有限开口空间热驱动流大涡模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有限开口空间内的热驱动流动广泛存在于火灾、通风、水力、机械、化工和环境保护等领域中,并在工程上有大量的应用。由于浮力的作用,引起密度不均匀形成分层流,从而使湍流呈现出非常复杂的行为,增强了热分层流研究的难度。
     鉴于有限开口空间内的浮力驱动分层流动在工程中的广泛性及其应用的重要性,本文采用实验与数值模拟相结合的方法,从基本的数学物理模型建立和求解入手,针对典型情况的有限开口空间内的热驱动浮力分层流问题进行了研究。
     在本文中,首先阐述了适用于有限开口空间内的多组分热驱动流的控制方程及附加方程的推导、简化和变形过程,并基于大涡模拟(LES)技术的主要思想对方程组进行了滤波,简要讨论了亚格子模型,随后给出了方程的数值求解过程和收敛标准。
     以NIST开发的FDS5.0程序为基础,将Vreman亚格子模型应用于有限开口空间热浮力驱动流计算中,并针对在有门开口的房间内由火源产生热流场情况,进行了模型验证工作。利用函数分析法将模拟结果与实验测量值进行了对比分析,进而确定了滤波宽度△=0.05 m时,适用于计算室内火灾分层流的Vreman亚格子模型的常数Cv为0.1。
     通过在有门开口的单室环境中进行的火灾实验和数值模拟,比较了Smagorinsky和Vreman亚格子模型对于热流场计算的适用性。结合双室火灾环境、室内置换通风环境、无尘室垂直层流场火灾环境的模拟值和实验测量值对比结果,得到了在没有外界送风动量的扰动情况下,对于室内这种有限开口空间内的火灾热流场来说,对FDS5.0软件改’进后的计算结果与实验测量值的接近程度在整体上要优于其原有模型。
     以两端开口的狭长型空间热流场为研究对象,进行了小尺寸火灾实验和数值模拟研究,验证了Vreman亚格子模型对狭长通道热流场模拟的有效性。根据实验和数值模拟结果,在通道上壁面无开缝和两种侧开缝宽度时的四种倾斜角度状态下,对通道内的高温区域偏移情况和两端开口处的流速及中性面的变化进行了比较分析,对存在一定倾角的通道排烟设计提出了参考意见。
     以顶部开口的竖直通道空间为研究对象,在9m高的大尺寸单侧开缝竖直通道内进行了火灾实验和数值模拟,对由不同宽度的侧开缝引射空气所引起的火焰和流场的旋转情况、浮力与科氏力的作用关系、旋转中心的偏移进行了分析;在此基础上,利用数值模拟方法研究了4m高以上的侧开缝宽度限制为0.15m后给通道内流场所带来的影响。在2m高的小尺寸竖直通道内进行了不同宽度双侧同方向对开缝火灾实验,结果表明:在一定的热释放率和开缝宽度条件下,双侧同方向对开缝条件也可形成火旋风,并且,在开缝的宽度较小、火源热释放率较大时更容易形成强烈的火旋风。
     本文的研究结果可为加深物理问题的理解提供依据,典型场景的热浮力驱动流研究可为工程应用提供参考和帮助。同时,为今后进一步的深入研究工作奠定了基础。
Thermal stratification is a complicated fluid flow phenomenon due to density difference driven by buoyancy. This kind of fluid flow is commonly encountered in building fire, room ventilation, hydraulic system, machinery, chemicals and environmental protection systems. And it is used widely in the project applications. The stratified fluid is a kind of fluid due to different densities driven by buoyancy, which makes the thermal fluid appear complex behaviors. Therefore, it adds difficulties to research on the thermal stratified fluid. The objective of this thesis is to study thermal stratified fluid in an enclosure with openings.
     In consideration of the widespread popularity and importance of the thermal stratified fluid in an enclosure with openings, researches on typical cases of the thermal stratified fluid in an enclosure with openings were conducted. A mathematical model was set up by combining the associated physical phenomena. Derivation and simplification of the key equations concerned were presented. Discretization in numerical analysis was then outlined. Flow in an enclosure with openings with low Mach number and multi-species were introduced. Turbulence was simulated by large eddy simulation with the model equations filtered. Subgrid-scale models were applied with the numerical solution and convergence criteria described.
