正交图像矩及其在精确定位与产品检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器视觉技术是在图像处理及模式识别上发展起来的新兴技术。典型的机器视觉系统通过图像摄取装置获得目标图像,然后将信息传递给图像处理部分,实现模式识别、在线检测、目标跟踪等功能,并可驱动执行机构完成相关动作,具有非接触、高精度、高速等特点,是先进制造中的重要组成。
     图像处理技术是机器视觉中的研究热点,直接影响到系统的性能,而图像矩是图像形状特征的表达方式,其描述了图像的区域特征。正交图像矩是图像矩中的一个重要分支,与非正交图像矩相比,具有多个显著的优点。
     传统正交连续图像矩的计算需要进行坐标空间的重新映射和积分的近似化处理。在总结前人研究的基础上,提出了一种精确计算伪Zernike矩的方法。首先将伪Zernike矩转变为Fourier-Mellin矩的线性组合,然后利用若干个矩形、三角形和扇形区域的拼接来表征整个计算区域,接着通过三角函数的积分关系,提出了基于迭代关系求解上述形状区域矩积分的方法,降低计算复杂度。另外,介绍了基于递归的伪Zernike矩精确求解算法,以递归方法计算相邻矩,减少计算时间。
     传统正交离散图像矩的求解不进行离散化和积分的近似化处理,一般通过迭代和对称关系进行求解。但是在大规模图像的高阶离散正交图像矩的求解中,迭代次数的增加将导致传递误差剧增。以Krawtchouk矩为研究对象,分析了Krawtchouk多项式在不同参数p下的对称关系,提出了一种Krawtchouk多项式双向递推的算法,最大迭代次数将缩减为原有次数的一半,从而提高Krawtchouk矩的计算精度。另外提出了分段双向迭代算法,可进一步减少迭代次数,降低计算过程中的传递误差。
     径向正交图像矩是一类特殊的正交图像矩,其幅值与旋转角度无关,旋转不变量可直接获得。径向连续正交图像矩的计算过程需要离散化处理,此过程将产生离散误差。首先分析了笛卡尔坐标系与极坐标系的一一映射关系,然后基于径向连续正交图像矩的推导表达式,构建了极坐标系下具有正交性质的离散傅里叶表达式,从而构建了径向双离散傅里叶变换,最后利用正交的余弦变换替换傅里叶变换,避免复数运算,提高计算效率。
     目标识别中图像特征量的选择是识别的关键因素。Zernike矩作为径向正交连续矩,直接反应了目标的区域特征,适合于复杂边界目标的描述。Zernike矩的裁剪半径直接影响到不变量的稳定性,提出了一种裁剪半径的计算方法。针对BP神经网络易陷入局部极值和初值敏感等问题,利用粒子群算法来优化神经网络的权值和阈值,混沌算子用于初始化神经网络的权值和阈值,并通过混沌机制使粒子群跳出早熟。
     精确定位系统中图像处理的主要任务是求取图像中目标的位置。目标特征一般包括边缘特征和点特征两种,边缘特征的处理量较大,提出了基于点特征的匹配方法。首先利用自适应中值滤波器处理椒盐噪声,然后通过两级Zernike矩进行边缘的亚像素检测,接着采用曲率尺度空间的改进方法提取角点,最后由局部和全局匹配的方法完成目标的精确定位。
     字符和缺陷是常见的产品检测项目。在字符识别中,选用Zernike矩和骨架特征作为特征量,采用两层串级的识别方法,可保证识别效果和识别效率;在缺陷检测中,利用平均灰度灰度矢量完成粗匹配,再通过正交Fourier-Mellin矩进行细匹配,可兼顾检测的准确性和快速性。
Machine vision technology is the emerging technology based on image processing and pattern recognition. The target image can be obtained through the image capturing device in a typical machine vision system, afterward the information is passed to the image processing section, then several functions such as Pattern recognition, online Inspection and target tracking can be achieved, the implementing agencies can be driven to complete the relevant action. It has the advantages of non-contact, high precision and rapidity, and is the important component of advanced manufacturing.
     Image processing technology which has a direct impact on the machine vision system is research hotspot in the machine vision, and the image moments are the expression of the image shape feature, which describes the characteristics of the image area. Orthogonal image moments are an important branch of image moments, compared with non-orthogonal image moments, which have a number of significant advantages.
