连续配筋混凝土路面板底摩阻及端部锚固分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续配筋混凝土路面( Continuously Reinforced Concrete Pavement,简称CRCP)沿纵向配置连续钢筋,在施工中不设横向胀缩缝,是道路工程师为了克服接缝水泥混凝土路面(Jointed Concrete Pavement,简称JCP)由于横向胀、缩缝等薄弱环节而引起的各种病害及改善路面使用性能而采用的一种混凝土路面结构形式。
     本文在已有的研究基础上,研究了板底摩阻力的分布形式,根据试验给出板底摩阻力系数的分布规律;推导了连续配筋混凝土路面在温度应力作用下的有限元刚度方程,并与解析解进行了对比分析,按照分布加载法利用有限元解分析了考虑地基摩阻力系数的非线性本构关系的路面板的应力和位移状态;在连续配筋混凝土路面端部锚固分析中,本文首次考虑全路段的路面和锚固地梁联合分析,推导出在环境温度变化作用下,连续配筋混凝土路面整体结构的解析解和有限元解,并按照地基摩阻力的双线性本构关系进行了全路段宏观位移和轴向力的非线性分析。研究了不同设计参数对路面端部位移、锚固地梁侧向位移以及锚固地梁内力的影响规律,为CRCP的实际应用提供了较成熟的理论依据。
This paper mainly studies the road pavement resistance force and the end anchoring performance of continuously reinforced concrete pavement (CRCP) . Contraposing the facts that the asphaltum pavement life-span is short , the paper exert oneself improving the using state of CRCP, saving maintenance costs of pavement , saving invest of pavement engineering . For the first time , the author studies the thermal stress considering the climate characteristic of cold zone , studies the road pavement resistance force by the numebers , and build the solving method to anlysis the displacement and stress of the end anchoring considering that conbining all the pavement with the end anchoring. All these reseach are easy to the application of engineering.
     Based on the previously studies , considering north cold climate characteristic ,this paper mainly studies a few aspacts thereinafter:
     Chapter one mainly talks about the study background, status quo ,content and method. The CRCP is a kind of high performance concrete pavement structure with enough steel in the longitudinal direction. In addition, joints are excluded in the course of the construction. It has been widely used in many developed countries because of its good performance. This structure is used sequentially in the United States, Belgium, France, Britain and etc. Especially in the United States and Belgium ,they are the best at the application of CRCP. The application and correlative study about CRCP is relatively late in our country. With the development of high-grade road and the improvement in the requirement of pavement performance, it is sure that CRCP will be widely applied in high-grade road in our country. CRCP will move periodically when the temperature varies seasonally as a result of no expansion joints and contraction joints. This result in cause danger to pavement, bridges, culverts and other structures that are directly connected to the CRCP. The friction resistance force between subgrade and concrete pavement resist moving of the CRCP, and it makes the CRCP in the state of puled . The friction resistance force is weaken at the CRCP end, so it is necessary to study the working state and the working effect .At the same time , measurements are must be taken to restrict the displacement in the end.
     Chapter two study the friction resistance force coefficient between subgrade and concrete pavement . This paper summarize the study state of friction resistance force between subgrade and concrete pavement. The distributing form of the friction resistance force are studied. Test models are made for discoving connection between the friction resistance force and the relatively displacement . The method of observing the friction resistance force coefficient between subgrade and concrete pavement is bring forwad . Three test models are made based on the lime-flyash treated broken stone, the proportion 8:17:75, concrete C40. steel string strain gage is used to check the strain of concrete . Grating displacement transducer is used to check the displacement change . The incidence of the friction resistance force coefficient and that effects to the concrete performance by its change is gained by testing. The numerical value expression is present in specials . The linear equation of he friction resistance force is gained both elasticity phase and mold phase by regressing the test data .