     The advanced Computational Fluid Dynamics software Fire Dynamics Simulator (FDS) released by the National Institute of Standards and Technology in the U.S.A. was modified with such analysis. Vreman subgrid-scale model was applied in simulating the thermal stratified flow in an enclosure with openings. This subgrid-scale model was justified by several fire scenarios of compartment with a vertical vent. The numerical values and experimental data were compared using functional analysis. In the numerical simulation of thermal stratified fluid in an enclosure with openings, the corresponding Vreman subgrid-scale constant Cv for the filter width of 0.05 m was fitted to be 0.1.
     Based on the fire experiment on compartment with a vent and the associated numerical simulations, Smagorinsky and Vreman subgrid-scale models for simulating the thermally-induced flow field were compared. In addition to comparing with fire experiments, predicted results in a double compartment, a ventilation displacement in an office and laminar flow in clean room environment, predicted results were closer to experiment in using this improved model developed from FDS without disturbed by additive momentum of the supplying ventilations.
     Scale model experiments and numerical simulations for thermally-induced flow in a long tunnel with two open-ends were carried out. The adaptability of Vreman subgrid-scale model for the thermal flow field in this long tunnel was analyzed. Based on the experimental data and numerical simulation results for different gap widths and inclined angles, the shift characteristics of the higher temperature zone in the tunnel, the variation of flow speed and the height of central plane at openings were analyzed. The results can provide sufficient data for designing smoke management system for an inclined tunnel.
     Large-scaled fire experiment and numerical simulation were carried out for vertical shaft with a single corner gap and top open. The effects of the different gap widths on the rotation of fire and flow field, the correlations of buoyancy and the Coriolis force, the shift characteristics of the fire whirl was analyzed. The flow field in the vertical shaft was studied using the numerical simulation when the corner gap width of above 4 m was set at 0.15 m. Small-scaled fire experiments were also conducted in 2 m tall vertical shaft with dual corner gaps. The results showed that fire whirls can be generated under a certain heat release rate and corner gap width. A fire whirl would be generated with appropriate corner gaps.
     Results of this thesis provided the basics for better understanding the thermal flow driven by buoyancy. The study of the thermal flow field driven by buoyancy may offer some reference and help for the research on application in engineering. At the same time, this dissertation paved a way for the further study.
引文
[1]Rhode D L, Lilleyd G, Mclaughlin D K. Mean flowfields in axisymmetric combustor geometries with swirl[J]. AIAA Journal.1983,4:593-600P
    [2]Paschereit C O, Gutmark E, Weisenstein W. Coherent structures in swirling flows and their role in acoustic combustion control[J]. Physics of Fluids,1999,11:2667-2678P
    [3]吴国江,黄震,田子平.有限旋转气流的切向速度特性分析[J].空气动力学学报,2002,20(3):361-366页
    [4]Hubner A W, Tummers M J, Hanjalic K, Meer T H. Experiments on a rotating-pipe swirl burner[J]. Experimental Thermal and Fluid Science,2003,27:481-489页
    [5]丁水汀,付德斌,罗翔,徐国强,陶智.浮升力对双旋转轴间流动换热影响的数值模拟[J].推进技术,2003,24(6):544-546页
    [6]倪建民,陈云,樊建人,岑可法.旋流燃烧器出口湍流流场的数值模拟[J].动力工程,2004,24(1):102-105页
    [7]任晓东,张吉礼.旋转矩形通道流场特性的数值模拟[J].流体机械,2005,33(10):24-27页
    [8]田淑青,陶智,丁水汀,徐国强.轴向通流旋转盘腔内流动不稳定性研究[J].北京航空航天大学学报,2005,31(14):393-396页
    [9]Yu M Z, Chen L H, Jin H H, Fan J R. Large eddy simulation of coherent structure of impinging jet[J]. Journal of Thermal Science,2005,14(2):150-155P
    [10]桂巧昳.受限空间强旋射流扩散火焰的数值模拟[J].航空发动机,2007,33(1):30-33页
    [11]张弛,汪志强,林宇震.自稳火双旋流杯在非受限空间内的燃烧特性[J].航空动力学报,2008,23(10):1778-1782页
    [12]Thomas P H, Hinkley P L, Theobald C. R. et al. Investigation into the flow of hot gases in roof venting. Fire Research Technical Paper No.7, HMSO, London,1963.