     The calculation of traditional orthogonal continuous image moment needs the remapping of the coordinate space and the treatment of integral approximation. On the basis of previous research, the method of accurate calculation of the pseudo-Zernike moments is proposed. Firstly, pseudo-Zernike moments are converted into a linear combination of Fourier-Mellin moments, then the combination of a number of rectangles, triangles and fan-shaped region is used to express the entire computational domain, afterward, in order to reduce the computational complexity a recursive expression is deduced through the integral relationship of the trigonometric functions to solve the above-mentioned shape of the region's moment integral. In addition, the accureate computation of Pseudo Zernike moments based on the recursion is introduced, which uses the recursive relations to calculate the moments for the sake of reducing computation time.
     The calculation of traditional discrete orthogonal image moments don't require the treatment of discretization and integral approximation, and is usually solved by iteration and symmetry relations. However, the increase of the number of iterations will result in dramatic increase of transmission error in solving large-scale image of the high order discrete orthogonal image moments. Considering Krawtchouk moments as the object of study, the symmetry relations of Krawtchouk Polynomials in different parameter P are analyzed, and a novel bi-recursive algorithm is proposed to calculate Krawtchouk polynomial in which the maximum number of iterations will be reduced to the original number of general. The new algorithm can improve the accuracy of the calculation of the Krawtchouk moment. In addition, the calculation of subparagraph can be taken account into this algorithm, which further reduces the number of iterations and the impact of the transmission error.
     The radial orthogonal image moments which have the characteristics of the radial moments are a special class of orthogonal image moments, and the amplitude of these moments has nothing to do with the angle of rotation, and therefore the rotation invariant can be directly obtained. The calculation of radial continuous orthogonal image moments requires the treatment of discretization, which causes the discretization error. The radial Bi-discrete Fourier transform is presented on the basis of the derivation formula of the radial continuous orthogonal moments. First the mapping relationship of the Cartesian coordinates and polar coordinates is studied, and then a polar coordinate system with orthogonal discrete Fourier expression is built, finally the orthogonal cosine transform is used to replace the Fourier transform in order to avoid complex operations and improve computational efficiency.
     The choice of image feature is the key factors in target recognition. Zernike moments as the radial orthogonal continuous moments have a direct response of the regional characteristics of the target, and are suitable for the description of the complex boundary goal. The cutting radius of Zernike moments directly affects the stability of the invariants, and the method of calculating a cutting radius is proposed. Because BP neural networks is easy to fall into local extreme value and is sensitive to initial value, particle swarm algorithm is used to optimize the weights and thresholds of neural networks, and chaos operator is utilized to initialize weights and thresholds of neural network, then particle swarm takes advantage of the chaos mechanism avoiding precocity.
     The main task of image processing of dynamic accurate location systems is to strike the image of the target location. The target characteristics generally include edge features and point features, in which edge features need a larger handling capacity compared with point features. A point feature-based matching method is introduced. Firstly, adaptive median filter is used to deal with salt and pepper noise, and then two-level Zernike moments is utilized for the edge of the sub-pixel detection, followed by the modified method of the curvature scale space is applied to extract corner points, and finally the positioning of the target is completed through the local and global match.
     Character and defect are the common projects of product inspection. Zernike moments and skeleton features are chosen as features in the character recognition, and a two-tier cascade identification method is used to ensure the recognition performance and identify efficiency. Firstly, the mean gray level grayscale vector is used to complete the rough match, and finally orthogonal Fourier-Mellin moments are utilized for fine matching. This new method can take into account the accuracy and rapidity of dectection.
