基于二次电光效应的电控全息光开关的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超大规模的并行计算机系统要求其内部通信网络具有特别高的通信容量和速度。而与此同时传统的“电互连”方式在带宽、互连密度、时钟歪斜、功率损耗、抗干扰性等方面暴露出难以克服的缺陷,已成为并行机系统性能提高的严重障碍。光互连以光作为传递信息的载体,有望彻底解决高性能计算和超高速交换系统中普遍存在的电子瓶颈问题,实现通信系统中的大容量、高速率、低能耗的数据交换。在光互连系统中必须要解决的关键技术之一就是光交换,而光开关是光交换的关键器件。全息光开关凭借其高速度、高可靠性和高拓展性等优势,在光通信网络及超级并行计算系统中将有广阔的应用前景。光互连与光交换已成为近年来的研究热点。论文围绕应用需求,针对电控全息光开关器件及其控制系统的研制展开了理论与实验研究,所取得的结果主要有如下几个方面:
     1.论文对光互连与光交换技术的国内外发展进行了回顾与分析,重点综述了体全息存储与热固定技术、电控全息光开关器件等课题在近几年取得的一系列重要进展;对几类典型光开关的性能参数进行了分析与比较。
     2.根据电控全息光开关的技术原理,选择顺电相Mn: KLTN (0.25%, mol)晶体作为存储介质。分别对反射型和透射型体全息相位光栅的衍射效率进行了计算,分析了记录光入射角、光栅厚度和外加场强等参数对衍射效率的影响。结果表明,适当设置这些参数,有利于光栅衍射效率的提高。完成了亚微米体全息相位栅的记录实验,并获得了90.6%的高衍射效率。在全息光栅的读出实验中,验证了体光栅严格的角度选择性。
     3.将有限元方法应用于对光折变现象的研究。在记录光束之间存在能量耦合的情况下,利用FlexPDE程序对大调制度条件下的带输运模型进行了求解,研究了体全息光栅热固定过程中离子栅的形成,实时动态获取了各参量在晶体内部的空间分布及时间演化的图像。与其他数值求解方法相比,该方法大大降低了模型的求解难度。
     4.通过与电子栅的暗衰减规律进行类比,基于离子迁移的物理模型,从理论上建立了体全息光栅热固定寿命的模型,并推导了热固定寿命的解析表达式。分析讨论了离子栅寿命对光栅间距、保存温度以及离子浓度的依赖关系,结论与已有理论及实验结果相一致。设计实验完成了体全息光栅的热固定,验证了热固定寿命理论公式的正确性。
     5.将理论与实验相结合研究了电控全息光开关的时间响应特性。从理论上分析了引起电控全息光开关时间延迟的因素,通过测试获得了光开关实验系统切换光信号的边沿曲线。结果显示,本文所设计的光开关实验系统交换速度达到300ns。分析认为,该速度指标与理论值相比还有较大的提升空间。
     6.根据电控全息光开关的工作需求和时间响应特性,采用雪崩晶体管串与Marx级联电路相结合的方案,设计了可靠性强的高压高速脉冲控制信号发生器。利用PSPICE软件对电路进行了仿真,结果显示,利用所设计的电路可产生千伏级的纳秒脉冲控制信号,能较好的满足电控全息光开关的控制需求。在印刷电路板上将电控部分与开关模块集成,初步设计了一个2×2端口的电控全息光开关系统。
Very large scale parallel computer system requires the interior communication network to have very high capacity and speed. However, the traditionary electronic interconnections bring much insurmountable defect simultaneously in some aspects such as bandwidth, interconnection density, clock skew, power attenuation, anti-interference feature, etc. that has been handicapping the capability improvement of the parallel computer system seriously. The optical interconnections transmit the information with light as the carrier, which is a hopeful way to absolutely solve the ubiquitous electronic bottleneck in the high performance computer system and hyper-speed switching system, and to realise the data switching with high capacity, high speed and low power consumption. One of the critical technologies to be overcome in the optical interconnections is photonic switching; and optical switch is the vital device. Because of the virtues of high speed, high stability, high expansibility, etc., the holographic optical switch has a bright future in the applications of optical communication and the high performance computer system. The optical interconnections and photonic switching have been under the intensive research in recent years. According to the application requirement, the electro-holographic optical switch and its control system are researched theoretically and experimentally in this dissertation, and the main achievements are listed as follows:
     1. The dissertation begins with the reviewing and analyzing the history of optical interconnections and photonic switching, especially the significant development in recent years of the technology of volume holographic storage and thermal fixing, and the device of electro-holographic optical switch. Comparison and analysis of the performance parameters of several typical optical switches are presented.