    [13]Thomas P H, Hinkley P L. Design of roof-venting system for single storey buildings. Fire Research Technical Paper No.10, HMSO, London,1964.
    [14]Than C F, Savilonis B. Modeling fire behavior in an enclosure with a ceiling vent. Fire Safety Journal,1993,20:151-174P
    [15]Than C F. Modeling fire behavior in an enclosure with a ceiling vent. Worcester Polytechnic Institute,1989.
    [16]Steckler K D, Quintiere J G, Rinkinen W J. Flow induced by fire in a Compartment. NBSIR 82-2520, National Bureau of Standards,1982.
    [17]Steckler K D, Quintiere J G, W.J. Rinkinen W J. Flow induced by fire in a room. In 19th International Symposium on Combustion. The Combustion Institute, Pittsburgh, Pennsylvania,1983.
    [18]Rutherford L. Experimental results for pre-flashover fire experiments in two adjacent ISO compartments. Fire Engineering Research Report, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.2002.
    [19]Clark L R. The effect of door angle on fire induced through a doorway. Fire Engineering Research Report, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.2002.
    [20]Pierce J B M, Moss J B. Smoke production, radiation heat transfer and fire growth in a liquid-fuelled compartment fire[J]. Fire Safety Journal,2007 (42):310-320P
    [21]Awad A S, Calay R K, Badran O O, Holdo A E. An experimental study of stratified flow in enclosures[J]. Applied Thermal Engineering 2008(28):2150-2158P
    [22]Lin Y J P, Linden P F, Buoyancy-driven ventilation between two chambers[J], Journal of Fluid Mechanics,2002(463):293-312P
    [23]Bettis R J, Jagger S F, Macmillan A J R, Hambleton R T. Interim validation of tunnel fire consequence models; summary of phase 1 tests[R]. The Health and Safety Laboratory Report IR/L/FR/94/2, The Health and Safety Executive, UK,1994.
    [24]Oka Y, Atkinson C T. Control of smoke flow in tunnel fires[J]. Fire Safety Journal, 1995,25(4):305-322P
    [25]Atkinson G T, Wu Y. Smoke control in sloping tunnels[J]. Fire Safety Journal,1996, 27(4):335—341P
    [26]Nielsen P V. Flow in air conditioning rooms[D]. Ph. Thesis. Technical University of Denmark, Copenhagen,1974.
    [27]Chow W K. Use of computational fluid dynamics for simulating enclosure fires. Journal of Fire Sciences,1995(13):300-334P
    [28]Shanley J. Physical modeling of horizontal vent flows using helium and air. M. Sc. Thesis, Worcester Polytechnic Institute,1987.
    [29]Hinkley P L. Rates of production of hot gases in roof venting experiments. Fire Safety Journal,1986:57-65P
    [30]Cooper L Y. Calculation of the flow through a horizontal ceiling/floor vent.1989, NISTIR 89-4052.
    [31]Cooper L Y. An algorithm for calculation of flow through a horizontal ceiling/floor vent in zone-type compartment fire model. NISTIR 4402,1990.
    [32]James G Q. Fundamentals of enclosure fire "Zone" models. Journal of Fire Protection Engineering,1989,1(3):99-119P
    [33]Chow W K. Multi-cell concept for simulating fires in big enclosures using a zone model. Journal of Fire Sciences,1996,14(3):186-198P
    [34]Chow W K. Fire hazard assessment in a big hall with the multi-cell zone modelling concept. Journal of Fire Sciences,1997,15(1):14-28P
    [35]Chow W K. Predictability of flashover by zone models. Journal of Fire Sciences,1998, 16(5):335-350P
    [36]Chow W K. An approach for evaluating fire zone models. Journal of Fire Sciences, 1998,16(1):25-31P
    [37]Chow W K, Meng L. Analysis of key equations in a two-layer zone model and application with symbolic mathematics in fire safety engineering. Journal of Fire Sciences,2004,22(2):97-124P
    [38]Meng L, Chow W K. Mathematical analysis and possible application of the two-layer zone model FIRM. International Journal on Engineering Performance-Based Fire Codes, 2002,4(1):13-22P
    [39]孟岚,周允基.Two-layer双层区域模型对单室火灾的模拟.哈尔滨工程大学学报,2002,23(4):56-61页
    [40]傅祝满,范维澄.建筑火灾的模拟方法及进展.大自然探索,1996,15(55):28-33页
    [41]傅祝满,范维澄.建筑火灾区域模拟研究.自然科学进展,1997,7(3):345-349页
    [42]Satoh K, Matsubara Y, Kumano Y. Flow and temperature oscillations of fire in a cubic enclosure with a ceiling and floor vent. Part I[R]. Report of Fire Research Institute of Japan No.55,1983.