引文
[1]Roberts L. Machine perception of three-dimensional solids. Cambridge, MA:MIT Press,1965
    [2]Marr D, Hildreth E. Therory of edge detection. London, Proc.R.Soe,1980:187-217
    [3]Lowe David G. Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence,1987,31(4):355-395
    [4]Bajcsy R. Active Perception. Proceeding of IEEE,1988,76(8):996-1005
    [5]S.Mallat,S.Zhong. Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach Intell,1992,14(7):710-732
    [6]Daubeehles, Orthonormal Bases of Compactly Supported Wavelets. Comm. Pure Appl.Math,1988,vol.41,1988:906-966
    [7]I. Daubechies, Ten Lectures on Wavelets, Philadelphia:SIAM,1992
    [8]K.T.Lay, K.Katsaggelos. Image identification and restoration based on the expectation-maximization algorithm. Opt. Eng,1990,29:436-445
    [9]A.M.Tekalp, H.Kaufman. On statistical identification of a class of linear space-invariant image blurs using non-minimum-phase ARMA models. IEEE Trans. Acoust. Speech & Signal Proc,1988,36:1360-1363
    [10]L.Alvarez,F.Gulchard, P.L.Lion, et al. Axioms and fundamental equations of image proeessing. Archive for Rational Mechanics and Analysis,1993,123(3):199-257
    [11]C.Ballester, M.Bertalmio,V.Caselles,et al. Filling-in by joint-interpolation of vector fields and gray levels. IEEE Trans. Image Process,2001,10(8):1200-1211
    [12]王涛,刘文印,孙家广,等.傅立叶描述子识别物体的形状.计算机研究与发展,2002,39(12):1714-1719
    [13]赵三琴,丁为民,刘德营.基于傅里叶描述子的稻飞虱形状识别.农业机械学报,2009,40(8):181-184
    [14]王萍,强兆庆,许晋玮,等.基于链码描述的图像图形特征提取.计算机应用,2009,29(8):2065-2067
    [15]吴亚雄,陈海燕,李宗伯.基于链码的快速圆形识别方法.微计算机应用,2009,30(10):49-52
    [16]聂,赵荣椿,康宝生.基于边缘几何特征的图像精确匹配方法.计算机辅助设计与图形学学报,2004,16(12):1669:1673
    [17]李禹,计科峰,吴永辉,等.高分辨率SAR图像车辆目标几何特征提取方法.系统工程与电子技术,2009,31(1):79-82
    [18]王耀明.图像的矩函数-原理、算法及应用.上海:华东理工大学出版社,2002
    [19]Hu M K. Visual Pattern Recognition by Moment Invariants, IRE Trans. Information Theorey, Feb,1962,8:179-182
    [20]Chong-HuaH Lo, Hon-Son Don.3D Moment Forms:Their construction and Application to Object Identification and Position, IEEE Trans, on PAMI,Oct.1989, 11(10):1053-1063
    [21]Abu Mostafa Y S. Image normalization by complex moments. IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7(1):46-55
    [22]Teague M R. Image analysis via the general theory of moments. Journal of the Optical Society of America,1980,70(8):920-930
    [23]Mukundan R, Ong S H, Lee P A. Image analysis by Tchebichef moments. In:IEEE Trans Image Processing,2001,10(9):1357-1364
    [24]Nassery P, Faez K. Signature pattern recognition using pseudo zernike moments and a fuzzy logic classifier. In:Proc. Of IEEE Conference on Image Processing. Lausanne, Switzer land,1996,2:197-200.
    [25]Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. J Opt Soc Am A,1994,11(6):1748-1757
    [26]Yap P T, Paramesran R, Ong S H. Image Analysis by Krawtchouk Moments. IEEE Trans Image Processing,2003,12(11):1367-1377
    [27]付波,周建中,凌峰,等.用离散傅立叶-切比雪夫正交矩描述图像.电子·激光,2005,16(20):209-212
    [28]Hongqing Zhu a, Huazhong Shu, Jian Zhou, etal. Image analysis by discrete orthogonal dual Hahn moments, Pattern Recognition Letters,2007,28:1688-1704
    [29]Pew-Thian Yap, Raveendran Paramesran, Sr. Member,et al. Image Analysis Using Hahn Moments, IEEE Transactions on Pattern Anylysis and Machine Intelligence, 2007,29(11):2057-2062
    [30]Smith F W, Wright M H. Automatic ship photo interpretation by the method of moments, IEEE Trans on Computer,1971,20(9):1089-1095
    [31]Wrong R Y,Hall E 1. Scene matching with invariant moments, Computer Vision Graphics and Image Processing,1978,8(1):16-24
    [32]Wen-Hao Wang and Yung-Chang Chen, Histogram Matehing by Moment Normalization, IEICE Trans. Inf.&Syst.,VOI.E80-D,1997,7:746-750.