     Chapter three anlysis the working performance of CRCP. The crazing effect factors about concrete are discussed at aspects of concrete material , enduring force characteristic of concrete structure. The crazing effect factors about steel bar are discussed at aspects of steel bar amount, diameter, location. The crazing effect factors about circumstance are discussed at aspects of constructing temperature, condition change after construct,etc. distributing law of CRCP is present. CRCP thermal stress resolve is build based on balance equation . The CRCP stress,displacement,and crack width are calculated considering felt stress effect and friction resistance stress based on FEA theory. The result indicate that it is more reasonable to anlysis CRCP stress, displacement, and crack width based on the rigid equation considering felt stress effect and friction resistance effect . CRCP nonlinear resolve is gained considering the nonlinear relation between felt and relatively displacement , between friction resistance force and relatively displacement. This paper compare the linear resolve and the nonlinear resolve . This paper refer the effect that crack span and steel ratio: along with increased of crack span, the friction resistance force increase linearly , but most concrete stress and the most steel bar stress and felt stress increase nonlinearly. Along with increased of steel bar diameter, the most concrete stress increase , but the steel stress and felt stress and the most friction resistance stress decrease.
     Chapter four analysis the CRCP end anchoring . This paper refer to the type of beam-on-foundation in the anchored end and existing analysis method. Adopting subsection linear model of friction resistance force, FEA analysis to beam-on-foundation in the anchored end is processed. For the example of three beams-on-foundation, based on displacement method idear, combining all the pavement and beams-on-foundation, this paper split the CRCP into four basic frame. Four basic frame rigid coefficient and displacement equation enduring thermal stress are gained. The calculation resolve resemble with ANSYS resolve , so the calculation resolve is true. This paper deduce the displacement and stress FEA resolve , build cell rigid equation of pavement and beam-on-foundation in the anchored end, based on the contact FEA theory and matrix displacement method. The FEA resolve based on the friction resistance stress subsection linear model is similar to calculation resove based on displacement method , it also prove that the displacement and internal force resolved using matrix displacement method is reasonable. Using deduced FEA rigid equation, considering friction resistance force subsection linear model, CRCP displacement and internal force nonlinear resolve are gained. Compared linear resolve with nonlinear resolve , the nonlinear model should be adopt in the analysis of end anchoring force and displacement. This paper analysis the influence law of parameter to end anchoring force, displacement, the biggest curve force of beam-on-foundation. The conclusion is that :(1)along with increasing of CRCP thickness, steel bar ratio, beam-on-foundation span and concrete intensity, CRCP ending displacement increase gradually; along with increasing of beam-on-foundation size, friction resistance force coefficient, groundsill soil ratio coefficient, beam-on-foundation quantity, the CRCP displacement decrease. (2) along with increasing of CRCP thickness, steel bar ratio,concrete elastical module ,beam-on-foundation size and groundsill soil ratio coefficient, CRCP ending force increase; along with increasing of beam-on-foundation quantity, beam-on-foundation span, friction resistance force coefficient, the ending force endured by beam-on-foundation decreased. (3) along with increasing of CRCP thickness, steel bar ratio, concrete elastical module ,beam-on-foundation span , beam-on-foundation size and groundsill soil ratio coefficient, the biggest ending curve force endured by beam-on-foundation increase; along with increasing of beam-on-foundation quantity, friction resistance force coefficient, the biggest ending curve force endured by beam-on-foundation decrease. Finally, beam-on-foundation size is confirm to the work one another between beam-on-foundation and soil beside the beam and the basic character of soil.
     Chapter five is the summary of the paper. This chapter not only summarizes the conclusion obtained from the paper but also puts forward to the content and direction to be studied in future.
引文
[1]胡长顺,曹景民.旧水泥混凝土路面沥青加铺层修筑技术研究[D].西安:西安公路交通大学. 1998.
    [2]黄晓明.水泥路面设计[M].北京:人民交通出版社.2003.
    [3]王铁梦.建筑物的裂缝控制[M].上海:上海科学技术出版社,1987.