    [43]Satoh K, MatsubaraY, Yang K T. Flow and temperature oscillations of fire in a cubic enclosure with a ceiling and floor vent. Part III[R]. Report of Fire Research Institute of Japan No.57,1984.
    [44]Maele K V, Merci B. Application of two buoyancy-modified κ-ε turbulence models to different types of buoyant plumes[J]. Fire Safety Journal,2006,41:122-138P
    [45]Cox G, Kumar S. A numerical model of fire in road tunnels[J]. Tunnels & Tunnelling, 1987,19(3):55-60P
    [46]Wu Y. Bakar M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of critical velocity[J]. Fire Safety Journal,2000,35(4): 363-390P
    [47]Byram G M, Martin R E. Fire whirlwinds in the Laboratory[J]. Fire Control Notes, 1962,33(1):13-17P
    [48]Emmons H W, Ying S J. The fire while[C]. The 11th International Combustion Symposium,1967, Pittsburgh, PA.475-488P
    [49]Satoh K. Numerical study and experiments of fire whirl[C]. Proceedings of the 7th International Conference,1996:393-402P
    [50]Satoh K, Yang K T. Experimental observations of swirling fires[J]. Proc. ASME, Heat Transfer Division,1996,335(4):393-400P
    [51]Satoh K, Yang K T. Simulations of swirling fires controlled by channeled self-generated entrainment flows[C]. Proceedings of the 5th Int. Symposium, IAFSS,1997:201-212P
    [52]Satoh K, Yang K T. Experiments and numerical simulations of swirling fires due to 2*2 flames in a channel with single corner gap[C]. Proc. ASME, Heat Transfer Division, 1998,361(2):49-56P
    [53]Satoh K, Yang K T. Measurements of fire whirls from a single flame in a vertical square channel with symmetrical corner gaps[C]. Proc. ASME, Heat Transfer Division,1999, 364(4):167-173P
    [54]Farouk B, McGrattnn K B, Rehm R G. Large eddy simulation of naturally induced fire whirls in a vertical square channel with corner gaps. International Mechanical Engineering Congress and Exposition (IMECE) Proceedings. Modeling and Numerical Simulation of Combustion Processes Session. November 5-10,2000, Orlando, FL, 2001.
    [55]Chuah K H, Kuwana K, Saito K. Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire[J]. Combustion and Flame,2009,156(9):1828-1833P
    [56]范维澄,张辉,郑丽丽.受浮力影响的湍流模型[J].中国科学技术大学学报,1990,20(3):321-327P
    [57]陈丽星,姚朝辉,博托尼舞里厨夫,模拟热分层流场的湍流模型的比较及优化[J],原子能科学技术,2003,37(5):389-394P
    [58]Fang J, Ji J, Yuan H Y, Zhang Y M, Su G F. Experimental and Numerical Study of Smoke Plumesin Stable Thermally Stratified Environments. Journal of Fire Sciences, 2006,24(177):177-193P
    [59]Fang J, Yuan H Y. Experimental measurements, integral modeling and smoke detection of early fire in thermally stratified environments. Fire Safety Journal,2007,42:11-24P
    [60]周建军,姜冯辉,禹颂耕,钟占荣.小型静态火旋涡的实验研究[J].实验力学,1997,12(3):406-410页
    [61]夏云春,王清安.旋转磁场引发的旋转火焰稳定性分析[J].火灾科学,2002,11(4):206-210页
    [62]夏云春,王清安.旋转磁场引发火焰旋转的临界值研究[J].燃烧科学与技术,2003,9(6):511-515页
    [63]秦俊,廖光煊,万玉田,范志航.三维LDV测量火旋风的实验研究[J].量子电子学报,2002,19(5):476-480页
    [64]秦俊,廖光煊,王喜世,范志航.细水雾抑制火旋风的实验研究[J].自然灾害学报,2002,11(4):60-65页