    [33]M.Tueeryan, Moment-based Texture Segmentation, Pattern Recognition Lerters 1994,15:659-668,
    [34]B.G.Mertzios and K.Tsirikolias, Statistical ShaPe Diserimination and Clustering Using an Efficient Set of Moments, Pattern Recognition Letters,1993,14:517-522
    [35]Y.C.Chim, A.A.Kassim, Y.Ibrahim, Character Recognition Using Statistical Moments, Image and Vision ComPuting,1999,17:299-307
    [36]H.Zenkouar and A.Nachit.lmages ComPression Using Moments Method of Orthogonal Polynomials, Materials Science and Engineering,1997,B49:211-215
    [37]Ghosal S,Ehrotra R.Orthogonal moment operators for subpixel edge detection Pattern Recognition,1993,26(2):295-306
    [38]曲迎东,李荣德,袁晓光.空间矩和Zernike矩亚像素边缘算子分析.光学技术,2007,33(4):635-638
    [39]Pawlak M. On the reconstruction aspects of moment descriptors. IEEE Trans on Information Theory,1992,38(6):1698-1708
    [40]Xiao H, Shu H Z, Yu W X, etal. Orthogonal moment based texture segmentationJournal of Southeast University,2003,19(1):3134.
    [41]C.Nikolaos.3D Zernike moment and Zernike affine invariants for 3D image analysis and reeognition. In:Proeeedings of the 11th Scandinavian Conferenee on image Analysis, Kangerlussuaq, Greeland,1999:85-93
    [42]Alireza Khotanzad. Classification of Invariant Image Representations Using a Neural Network. IEEE Transactions on Acoustics Speech and Signal Processing. 1990,38(6):1028-1038
    [43]J.F.BoyeeandW.J.Hossaek, Moment Invariants for pattern Recognition, Partern Reeognition Letters,1983,5(6):451-456.
    [44]Sheng Y. Experiments on pattern recognition using invarinant Fourier-Mellin descriptors. Journal of the Optical Society of America,1986,11(6):1748-1757
    [45]Y.Yoshida and Y.Wu, Classification of Rotated and Sealed Textured Images Using Invariants based on Spectral Moments, IEICE Trans. Fundamentals,1998,VOI.E81-A
    [46]D.Shen, HoraeeH.5.IP, Discriminative Wavelet Shape Descriptors for Recognition of 2D Patterns, Pattern Recognition,1999,32:151-165
    [47]S.X.Liao, M.Pawlak. Image analysis with moment descriptors. The 7th International Conference on Signal Analysis & Technology, Boston,1996:987-991.
    [48]秦磊,舒华忠,赞文雪,等Two New Algorithas for Fast Computation of Legendre Moments.电子学报,2004,32(1):25-28.
    [49]G.Amayeh, A.Erol, G.Bebis, M.Nieoleseu. Accurate and Efficient Computation of High order Zernike Moments. ISVC 2005:462-469
    [50]R.Mukundan, K.R.Ramakrishna. Fast computation of Legendre and Zernike moments. Pattern Recognition.1995,28(9):1433-1442
    [51]S.O.Belkasim, M.Ahmadi, M.Shridha Efficient algorithm for fast computation of Zernike moments. J.Franklin Inst. Eng. Appl. Math.1996,33(3):577-581
    [52]黄荣兵,杜明辉.梁帼英,等.一种改进的伪Zernike矩快速计算方法.华南理工大学学报,2009,37(1):55-58
    [53]C W Chong,et al.An efficient algorithmfor fast computation of Pseudo-Zernike moments. International Journal of Pattern Recognition and Artificial Intelligence.2003,17(6):1011-1023
    [54]R.Mukundan. A new class of rotation invariants using discrete orthogonal moments. In:Proceedings of the 6th IASTED International Conference,2004:80-84.