     2. According to the technical principle of electro-holographic optical switch, the photorefractive crystal Mn: KLTN (0.25%, mol) in paraelectric phase is selected as the storage medium. The diffraction efficiency of volume holographic phase grating of reflecting-type and transmitting-type is calculated, respectively. The influences on diffraction efficiency from the factors, such as the incident angle of recording beams, the thickness of grating and the applied electric field, are analyzed. It is found that the properly evaluated influencing factors are advantageous to increase the grating diffraction efficiency. A sub-micron volume holographic phase grating was recorded and the tested diffraction efficiency is 90.6%. The strict reading angle selectivity of volume grating is validated in the experiments of grating reading out.
     3. The finite element method is introduced into researching the photorefractive phenomenon. Considerating the energy coupling between the record beams, the band transport model under large modulation depths is solved with FlexPDE program. The forming of ionic grating is investigated in the process of thermal fixing of the volume holographic grating. The distributions and time evolvement of parameters in the crystal are displayed on real time and dynamically. By comparison with others, the finite element method reduces the difficulty greatly of solving the model.
     4. By analogy with the dark decay of electronic grating, based on the physical model of ion transporting, a model and analytic expression of the lifetime of thermal fixed volume holograms is established theoretically. The factors, such as grating spacing, temperature and ion density, which may have influences on the storage time of ionic grating are analyzed and discussed. The conclusions accord with the published theory and experimental results well. Experiments have been designed to thermally fix the volume holographic grating and validate the theoretical expression.
     5. The time response characteristic of the electro-holographic optical switch is investigated theoretically and experimentally. The factors causing time delay to electro-holographic optical switch are analysed theoretically and the edge curves of the light signal that switched by the optical switch system are tested. The results reveal that the response speed of the designed optical switch experiment system can reach 300ns. The analysis figures that there is great room for improvement in the tested speed index compared with the theoretical value.
     6. Based on the requirements and the time response characteristics of electro-holographic optical switch, a reliable high-voltage fast pulse signal generator was designed, utilizing the multistage Marx generator as well as the bipolar junction transistors operated in avalanche mode. The circuit is simulated with PSPICE program, and the results indicate that the designed circuit could generate kilo-voltage nanosecond pulse control signal that can match the applications requirement of electro- holographic optical switch well. Integrating the electronic control part with the switch module on PCB, a 2×2 system of electro-holographic optical switch is designed preliminarily.
引文
[1]党明瑞,周明拓,毛幼菊.并行计算机系统的光WDM互连链路[J].中国激光, 2001. 28(10): 932-936.
    [2]戴道锌,何赛灵. Si基集成光子器件的研究[C].第一届“光互连与光计算技术”研讨会2006,Vol. 1: 77-83.
    [3]程振杰,刘育梁.基于SOI的光互连关键技术[C].第一届“光互连与光计算技术”研讨会2006,Vol. 1: 84-91.
    [4]肖立权,王克非,张鹤颖.高性能计算机对光互连网络的需求[C].第一届“光互连与光计算技术”研讨会2006,Vol. 1: 118-126.
    [5]陈宏达,陈雄斌.并行光收发模块与高性能计算机互连[C].第一届“光互连与光计算技术”研讨会2006,Vol. 1: 15-21.
    [6]李伟,李晓强.光交换技术的研究进展[J].微型电脑应用, 2004. 20(1): 5-11.
    [7]潘爱军,严高师.光交换技术综述[J].技术与市场, 2005(9): 44-45.
    [8]张以谟.计算机光互连技术的应用前景[J].激光与光电子学进展, 2007. 44(7): 16-26.
    [9]张以谟.光互连网络技术[M].北京:电子工业出版社. 2006: 3-10.
    [10] J. A. Neff. Optical interconnects[M]. San Jose: Maple Press. 1988.
    [11] R. T. Chen. Optical interconnects: a solution to very high speed integrated circuits and systems[J]. SPIE, 1990. 1374: 182-188.
    [12]花嵘,傅游,卫文学.光互连技术的发展与现状[J].山东科技大学学报(自然科学版), 2002. 21(4): 72-75.