    [65]张孝华.受迫来流下的火旋风实验研究及数值模拟[D].中国科学技术大学硕士学位论文,2005:9-52页
    [66]苏石川,工亮,聂宇宏,顾祥.基于不同风速下火旋风的数值计算及特性分析[J].中国安全科学学报,2009,19(9):78-82页
    [67]陈正刚,张媛,张娜,芦志强.基于LES的某别墅火灾烟气数值模拟[J].消防技术与产品信息,2009,12:51-54P
    [68]Yuan S S, Zhang J. Large eddy simulation of compartment fire with solid combustibles. Fire Safety Journal,2009, (44)3:349-362P
    [69]Wang H Y. Numerical study of under-ventilated fire in medium-scale enclosure[J]. Building and Environment,2009, (44)6:1215-1227P
    [70]Tian Z F, Tu J Y, Yhoh G H, Yuen R K K. Numerical studies of indoor airflow and particle dispersion by large eddy simulation[J]. Building and Environment,2007, (42)10: 3483-3492P
    [71]Yuan F D, You S J. CFD simulation and optimization of the ventilation for subway side-platform[J].2007, (22)4:474-482P
    [72]Yang H, Jia L, Yang L X. Numerical analysis of tunnel thermal plume control using longitudinal ventilation[J]. Fire Safety Journal,2009,44(8):1067-1077P
    [73]McGrattan K B, Baum H R, Rehm R G. Large eddy simulation of smoke movement[J]. Fire Safety Journal,1998,30:161-178P
    [74]Baum H R. Large eddy simulations of fires-from concepts to computations[J]. Fire Protection Engineeing,2000,6:36-42P
    [75]Zhang W, Hamer A, Klassen M, Carpenter D, Roby R. Turbulence statistics in a fire room model by large eddy simulation[J]. Fire Safety Journal,2002,37:721-752P
    [76]K.B. McGrattan, S. Hostikka, J.E. Floyd, H.R. Baum, and R.G. Rehm. Fire Dynamics Simulator (Version 5), Technical Reference Guide. NIST Special Publication 1018-5, National Institute of Standards and Technology, Gaithersburg, Maryland, January 2007.
    [77]Rehm R G, Baum H R. The equations of motion for thermally driven, buoyant flows [J]. Journal of Research of the National Bureau of Stand,1978,83(3):297-308P
    [78]McGrattan K B, Rehm R G, Baum H R. Fire-driven flows in enclosures [J]. Journal of Computational Physics,1994,110:285-291P
    [79]McGrattan K B, Baum H R, Rehm R G. Numerical simulation of smoke plumes from large oil fires [J]. Atmospheric Environment,1996,30(24):4125-4136P
    [80]McGrattan K B, Baum H R, Rehm R G. Large eddy simulation of smoke movement [J]. Fire Safety Journal,1998,30:161-178P
    [81]Floyd J E, McGrattan K B, Hostikka S et al. CFD fire simulation using mixture fraction combustion and finite volume radiative heat transfer [J]. Journal of Fire Protection Engineering,2003,13:11-36P
    [82]McGrattan K B, Forney G P. Fire dynamics simulator (version 4)-user guide [R]. NIST Special Publication 1019, National Institute of Standards and Technology,2004:1-90P
    [83]McGrattan K B, Hostikka S, Floyd J E. Fire Dynamics Simulator (Version 5), User's Guide. NIST Special Publication 1019-5xxx, National Institute of Standards and Technology, Gaithersburg, Maryland, January 2007.
    [84]Baum H R, McGrattan K B. Simulation of large industrial outdoor fires. In Fire Safety Science-Proceedings of the Sixth International Smposium. International Association for Fire Safety Science,2000.