    [4]殷宗泽,朱私等.土与结构材料接触面的变形及数学模拟[J].岩土工程学报,1994(5):14-22.
    [5]陈云鹤,邓学钧,杨树才,庞有师.连续配筋混凝土路面早期裂缝宽度分析[J].中国公路学报,1998(增):36-42.
    [6]李卓,查旭东,张起森.连续配筋混凝土路面早期横向开裂分析[J].中外公路,2003(4):26-28.
    [7]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987(2):93~100
    [8]汤广来.钢筋与混凝土粘结应力计算模式的研究[J].合肥工业大学学报(自然科学版),1999(5):103-107.
    [9]曹东伟.连续配筋混凝土路面结构研究[D]西安:长安大学,2001.
    [10]陈云鹤,邓学钧,周早生.连续配筋混凝土路面温度应力的弹性解[J].应用力学学报, 2000(4):76-82.
    [11]曹东伟,胡长顺,连续配筋混凝土路面温度应力分析[J],西安公路交通大学学报,2001(4):25-30.
    [12]傅智,李红.公路水泥混凝土路面施工技术规范实施与应用指南[M].北京:人民交通出版社,2003.
    [13]孙中阁,杨鸿.连续配筋混凝土路面在110国道改造中的应用[J].公路,2004(8):76-80.
    [14]张庆宇,田平.连续配筋混凝土路面施工技术研究[J].现代交通科技,2006(2):6-10.
    [15]马彦芹,赵玉肖.连续配筋混凝土路面施工方法研究[J].路基工程,2007(4):95-96.
    [16]蔡东锋.连续配筋混凝土路面设计施工技术及其应用.公路,2004(6):32-35.
    [17]陈锋锋,黄晓明,张军辉.连续配筋混凝土路面设计和施工方法的研究[J].华中科技大学学报(城市科学版),2005(1):49-53.
    [18]方中明.连续配筋混凝土路面前景展望及施工探讨[J].公路,2004(3):39-41.
    [19]查旭东,张起森,李宇峙,苏清贵,黄庆.高速公路连续配筋混凝土路面施工技术研究[J].中外公路,2003(1):1-3.
    [20]刘朝晖,李宇峙.连续配筋混凝土路面应用技术.广东公路交通,2003(增):21-30.
    [21]中华人民共和国交通部.公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2002.
    [22]ERES Consultants. Summary of CRCP Design and Construction Practices in the U.S..Concrete Reinforcing Steel Institute,2003.
    [23]M.A.Gamham. The Development of CRCP Design Curves. Highway and Transportation .1989.12
    [24]William Zuk,Analysis of Spacial Problems in Continuously-Reinforced Concrete Pavements HRB Bulletin 214,1958.
    [25]Van Breemen,Willian,Report on Experiment with Continuous Reinforcement in Concrete Pavements New Jersey,Proceedings HRB 1950.
    [26]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal of Soil Mechanics and Foundation Engineering Division,ASCE,1971,97(12) :1657-1673.
    [27]B F McCullough,MartinL.Cawley.CRCP Design Based on theoretical And Field Performance.Proceedings of 2nd International Conference on Concrete Pavement Design.1981.
    [28]TassiosPT,YannopoulosPJ.Analytical studies on reinforced concrete members under cyclic loading based on bond stress-slip relationships [J]ACI Journal,1981,78(3):206-216.
    [29] Allwood R J,Abdullah A B.Modeling nonlinear bond-slip behavior for finite element analysis of reinforced concrete structures[J],ACI Structure Journal,1996,93(5):757-766.
    [30] Karin Lundgen,Kent Gylltoft A model for the bond between concrete andreinforcement[J],Magazine of Concrete Research,2000,52(1):53-63.
    [31] Nilson A H.Nonlinear analysis of reinforced concrete by finite element method.ACI Journal,1968,65(9):757~766.