    [13]白杉.光交换技术发展综述[J].电信交换, 2003. 10(24): 37-42.
    [14]余重秀.光交换技术[M].北京:人民邮电出版社. 2008: 6-8,112-185, 285-294.
    [15]胡军武,吴涛.光开关和光开关阵列技术的发展研究[J].光通信研究, 2002. 19(1): 58-62.
    [16]漆澍,李乐民.几种光网络交换技术的比较[J].物探化探计算技术, 2004. 26(4): 363-367.
    [17]刁勋涛.光折变自选通光开关技术研究[D].西安电子科技大学,硕士, 2005: 9-25.
    [18] Chen Qinghua, Wu Wengang, Wang Ziqian, et al. A 16×16 micro mirror array for optical switches[J].半导体学报, 2008. 29(8): 1496-1503.
    [19]郝书宁,张志利.光开关矩阵技术及其应用研究[J].光通信技术, 2009(3): 50-52.
    [20] Cuiping Jia, Jingran Zhou, Wei Dong, et al. Design and fabrication of silicon-based8×8 MEMS optical switch array[J]. Microelectronics Journal, 2009. 40(1): 83-86.
    [21] Nabeel A. Riza and Philip J. Marraccini. Broadband 2×2 free-space optical switch using electronically controlled liquid lenses[J]. Optics Communications, 2010. 238(9): 1711-1714.
    [22] Lei Gao, Jie Sun, Xiaoqiang Sun, et al. Low switching power 2×2 thermo-optic switch using direct ultraviolet photolithography process[J]. Optics Communications, 2009. 282(20): 4091-4094.
    [23] Abdallah K.Cherri and AymanS.Al-Zayed. Circuit designs of ultra-fast all-optical modified signed-digit adders using semiconductor optical amplifier and Mach–Zehnder interferometer[J]. Optik, 2010. 121(17): 1577-1585.
    [24] Tanay Chattopadhyay and Jitendra Nath Roy. Design of SOA-MZI based all-optical programmable logic device (PLD)[J]. Optics Communications, 2010. 283(12): 2506-2517.
    [25] Benny Pesach, Guy Bartal, and Eli Refaeli. Free-space optical cross-connect switch by use of electroholography[J]. Appl. Opt., 2000. 39(5): 746-758.
    [26] Aharon J. Agranat, Lavi Secundo, and Noam Golshani. Wavelength-selective photonic switching in paraelectric potassium lithium tantalate niobate[J]. Optical Materials, 2001. 18(1): 195-197.
    [27] WenyuanRao, YanjunSong, MingkaiLiu, et al. All-optical switch based on photonic crystal microcavity with multi-resonant modes[J]. Optik, 2010. 121(21): 1934-1936.
    [28] M.H. Majles Ara, M. Fazilati, M.R. Abolhasani, et al. Optical bistability by two laser beams in photorefractive crystals[J]. Optik, 2011. 122(2): 118-121.
    [29] Azadeh TaherRahmati and NosratGranpayeh. Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler[J]. Optik, 2011. 122(6): 502-505.
    [30] Anirudh Banerjee. Novel applications of one-dimensional photonic crystal in optical buffering and optical time division multiplexing[J]. Optik, 2011. 122(4): 355-357.
    [31]张鹰,孙德贵,金光.新型的波导矩阵光开关[J].光学精密工程, 2008. 16(11): 2098-2103.
    [32] H. Yokota, M. Kobayashi, H. Mineo, et al. Demonstration of an all-optical switching operation using an optical fiber grating coupler[J]. Optics Communications, 2008. 281(19): 4893-4898.
    [33] A. Rajabi, A. Khonsari, and A. Dadlani. On modeling optical burst switching networks with fiber delay lines: A novel approach[J]. Computer Communications, 2010. 33(2): 240-249.
    [34]李少晖,杨爱英,崔建民,孙雨南.基于光子晶体光纤非线性环路镜光开关的研究[J].北京理工大学学报, 2009. 29(2): 137-141.
    [35]季江辉. 3ns SOA高速电控光开关的研制[D].北京交通大学,硕士, 2006: 1-4.
    [36]张中,刘德才,祝明发.光互连技术综述[J].计算机世界报, 1996(15).
    [37]陈雄斌.基于VCSEL的高速光互连技术研究[R].长沙:国防科技大学. 2009(58032): 3-5.