    [85]Novozhilov V. Computational fluid dynamics modeling of compartment fires[J]. Progress in Energy and Combustion Science,2001,27:611-666P
    [86]杨世铭.传热学.第二版.北京:高等教育出版社,1994:268-338页
    [87]Floyd J E, McGrattan K B, Hostikka S, Baum H R. CFD fire simulation using mixture fraction combustion and finite volume radiative heat transfer [J]. Journal of Fire Protection Engineering,2003,13:11-36P
    [88]Wang H Y, Coutin M, Most J M. Large-eddy simulation of buoyancy-driven fire propagation behind a pyrolysis zone along a vertical wall[J]. Fire Safety Journal,2002, 37:259-285P
    [89]McGrattan K B. Computational fluid dynamics and fire modeling[R]. NIST Technical Report Class2002, National Institute of Standards and Technology,2001:1-50P
    [90]Incropera F P, DeWitt D P. Introduction to Heat Transfer. Third Edition. New York:John Wiley & Sons,1996:595-715P
    [91]卞伯绘(编著),王补宣(审订).辐射换热的分析与计算.北京:清华大学出版社,1988:244-315页
    [92]Smagorinsky J. General circulation experiments with the primitive equations[J]. Monthly Weather Review,1963,91:99-164P
    [93]Deardoff J W. The use of subgrid transport equation in a three dimensional model of atmospheric turbulence[J]. ASME J. Fluid Engineering,1973,95:429P
    [94]张兆顺,崔桂香 许春晓.湍流大涡数值模拟的理论和应用.清华大学出版社,2008:63-66,90-129页
    [95]Speziale C G, Erlebacher G, Zang T A. The subgrid-scale modeling of compressible turbulence[J]. Physics of Fluids,1988,29:940-942P
    [96]刘奕,郭印诚.不可压湍流燃烧大涡模拟的分步投影方法[J].科学通报,2004,49(7):611-617P
    [97]刘敏,丁国锋,秦挺鑫.公路隧道火灾的数值模拟[J].消防科学与技术,2005,24(5):573-576P
    [98]孙建军,李烈,路世昌,智会强.高层建筑管道井内烟气运动大涡模拟[J].中国安 全科学学报,2006,16(9):40-44P
    [99]秦挺鑫,郭印诚,张会强,王希麟,林文漪.楼梯井内火灾过程的大涡模拟[J].工程热物理学报,2004,25(1):177-179P
    [100]张兆顺,崔桂香许春晓.湍流理论与模拟.清华大学出版社,2005:233-250页.
    [101]Germano M, Piomelli U, Moin P, Cabot H. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids(A),1991,3(7):1760-1765P
    [102]Zang Y, Street R L, Koseff J R. A dynamics mixed subgrid-scale model and its application to recalculating flow[J]. Physics of Fluids(A),1993,5:3186-3195P
    [103]Carati D, Jansen K, Lund T. A family of dynamic models for large-eddy simulation. Center for Turbulence Research in Annual Research Briefs,1995,35-40P
    [104]龚洪瑞,陈十一,何国威,曹念铮.二阶动态亚格子尺度应力模型[J].应用数学和力学,2000,21(2):147-153页
    [105]Ghosal S, Lund T S, Moin P, Akselvoll K. A dynamic location model for large-eddy simulation of turbulent flows[J]. Journal of Fluid Mechanics,1995,286:229-255P
    [106]Park N, Lee S, Lee J, Choi H. A dynamic subgrid-scale eddy viscosity model with a global model coefficient[J]. Physics of Fluids18,2006,125109
    [107]You D, Moin P. A dynamic global-coefficient subgrid-scale model for large-eddy simulation of turbulent scalar transport in complex geometries[J]. Physics of Fluids21, 2009,045109
    [108]Andres E, Tejada-Martinez, Kenneth E. Jansen. A parameter-free dynamic subgrid-scale model for large-eddy simulation[J]. Computer methods in applied mechanics and engineering,2006,195:2919-2938P
    [109]Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications[J]. Physics of Fluids,2004,16(10):3670-3681P
    [110]柏劲松,王涛,李平,邹立勇,谭多望.激波反射对扰动界面湍流混合区影响的数值分析[J].中国科学,2009,39(11):1646-1653页
    [111]Kim S H, Huh K Y. Assessment of the finite-volume method and the discrete ordinate method for radiative heat transfer in a three-dimensional rectangular enclosure[J]. Numercial Heat Transfer, Prat B,1999,35:85-112P
    [112]帕坦卡(著),张政(译).传热与热体流动的数值计算[M].北京:科学出版社,1984:130-160页.
