Wang and D.G.Fang. Application of the SSOR preconditioned conjugate gradient algorithm to the vector FEM for 3-dimensional full-wave analysis of Electromagnetic-field boundary value problems. IEEE Trans. on Microwave Theory and Tech., 2002 (50): 1165-1172
    [181]. R.S. Chen, X.W.Ping,; D.X.Wang,; Edward K. N. Yung, SSOR preconditioned GMRES for the FEM analysis of waveguide discontinuities with anisotropic dielectric,International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2004(17): 105-118
    [182]. X.W. Ping, R.S.Chen, K. F. Edward K. N Yung. The SSOR-preconditioned inner-outer flexible GMRES method for the FEM analysis of EM problems; Microwave and Optical Technology Letters, 2006(48): 1708-1712
    [183]. R.S. Chen, X. W. Ping, Edward K. N. Yung, C. H. Chart, Zaiping Nie, and Jun Hu, Application of Diagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite-Element Analysis of Helmholtz Equations, IEEE Trans. Antennas Propagat., 2006(54): 1604-1608
    [184]. M.-K. Li and W. C. Chew, Applying divergence-free condition in solving the volume integral equation, Progress In Electromagnetics Research, 2006(57): 311-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700