    [32] Mirza M S,Houd J.Study of bond stress-slip relationships in reinforced concrete.ACI Journal,1979,76(1):19~46.
    [33]王小林.连续配筋混凝土路面基本理论试验和设计方法研究[D].南京:东南大学,1990.
    [34]陈云鹤,邓学钧,杨树才,庞有师.连续配筋混凝土路面早期裂缝宽度分析[J],中国公路学报,1998(增):36-42.
    [35]陈云鹤,邓学钧,张亚栋,庞有师.温克尔地基上连续配筋路面荷载应力分析[J].岩土工程学报,1998.11(第28卷第6期)78-82.
    [36]陈云鹤,庞有师,邓学钧.连续配筋混凝土路面结构总应力的计算方法[J].华东公路,2002(5):45-46.
    [37]唐益民.连续配筋水泥混凝土路面荷载应力分析[D].南京:东南大学,1996.
    [38]王虎.连续配镜混凝土路面静动力学计算与分析[D].西安:长安大学,2000.
    [39]苏清贵.连续配筋混凝土路面横向开裂分析与端部位移研究[D].长沙:长沙交通学院,2002.
    [40]苏华兴,张志强.连续配筋砼路面的发展概况及应用前景[J].公路与汽运,2003(5):21-23.
    [41]陈志良.连续配筋混凝土路面收缩开裂分析[D].长沙:长沙交通学院,2003.
    [42]李卓.连续配筋混凝土路面早期横向开裂的分析与验证[D].长沙:长沙交通学院,2003.
    [43]苏华兴,张志强.连续配筋砼路面的发展概况及应用前景[J].公路与汽运,2003(5),21-23.
    [44]刘朝晖,李宇峙,苏纪开,汪晓天.国道325线恩平东段一级公路连续配筋混凝土试验路路面结构设计[J].广东公路交通,2003(增),13-16.
    [45]查旭东,张起森,李宇峙,苏清贵,黄庆.高速公路连续配筋混凝土路面施工技术研究[J].中外公路,2003,(1),1-4.
    [46]周志刚,张起森.连续式配筋混凝土路面研究综述[J].长沙交通学院学报,2000 (3):23-27.
    [47]刘代全,宋军,曹文贵,彭衡和.连续配筋混凝土板在岩溶及采空区上的应用[J].公路,2003(1):9-12.
    [48]李启冰.连续配筋混凝土面板的施工[J].广东公路交通,2008(1):1-6.
    [49]陈云鹤,刘艇,吴广怀,庞有师,陈徐均.弹性半空间地基上连续配筋路面荷载应力解析解[J].解放军理工大学学报,2002(2):54-57.
    [50]胡勇,CRCP路面早期横向开裂的机理分析[J].公路与汽运,2005(4),75-76.
    [51]B.P.Hughes. A new look at rigid concrete pavement design. Proceedings of the Institution of Civil Engineers Transport 156,2003(2),29-36.
    [52]Seong-Min Kin,Moon C.Won,and B.Frank McCullough. Mechanistic Modeling of Continuously Reinforced Concrete Pavement. ACI Structural Journal,September-October 2003.674-682.
    [53]B.FRANK MCCULLOUGH AND TERRY DOSSEY. Considerations for High-Performance Concrete Paving ,Recommendations from 20 Years of Field Experience in Texas.TRANSPORTATION RESEARCH RECORD 1684,17-34.
    [54]B.FRANK MCCULLOUGH AND TERRY DOSSEY.Controlling Early-Age Cracking in Continuously Reinforced Concrete Pavement . Observations from 12 Year of Monitoring Experimental Test Sections in Houston,Texas. TRANSPORTATION RESEARCH RECORD 1684,35-43.
    [55]NASIR G.GHARAIBEH,MICHAEL I.DARTER,AND LAURA B.HECKEL. Field Performance of Continuously Reinforced Concrete Pavement in Illinois. TRANSPORTATION RESEARCH RECORD 1684,17-34.