    [113]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics the finite volume method[M]. England:Pearson Education Limited, Edinburgh Gate, Harlow, Essex CM20 2/E,1995:10-120P
    [114]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988:250-311页
    [115]Ferziger J H, Peric M. Computational methods for fluid dynamics[M].3rd edition. Springer-Verlag,2001:135-156P
    [116]Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical pecipes the art of scientific computing[M].3rd edition. Cambridge University Press,2007:907-91 OP
    [117]Sweet R A. Direct Methods for the Solution of Poisson's Equation on a Staggered Grid[J]. Journal of Computational Physics,1973,12:422-428P
    [118]Yoshizawa A. Eddy-viscosity-type sub-grid-scale model with a variable Smagorinsky coefficient and its relationship with the one equation model in large eddy simulation [J]. Physics of Fluids,1991,3(8):2007-2009P
    [119]Chen Q Y. Computation of different k-ε models for indoor airflow computations [J]. Numerical Heat Transfer (Part B),1995,28:353-369P
    [120]Murakami S, Mochida A, Matsui K. Large eddy simulation of non-isothermal room airflow, comparison between standard and dynamic type of Smagorinsky model [J]. Journal of Institute of Industrial Science,1995,47(2):7-12P
    [121]Zhang W, Chen Q Y. Large eddy simulation of indoor airflow with a filtered dynamic subgrid scale model [J]. International Journal of Heat and Mass Transfer,2000,43: 3219-3231P
    [122]Jiang Y, Chen Q Y. Study of natural ventilation in buildings by large eddy simulation [J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89:1155-1178P
    [123]Wang H Y, Coutin M, Most J M. Large-eddy simulation of buoyancy-driven fire propagation behind a pyrolysis zone along a vertical wall [J]. Fire Safety Journal,2002, 37:259-285P
    [124]Floyd J E, McGrattan K B, Hostikka S, et al. CFD fire simulation using mixture fraction combustion and finite volume radiative heat transfer [J]. Journal of Fire Protection Engineering,2003,13:11-36P
    [125]Ferziger J H. Subgrid-scale modeling. In:Galperin B, Orszag S A, editors. Large eddy simulation of complex engineering and geophysical flows [M]. Cambridge:Cambridge University Press,1993:37-54P
    [126]Yoshizawa A. Statistical theory for compressible turbulent shear flows with the application to subgrid modeling [J]. Physics of Fluids,1986,29:2153-2164P
    [127]Liu S L, Chow W K. A review on numerical simulation of turbulent flow [J]. International Journal on Architectural Science,2002,3(2):77-102P
    [128]Murakami S, Mochida A, Matsui K. Large eddy simulation of non-isothermal room airflow, comparison between standard and dynamic type of Smagorinsky model [J]. Journal of Institute of Industrial Science,1995,47(2):7-12P
    [129]Murakami S. Overview of turbulence models applied in CWE-1997 [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:1-24P
    [130]Murakami S, Iizuka S, Ooka R. CFD analysis of turbulent flow past square cylinder using dynamic LES [J]. Journal of Fluids and Structures,1999,13:1097-1112P
    [131]Frohlich J, Rodi W. Introduction to large eddy simulation of turbulent flows. In: Launder B E, Sandham N D, editors. Closure strategies for turbulent and transitional flows [M]. Cambridge:Cambridge University Press,2002:267-298P
    [132]Yaga M, Endo H, Yamamoto T, Aoki H, Miura T. Modeling of eddy characteristic time in LES for calculating turbulent diffusion flame [J]. International Journal of Heat and Mass Transfer,2002,45:2343-2349P
    [133]Zou G W, Tan H P, Chow W K, et al. Effects of varying Smagorinsky constant on simulating post-flashover fires [J]. International Journal of Computational Fluid Dynamics,2007,21(2):107-119P
    [134]邹高万.船舶机舱火灾热流场特性研究[D].哈尔滨工程大学博士学位论文.2005:86-97页
    [135]Peacock R D, Reneke P A, Davis W D, Jones W W. Quantifying fire model evaluation using functional analysis[J]. Fire Safety Journal.1999,33:167-184P
    [136]霍然,胡元,李元洲.建筑火灾安全工程导论.合肥:中国科技大学出版社,1999:1-115页
    [137]Karlsson B, Quintiere J G. Enclosure fire dynamics. America, Florida:CRC Press,1999: 25-46P,81-138P,103-111P