    [38] Hyun-Shik Lee, Shinmo An, and El-Hnag Lee. A new method of optical interconnection for multiply stacked planar optical circuit boards using 45°reflection coupling[J]. Microelectronic Engineering, 2010. 87(5-8): 1336-1339.
    [39] Wencai Jing, Yimo Zhang, and Ge Zhou. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network[J]. Opt. Exp., 2002. 10(14): 591-596.
    [40]唐峰,井文才,张以谟等.低功耗千兆光互连链路的研制[J].光电子·激光, 2003. 14(2): 1254-1257.
    [41]张红霞,张以谟,贾大功等.干涉滤光器与光纤光栅在巨型机中的应用讨论[C].第一届“光互连与光计算技术”研讨会2006.长沙,Vol. 1: 53-59.
    [42]贾大功,张以谟,张红霞等. AWG在巨型机光互连中应用的设想[C].第一届“光互连与光计算技术”研讨会2006.长沙,Vol. 1: 71-76.
    [43] Jing Yuan, Fengguang Luo, Xinjun Zhou, et al. Optical interconnection in embedded-fiber printer circuit boards[J]. Optik, 2008. 119(1): 46-50.
    [44] Zhihua Yu, Fengguang Luo, Bin Li, et al. Reconfigurable mesh-based inter-chip optical interconnection network for distributed-memory multiprocessor system[J]. Optik, 2010. 121(20): 1845-1847.
    [45]窦文华,杨威,钱悦等.高性能计算机光学背板技术[C].第一届“光互连与光计算技术”研讨会2006,Vol. 1: 127-140.
    [46]李杰.用于光互连的聚合物波导研究[D].国防科技大学,硕士, 2009.
    [47] Jianxin Zhu, Zhihua Chen. High-accurate computation of wave propagation in complex waveguides for microchip optical interconnections[J]. Microelectronics Reliability, 2009. 49(5): 562-565.
    [48] LI Liang, LI Qian, QIAO Yao-jun, et al. Quantitative analysis on the computing performance improvement by parallel optical interconnection[J]. The Journal of China Universities of Posts and Telecommunications, 2009. 16(Supplement 1): 58-61.
    [49]周海宪,程云芳.全息光学——设计、制造和应用[M].北京:化学工业出版社. 2006: 28-30.
    [50]徐悟生.双掺铟铁铌酸锂晶体生长及其全息存储性能的研究[D].哈尔滨工业大学,硕士, 2000: 37-43.
    [51]陶世荃,王大勇,江竹青等.光全息存储[M].北京:北京工业大学出版社. 1998: 169-184, 112-120.
    [52] Pochi Yeh. Introduction to photorefractive nonlinear optics[M]. New York: John Wiley. 1993.
    [53] Psaltis D., Burr GW. . Holographic Data Storage[J]. Computer, 1998. 31(2): 52-60.
    [54] Curtis K., Wilson W., Dhar L. . Commercialization of Holographic Storage at InPhase Technologies, in IEEE Invited Paper. 2002. p. 6-8.
    [55]胡华.蓝光光盘之后的下一代存储技术[J].记录媒体技术, 2005. 2(6): 13-17.
    [56] Ashkin A, Boyd G D, and Mziedzic J. M. Optically induced refractive index inhomogeneities in LiNbO_3 and BaTiO_3 [J]. Appl. Phys. Lett., 1966. 9(22): 72-74.
    [57] F. S. Chen, J. T. LaMacchia, and D. B. Fraser. Holographic storage in lithium niobate[J]. Appl. Phys. Lett., 1968. 13(7): 223.
    [58]忽满利.光折变晶体全息存储技术的相关理论和实验研究[D].中国科学院西安光学精密机械研究所,博士, 1999: 60-68.
    [59] F. H. Mok, M. C. Tackitt, and H. M. Stoll. Storage of 500 high resolution holograms in a LiNbO_3 crystal[J]. Opt . Lett . 1991. 16(8): 605-607.
    [60] F. H. Mok. Angle-multiplexed Storage of 5000 Holograms in Lithium-Niobate[J]. Opt. Lett., 1993. 18(11): 915-917.
    [61] J. F. Heanue, M. C. Bashaw, and L. Hsselink. Volume holographic storage and retrieval of digital data[J]. Science, 1994. 265(5): 749-752.
    [62]王彬.掺杂SBN晶体的光折变波耦合特性研究[D].西北工业大学,硕士, 2001: 9-26.