    [56]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [57]查旭东,王燕,韩春华译.欧洲水泥混凝土路面综述[J].国外公路,1999 (3):16-22.
    [58]张映雪译.南北高速公路-连续配筋混凝土路面[J].国外公路,1998 (4):28-31.
    [59] AASHO Guide for Design of Pavement Structure.American Association of State Highway and Transporation official.1986.
    [60]Technical advisory of Continuously Reinforced Concrete Pavement. T5080. 1990.6
    [61]张洪亮.连续配筋混凝土路面端部锚固研究[D].西安:西安公路交通大学,2000.
    [62]巨锁基,黄晓明.非完全约束条件下连续配筋混凝土路面温度应力的解析解[J].可持续发展的中国交通,1157-1161.
    [63]肖秋明,查旭东,张起森.连续配筋混凝土路面一维非线性力学分析[J].长沙交通学院学报,2004(9):20-26.
    [64]唐益民,黄晓明,邓学钧.连续配筋水泥混凝土路面荷载应力分析[J].岩土工程学报,1996(6):84-91.
    [65]王虎,胡长顺,王秉纲.连续配筋混凝土路面在横向荷载作用下的解析解[J].西安公路交通大学学报,1999(10):1-6.
    [66]中华人民共和国行业标准,公路钢筋混凝土及预应力混凝土桥涵设计规范[S],北京:人民交通出版社,2004.
    [67]刘寒冰,张云龙,高远.连续配筋混凝土路面温度应力分析[J].公路交通科技,2008(3):1-7.
    [68]王斌,杨军.移动荷载作用下连续配筋混凝土路面三维有限元分析[J].东南大学学报(自然科学版),2009(5):850-855.
    [69]查旭东.连续配筋混凝土路面横向开裂的敏感性分析[J].铁道科学与工程学报,2008(2):64-70.
    [70]查旭东,连续配筋混凝土路面横向开裂发展规律[J],公路交通科技,2008(2):65-68.
    [71]任毅.连续配筋混凝土路面横向裂缝和配筋设计研究[D].长沙:长沙理工大学,2008.
    [72]翟晓静,张庆宇,张艳娟.连续配筋混凝土路面配筋设计探讨[J].路基工程,2008(5):81-83.
    [73]赵斌生.连续配筋砼路面及其施工技术[J].公路与汽运,2008(4):117-118.
    [74]刘寒冰,张云龙,魏志刚.连续配筋混凝土路面早期裂缝[J].交通运输工程学报,2008(2):59-63.
    [75]任贵明,田平.连续配筋混凝土路面的配筋设计[J].公路交通技术,2008(1):27-28.
    [76]赵国藩,李树瑶,廖婉卿.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.
    [77]黄卫,钱振东.高等水泥混凝土路面设计理论与方法[M].北京:科学出版社,2000.
    [78] B.Frank.McCullough,Three-Dimensional Nonlinear Finite Element Analysis of Continuously Reinforced Concrete Pavements.the University of Texas at Austin,2000.
    [79]龚曙光,ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003.
    [80]尚晓江,邱峰,赵海峰,李文颖等.ANSYS结构有限元高级分析方法与应用范例[M].北京:中国水利水电出版社,2005.
    [81]刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [82]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,2001.
    [83]谢军,查旭东.连续配筋混凝土路面设计指南[J].国外公路,2000,20(5),4-6.
    [84]黄晓明,唐益民,邓学钧,金志强,蒋磊.连续配筋混凝土路面端部锚固原理研究[J].东南大学学报.1996 (4):106-109.
    [85]沈聚敏,王传志,江见琼.钢筋混凝土有限元与板壳极限分析[M],北京:清华大学出版社,1993.
    [86]陈静一,蔡国忠.电脑辅助工程分析—ANSYS使用指南[M].北京:中国铁道出版社,2001.
    [87]蔡亮. ANSYS在钢管混凝土系杆拱桥施工控制中的应用[J].城市道桥与防洪,2008(7):102-106.