    [138]Babrauskas V, Graayson S J. Heat release rate. London and NY:Elsevier Science Publishing Co.,1992:1-111P
    [139]Peacock R D, Davis S, Babrauskas V. Data for room fire model comparisons[J]. Journal of Research of the National Institute of Standards and Technology,1991,96(4): 411-432P
    [140]Thornton W. The relation of oxygen to the heat of combustion of organic compounds. Philosophical Magazine and Journal of Science,1917,33(196):1P
    [141]Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements[J]. Fire and Materials,1980,4(2):61-65P
    [142]Parker W J. An investigation of the fire environment in the ASTM E-84 Tunnel test. NBS Technical Note 945, National Bureau of Standard,1977:1-10P
    [143]Parker W J. Calculation of the heat release rate by oxygen consumption for various applications. NBSIR81-2427-1, National Bureau of Standard,1982:1-30P
    [144]Parker W J. Calculation of the heat release rate by oxygen consumption for various applications[J]. Journal of Fire Science,1984,2:380-395P
    [145]Krause R F, Gann R G. Rate of heat release rate measurements using oxygen consumption. Journal of Fire and Flammability,1980,12:117-130P
    [146]Sensenig D L. An oxygen consumption technique for determining the contribution of interior wall finishes to room fires. NBS Technical Note 1182, National Bureau of Standard,1980:1-5P
    [147]McCaffrey B, Gheskestad. A robust bi-directional low-velocity-probe for flame and fire application[J]. Combustion and Flame,1976,26:125-127P
    [148]姜冯辉,沈才康,陈玉明,范维澄,葛斐,闵明保.双室火灾烟气特性的实验研究.火灾科学,1996,5(1):20-27页
    [149]李耀庄,蒋春艳.不同开口状况下多层建筑火灾烟气运动的数值模拟[J].防灾减灾工程学报,2006,26(1):34-37页
    [150]李强民.置换通风原理、设计及应用[J].暖通空调,2000,30(5):41-46页
    [151]李强民,邓伟鹏.气流分布方式与室内空气品质[C].全国暖通空调制冷2000年学术年会论文集.南宁:中国建筑学会暖通空调专业委员,2000,75-78页
    [152]孙涛.置换通风与混合通风系统的比较研究[J].节能.2006,8:14-16页
    [153]Srebric J, Chen Q. An Example of Verification, Validation, and Reporting of Indoor Environment CFD Analyses. ASHRAE Transactions,2002,108(2),185-194P
    [154]Heskestad G, Lutton J C. Novel smoke/flume control for clean rooms. FMRC Technical Report, J. I.0B0J1. RU, Factory Mutual Research Corporation, Norwood, MA,1997.
    [155]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学,2006.
    [156]Hu L H, Huo R, Wang H B, Lia Y Z, Yang R X. Experimental studies on fire-induced buoyant smoke temperature distribution along tunnel ceiling[J]. Building and Environment,2007,42:3905-3915P
    [157]Wang Y F, Jiang J C, Zhu D Z. Full-scale experiment research and theoretical study for fires in tunnels with roof openings[J]. Fire Safety J,2009,44:339-348P
    [158]Vauquelin O. Experimental simulations of fire-induced smoke control in tunnels using an "air-helium reduced scale model":principle, limitations, results and future[J]. Tunnelling and underground space Technology,2008,23:171-178P
    [159]梁平,兰馨,龙新峰.公路隧道火灾的模型试验与数值模拟分析[J].中国西部科技,2008,7(33):1-3页
    [160]Seong Roh J, Shin Yang S, Sun Ryou H., O Yoon M, Tae Jeong Y. An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptane pool fire case[J]. Building and Environment,2008,43:1225-1231P
    [161]Chow W K, Han S.S. Experimental investigation on onsetting internal fire whirls in a vertical shaft[J]. Journal of Fire Sciences,2009,27:529-543P
    [162]Lee S L, Otto F W. Gross vortex activities in a simple simulated urban fire[J]. Plant Engineering,1975:157-161P
    [163]Emori R I, Saito K. Model experiment of hazardous forest fire whirl[J]. Fire Technology, 1982,18:19-327P
    [164]Soma S, Saito K. Reconstruction of Fire Whirls Using Scale Models[J]. Combustion and Flame,1991,86:269-284P
    [165]Zhou R, Wu Z N. Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height[J]. Journal of Fluid Mechanics,2007,583:313-345P
    [166]Jin X.Z, Cheng B Y. The characteristics of forest fire whirl wind[J]. Journal of Natural Disasters,1997,6(2):34-41P
    [167]Snegirev A.Y, Marsden J A, Francis J, Makhviladze G M. Numerical studies and experimental observations of whirling flames[J]. International Journal of Heat and Mass Transfer,2004,47:2523-2539P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700