    [55]朱娜,张辉,舒华忠.基于径向Krawtchouk矩的医学图像检索,生物医学工程研究.2008,27(1):40-44
    [56]康林,杨晨晖Krawtchouk矩旋转不变性的分析.现代计算机.2009,317:61-64
    [57]刘晓山,杜明辉,曾春艳,等.基于NSCT和伪Zernike矩的人脸识别.华南理工大学学报(自然科学版),2011,39(7):83-87
    [58]张铭钧,尚云超,杨杰.基于灰度-梯度不变矩的水下目标识别系统.哈尔滨 工程大学学报,2009,30(6):653-657
    [59]高勇,何刚,张晓晖.基于不变矩和禁忌搜索算法的图像识别方法.系统工程与电子技术,2010,32(4):851-853
    [60]Y.Arai, Submicron flip chip bonding technology for opto-electronic devices. In:IEEE Electronic Components and Technology Conference,2000:1743-1746
    [61]H. Kergel, B. Monno. Equipment Requirements for the Repair of BGA-Boards. In:CPMT Int'1 Electronics Manufacturing Technology Symposium,1996,9:305-311
    [62]Rahardja K Kosaka. A Vision-based bin-picking recognition and localization of multiple complex objects using simple visual cues[博士学位论文]. West Lafayette: Purdue University
    [63]R. Adorni, S. Thuerlemann, Wire bonder with a device for determining the vectorial distance between the capillary and the image recognition system and method, United States Patent, US7108167B2,2006
    [64]王洪,王石刚,徐威,等.基于分形特征的CPB机器视觉定位.上海交通大学学报,2001,35(12):1781-1784
    [65]单越康,许昌.基于计算机视觉的光学目标自动定位系统.光子学报,2000,29(10):899-902
    [66]孟偲,王田苗,丑武胜.基于手眼视觉的测量与定位方法的研究与实现.中国空间科学,2002,6:18-25
    [67]杨维全,陈伟民,胡松等.图像处理在高精度对准系统中的应用.微细加工技术,2000,1:35-40
    [68]汪宏昇,史铁林.高精度机器视觉对准系统研究与设计.光学技术,2004,30(2): 235-239
    [69]丁汉,朱利民,熊振华等.柔性激光植球机的焊盘识别与定位系统.中国发明专利,200510025779.3,2005
    [70]李君兰,张大卫,王以忠等.面向IC封装的显微视觉定位系统.光学精密工程,2010,18(4):965-972
    [71]Dajle Q.. On-line inspection of extruded profile geometry, Vision'90.1990,1-17
    [72]Gregory P. J., Taylor C. J.. Knowledge-based models for computer vision. In: Proceedings of the 4thInternational Conference on Robot Vision and Sensory Control, 1988,325-330
    [73]J.Lassoe et al. Future vision system for glass works. Glass Technology.1997,38 (2):43-45.
    [74]刘曙光,刘明远,何钺.基于机器视觉的汽车仪表板智能检测方法.机械科学与技术.1998,17(2):313-315
    [75]T.H.Kim, T.H.Ch,Y.S.Moon,et al. Visual inspection system for the classification of solid joints. Pattem Reeognition,1999,32:565-575
    [76]Angrisani L., Daponte P., Pietrosanto A., et al. An image-based measurement system for the characterization of automotive gaskets. Measurement,1999,25:169-181
    [77]金集.洪海涛机器视觉检测在电子插件制造工业中的应用.仪表技术与传感器,2000,2
    [78]赵海洋.基于点特征的混合三维配准及瓷砖表面质量分级技术研究[博士学位论文].西安:西安交通大学图书馆,2000
    [79]Kosmopoulos D., Varvarigou T.. Automated inspection of gaps on the automobile production line through stereo vision and specular reflection. Computer in Industry, 2001,46:49-63
    [80]吴平川,路同浚.王炎机器视觉与钢板表面缺陷的无损检测.无损检测,2002,22
    [81]任玉艳.基于细胞神经网络车床刀具状态监测算法的研究[硕士学位论文].秦皇岛:燕山大学图书馆,2002
    [82]张宏伟,张国雄,秦鹏,赵小松.双目视觉检测技术在自由曲面测量中的应用.机械工程学报,2004,40(7),110-113.
    [83]张少军,苟中魁,李庆利,等.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸.光学精密工程,2004,12(6):619-625
    [84]伍济钢.薄片零件尺寸机器视觉检测系统关键技术研究[博士学位论文].武汉:华中科技大图书馆,2008
    [85]何博侠,张志胜,徐孙浩等.大尺寸机械零件的机器视觉高精度测量方法.中国 机械工程,2009,20(1):5-10.