    [63] L. Hesselink. Digital holographic data storage looks ahead[J]. Photonics Spectra, 1996: 44-45.
    [64] M. P. Bernal. A precision tester for studies of holographic optical storage materials and recording physics[J]. Appl. Opt., 1996. 35(14): 2360-2374.
    [65] Tschudi T., Deuz C., Muller K. O., et al. Volume holographic data storage and processing using phase-coded multiplexing[J]. LEO's 98. 11th Annual Meeting, 1998. 2: 144.
    [66]李晓春,何庆声,金国藩等. 1000幅数字图像的晶体体全息存储与恢复[J].光学学报, 1998. 18(6): 727-725.
    [67] Yashimasa Kawata, Hidekazu Ishitobi, and Satoshi Kawata. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Opt . Lett . 1998. 23(10): 756-758.
    [68] Tadayuki Imai, Masahiro Sasaura, and Koichiro Nakamura. Crystal Growth and Electro-optic Properties of KTa_(1-x)Nb_xO_3[J]. NTT Technical Review, 2007. 5(9): 1-8.
    [69]闫爱民,刘立人,刘德安等.局域体全息光栅的衍射特性[J].光学学报, 2004.24(9): 1203-1208.
    [70]闫爱民,刘德安,柴志方等.组合外加电场提高Fe: LiNbO_3中90°记录体全息的衍射效率[J].中国激光, 2005. 32(12): 1659-1663.
    [71] F.H.Mok. Angle-multiplexed Storage of 5000 Holograms in Lithium-Niobate[J]. Opt. Lett., 1993. 18(11): 915-917.
    [72] G.W.Burr. Volume Holographic Data Storage at an Area Density of 250 G/in2[J]. Opt. Lett., 2001. 26(7): 444-446.
    [73]万玉红,陶世荃.高密度盘式全息存储及其热固定的实验研究[J].中国激光, 2005. 32(5): 361-364.
    [74] Aharon Agranat, Rudy Hofmeister, and Amnon Yariv. Characterization of a new photorefractive material: K_(1-y)L_yT_(1-x)N_x[J]. Opt . Lett . 1992. 17(10): 713-715.
    [75] Hao Tian, Zhongxiang Zhou, and Dewei Gong. Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron[J]. Optics Communications, 2008. 281(6): 1720-1724.
    [76] D. Kirillov and Jack Feinberg. Fixable complementary gratings in photorefractive BaTiO_3 [J]. Opt. Lett., 1991. 16(19): 1520.
    [77]李建郎.光折变晶体局域全息及3D集成研究[D].中国科学院上海光学精密机械研究所,博士, 2000: 26-51.
    [78] Matt Klotz, Hongxing Meng, and Gregory J . Salamo. Fixing the photorefractive soliton[J]. Opt. Lett., 1999. 24(2): 77.
    [79] Anthony Kewitsch, Mordechai Segev, and Amnon Yariv. Selective page-addressable fixing of volume holograms in Sr0.75Ba0.25Nb2O6 crystals[J]. Opt. Lett., 1993. 18(15): 1262-1264.
    [80] J.Ma. Electrical Fixing of 1000 Angle-Multiplexed Holograms in SBN[J]. Opt. Lett., 1997. 22(14): 1116-1118.
    [81] A.Adibi, K.Buse, D.Psaltis. Mutiplexing Holograms in LiNbO_3:Fe:Mn Crystals[J]. Opt. Lett., 1999. 24(10): 652-654.
    [82] D. L. Staebler, W Philips. Hologram storage in photochromic LiNbO_3[J]. Appl. Phys. Lett., 1974. 24(6): 268.
    [83] K. Buse, A. Adibi, and D. Psaltis. Nonvolatile holographic storage in doubly-doped lithium niobate crystals[J]. Nature, 1998. 393(18): 665-667.
    [84] J. Amodei and D. Staebler. Holographic Pattern Fixing in Electro-Optic Crystals[J]. Appl. Phys. Lett., 1971. 18(12): 540-542.
    [85] N.V.Kukhtarev. Holographic Storage in Electro-Optic Crystals[J]. Ferroelectrics, 1979. 22(1): 949-960.
    [86] H. Vormann, G. Weber, and S. Kapphan. Hydrogen as Origin of Thermal Fixing in LiNbO_3:Fe[J]. Solid State Comm., 1981. 40(5): 543-545.