    [88]蓝宗建.混凝土结构.东南大学出版社.1998
    [89]Nilson.A.H. Non-liner Analysis of Reinforced Concrete by the Finite Element Method.ACI Journal,Vol.65,No.9,1968
    [90]J.Houde,M.s.Mirza.A Finite Element Analysis of Shear Strength of Reinforced Concrete Beams.ACI,Shear in Reinforced Concrete,SP 42,Vol.1,1974
    [91]朱伯龙,董振祥.钢筋混凝土非线性分析[D].上海:同济大学出版社,1985
    [92]B.Frank.McCullough,Three-Dimensional Nonlinear Finite Element Analysis of Continuously Reinforced Concrete Pavements.the University of Texas at Austin,2000
    [93]石建军,马念杰.ANSYS软件在锚杆静力分析中的应用[J].华北科技学院学报,2007(4):29-31.
    [94]王先军,周文宇,蒋鑫.ANSYS在模拟桩土接触中的应用[J].森林工程,2006(3):49-51.
    [95]钱俊梅,江晓红,仲小冬,范军.浅谈基于ANSYS软件的接触分析问题[J].煤矿机械,2006(7):61-63
    [96]宁桂峰,满翠华.有限元接触分析应用研究[J].现代制造工程,2005(4):66-68.
    [97]何小高,卢先荣,徐海.应用ANSYS分析刚性路面的温度应力和荷载应力[J].公路与汽运,2004(3):33-35.
    [98]王海春,田平.连续配筋混凝土路面端部处理方法探讨[J].青海交通科技,2008(3):55-57.
    [99]任贵明,田平.连续配筋混凝土路面端部地锚梁设计研究[J].路基工程,2008(3):142-143.
    [100]曹东伟,胡长顺.考虑地基—混凝土非线性相互作用关系的CRCP端部锚固力计算方法[J].长安大学学报(自然科学版),2002(3):1-5.
    [101]曹东伟,胡长顺.考虑地基约束时的连续配筋混凝土路面温度应力分析[J].《工程力学》2000(增):316-323.
    [102]苏清贵,张起森.连续配筋混凝土路面的端部位移[J].中外公路,2002(6):19-21.
    [103]马彦芹,赵玉肖.连续配筋混凝土路面端部矩形地锚梁设计[J].交通标准化,2007(2):71-73.
    [104]曹东伟,胡长顺.连续配筋混凝土路面端部锚固力计算方法[J].西安建筑科技大学学报,2000(9):300-303.
    [105]黄晓明,唐益民,邓学钧,金志强,蒋磊.连续配筋混凝土路面端部锚固原理研究[J].东南大学学报,1996(7):105-109.
    [106]赵玉肖,高红宾,马彦芹.连续配筋混凝土路面结构设计与应用[J].路基工程,2007(5):108-109.
    [107]张洪亮,胡长顺.连续配筋混凝土路面凸形地梁锚固有限元分析[J].长安大学学报(自然科学版),2005 (3):1-5.
    [108]顾兴宇,董侨,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究[J].公路交通科技,2007(6):37-41.
    [109]倪富健,董侨,顾兴宇.连续配筋水泥混凝土路面面板位移研究[J].公路交通科技,2007(5):35-39.
    [110]张洪亮,胡长顺.连续配筋砼路面端部锚固力研究[J].重庆交通学院学报,2002(1),30-33.
    [111]谢晶,连续配筋混凝土路面长期性能信息管理系统及评价指标的探讨,长沙理工大学硕士学位论文,2006.
    [112]刘朝晖,郑健龙,华正良.连续配筋混凝土刚柔复合式沥青路面端部结构设置研究[J].中外公路,2008(1):41-44.
    [113]公路桥涵地基与基础设计规范,JTG D63—2007,主编单位:中交公路规划设计院有限公司,批准部门中华人民共和国交通部,人民交通出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700