    [86]张辉,王耀南,葛继等.液体药品异物检测智能机器人系统的设计.中国机械工程,2009,20(20):2493-349
    [87]Mo Dai, Pierre Baylou, Mohamed Najim. An efficient algorithm for computation of shape moments from run-length codes or chain codes. Pattern Recognitlon,1992,25(10):1119-1128
    [88]Sun-Kyoo Hwang and Whoi-Yul Kim. A novel approach to the fast computation of Zernike moments. Pattern Recognition,2006,39(11):2065-2076
    [89]Yongqing Xin, TRLabs. Winnipeg, Man. Accurate computation of Zernike moments in polar coordinates. IEEE Transactions on Image Processing,2007,16(2):581-587
    [90]朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较.仪器仪表学报,2007,28(2):375-379
    [91]韩璞,张欣,王兵,等.基于神经网络的交互式炉膛火焰图像识别.中国电机工程学报,2008,28(20):22-26
    [92]罗柱.正交矩的高精度算法[硕士学位论文].武汉:湖北工业大学图书馆,2010
    [93]王晓红.矩技术及其在图像处理与识别中的应用研究[博士学位论文].西安:西北工业大学图书馆,2002
    [94]Guleng Amu, Surong Hasi, Xingyu Yang,etal. Image analysis by pseudo-Jacobi(p =4,q=3)-Fourier moments. Optical Society of America,2004,43(10):2093-2101
    [95]阿木古楞,杨性愉,平子良.用变形雅可比(p=4,8=3)-傅立叶矩进行图像描述.光电子·激光,2003,14(9):981-985
    [96]Ding gang Shen and Horace H S IP. Discriminative Wavelet Shape Descriptors for Recognition of 2-D Patterns. Pattern Recognition,1999,32:151-165
    [97]M Novotni and R Klein.3D Zernike descriptors for content based shape retrieval. In: SM'03 Proceedings of the eighth ACM symposium on Solid modeling and applications, 2003,216-225
    [98]杜亚娟,潘泉,张洪才.一种新的不变矩特征在图像识别中的应用.系统工程与电子技术,1999,21(10):71-75
    [99]Yajun Li and Reforming. The Theory of Invariant Moments for Pattern Recognition, Pattern Recognition,1992,25(7):723-730
    [100]Khotanzad A and Hong Y H. Invariant Image Recognition by Zernike Moments. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(5):489-497
    [101]Liao S X and Pawlak M. On image analysis by moments. IEEE Trans Pattern Anal Machine Intell,1996,18(3):254-266
    [102]Kamgar Parsi B..Evaluation of quantization error in computer vision, IEEE Trans.Pattern Anal Machine Intell,1989,11(9):929-940
    [103]Kennedy J, Eberhart R C. Particle swarm optimization. In:Proceedings of IEEE International Conference on Neural Networks. Piscataway:IEEE Service Center,1995: 1942-1948
    [104]Chong C W, Raveendran R, Mukundan R, A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognition,2003,36:731-742
    [105]YE Bin, PENG Jia-xiong. Analysis and improvement of invariance of Zernike moments. Infrared and Laser Engineering,2003,32(01):37-41
    [106]王晓霞,王涛.基于粒子群优化神经网络的变压器故障诊断.高电压技术,2008,34(11):2362-2367
    [107]郭鹏程,罗兴锜,王勇劲,等.基于粒子群算法与改进BP神经网络的水电机组轴心轨迹识别.中国电机工程学报,2011,31(8):93-97
    [108]Kugiumtzis D. State space reconstruction parameter in the analysis of chotix time series the role of the time window length. Physica D,1996, (95):13-28
    [109]Wang, L P., Li, S., Tian, FY., etal, A Noisy Chaotic Neural Network for Solving Combinatorial Optimization Problems:Stochastic Chaotic Simulated Annealing. IEEE Transaction Systems, Man and Cybernetics, B,2004,34(5):2119-2125
    [110]Liu B, Wang L, J in Y H, etal. Improved particle swarm optimization combined with chaos, Chaos, Solitons and Fractals,2005,25 (5):1261-1271
    [111]张丹,李长河.基于混沌的粒子群优化算法研究与进展.软件导刊,2007:109-110
    [112]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420
    [113]J Ataman E, Atari V K, Wong K M. Some statistical properties of median filters. IEEE Transactions on Acoustics Speech. Signal Processing1980,28(4):415-421
    [114]Gallagher N C. Wise G L. A theoretical analysis of properties of the median filter. IEEE Transactions on Acoustics Speech. Signal Processing,1981,29(1):1136-1141
    [115]秦鹏,丁润涛一种基于排序阑值的开关中值滤波方法.中国图像图形学报.2004,9(4):411-416
    [116]邢藏菊,王守觉,邓浩江,等.一种基于极值中值的新型滤波算法.中国图像图形学报.2001,6(6):533-536
    [117]张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波.计算机辅助设计与图形学学报.2005,17(2):295-299
    [118]L.G.Roberts. Machine Perception of Three-Dimension Solids. In:Optical and Electro-Optimal Information Processing, Cambridge,1965. MIT Press:99-159
    [119]L.Sobel. Camera Models and Machine Perception. [博士学位论文], Stanford University, Standford, CA,1970
    [120]J.Prewitt. Object Enhancement and Extraction. Picture Process. Psychopict, 1970:75-149
    [121]D.Marr, Vision Springer-Verlag, New York,1982:56-63
    [122]Canny J F. A computational approach to edge detection, IEEE Transactionson Pattern Analysis and Machine Intelligence.1986,8(6):679-698
    [123]Hueckel I H. An operator which locate edges in digitized pictures. Journal of the Association for Computing Machinery,1971,18:113-125
    [124]Tabatabai, Ali J. Edge Location to Subpixel Values in Digital Imagery. Pattern Analysis and Machine Intelligence,1984,6:188-201
    [125]Ghosal. S, Mehrotra. R, Orthogonal moment operators for subpixel edge detection, Pattern Recognition,1993,26,295-306
    [126]Hermosilla T., Bermejo E., Balaguer A. Non-linear Fourth-order Image Interpolation for Subpixel Edge Detection and Localization. Image and Vision Computing.2008, 26(9):1240-1248
    [127]Hueckel M. F. A Operator Which Locates Edges in Digitized Picture. JACM.1971:113125
    [128]S.Smith and J.Brady. A new approach to low-level image processing. International Journal of Computer Vision,1997:23(1):45-78
    [129]Harris C,Stephens M. A combined corner and edge detector[A]. Matthews MM. in:Proceedings of the Fourth Alvey Vision Conference. Manchestenthe University of Sheffield Printing Unit,1988:147-151
    [130]Mokttarian F, Suomela F. Robust image corner detection through curvature scale space. in:Proc. Of Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381
    [131]X.C. He and N.H.C. Yung. Curvature Scale Space Corner Detectorwith Adaptive Threshold and Dynamic Region of Support. In:Proceedings of the 17th International Conference on Pattern Recognition,2004,2:791-794
    [132]P.B. Van Wamelen, Z. Li, S.S. Iyengar. A fast expected time algorithm for the 2-D point pattern matching problem.Pattern Recognition,2004(37):1699-171
    [133]Zhang Z. A flexible new technique for camera calibration. IEEE Trans. Pattern analysis and Machine intelligence,2000,22(11):1330-1334
    [134]Marogos PA, SchaferRW. Morphological skeleton representation and coding of binary Images. IEEE Trans. Speech and Signal Processing,1986,34(5):1228-124
    [135]孔斌.快速连通域分析算法及其实现.模式识别与人工智能,2003,16(1):110-115
    [136]李文举,梁德群.质量退化的车牌字符分割方法.计算机辅助设计与图形学学报,2004,16(5):697-700
    [137]A Rahman, A Radmanesh. A real time vehicles license plate recognition. In:Proceedings of the IEEE on Advanced Video and SignalBased Surveillance, AVSS, 2003·31-36
    [138]甘玲,林小晶.基于连通域提取的车牌字符分割算法.计算机仿真,2011,28(4):336-339
    [139]王培容,陈鸿雁,李姣军.一种快速的具有旋转不变性的模板匹配方法.计算机工程与设计,2006,27(14):2667-2772
    [140]Tsai D M, Lin C T.Fast normalized cross correlation for defect detection.Pattern Recognition Letters,2003,24:2625-2631
    [141]Choi M S, Kim W Y.A novel two stage template matching method for rotation and illumination invariance. Pattern Recognition,2002,35:119-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700