    [87] M.Carrascosa, F.Augllo-Lopez. Theoretical Modeling of the Fixing andDeveloping of Holographic Gratings in LiNbO_3[J]. J. Opt. Soc. Am. B, 1990. 7(12): 2317-2322.
    [88] Victor Leyva, Doruk Engin, and Xiaolin Tong. Fixing of photorefractive volume holograms in K_(1-y)Li_yTa_(1-x)Nb_xO_3[J]. Optics Letters, 1995. 20(11): 1319-1321.
    [89] Daofan Zhang, Yuhe Zhang, and Chengxiang Li. Thermal fixing of holographic gratings in BaTiO_3[J]. APPLIED OPTICS, 1995. 34(23): 5241-5246.
    [90]李承祥,张道范,张玉河等. BaTiO_3晶体中体全息光栅的高效热定影[J].光学学报, 1996. 5(16): 645-650.
    [91] Amnon Yariv, Sergei Orlov, and George Rakuljic. Holographic fixing, readout, and storage dynamics in photorefractive materials[J]. Opt . Lett . 1995. 20(11): 1334-1336.
    [92] Amnon Yariv, Sergei S. Orlov, and George A. Rakuljic. Holographic storage dynamics in lithium niobate: theory and experiment[J]. Opt. Soc. Am. B, 1996. 13(11): 2513-2523.
    [93] Tadayuki Imai, Shogo Yagi, and Hiroki Yamazaki. Thermal fixing of photorefractive holograms in KTa1-xNbxO_3 and its relation to proton concentration[J]. J. Opt. Soc. Am. B, 1996. 13(11): 2524-2529.
    [94] G.A.Rakuljic. Prescription for Long-Lifetime, High-Diffraction-Efficiency Holograms in Fe doped LiNbO_3[J]. Opt. Lett., 1997. 22(1): 825-827.
    [95] L.Arizmendi, E.M.de Miguel-Sanz, M.Carrascosa. Lifetimes of Thermally Fixed Holograms in LiNbO_3:Fe Crystals.[J]. Opt. Lett., 1998. 12(23): 960-962.
    [96] Liu Bo and Liu Liren. Local Thermal Fixing of a Photorefractive LiNbO_3 Hologram by Use of a CO_2 Laser.[J]. Appl. Opt., 1998. 37(8): 1342-1349.
    [97]刘波,刘立人,徐良瑛. LiNbO_3中光折变全息的热固定特性[J].光学学报, 1999. 19(7): 941-947.
    [98] C.R.Hsieh, S.H.Lin. Optimal Condition for Thermal Fixing of Volume Holograms in LiNbO_3:Fe Crystal.[J]. Appl. Opt., 1999. 38(29): 6141-6151.
    [99] Shiuan Huei Lin, Mei Li Hsieh, and Chao Ray Hsieh. Thermal fixing of volume hologram in Fe:LiNbO_3 crystals, in CLEO/Pacific Rim'99. 1999, IEEE. p. 1247-1248.
    [100]李建郎,刘立人,刘友文等. Fe:LiNbO_3晶体光折变全息热固定动力学特性分析[J].光学学报, 2000. 20(12): 1635-1640.
    [101]孙程君,许士文,张中兆等.氧化还原对Fe:LiNbO_3全息光栅热固定的影响[J].压电与声光, 2000. 22(2): 101-103.
    [102]宋雪华,陶世荃,江竹青等.光折变晶体中全息图的热固定过程研究[J].中国激光, 2001. 28(1): 59-62.
    [103]江竹青,宋雪华,陶世荃.光折变晶体全息图的热固定特性优化的研究[J].中国激光, 2001. 28(2): 160-164.
    [104] Dongdong Teng, Biao Wang, and Wei Yuan. Effect of the parameters on diffraction efficiency after thermal fixing for transmission geometry hologram storage in LiNbO_3:Fe[J]. Optics & Laser Technology, 2007. 39(4): 763-768.
    [105] Dongdong Teng, Biao Wang, and Wei Yuan. Effect of the parameters on diffraction efficiency after thermal fixing for reflection geometry hologram storage in LiNbO_3:Fe[J]. Optik, 2008. 119(5): 203-208.
    [106]李大汕,刘立人,刘德安等.强外加电场与大调制度下光折变动力学光栅形成研究[J].光学学报, 2007. 27(1): 148-154.
    [107]高璃含,张鹏,刘圣等. LiNbO_3晶体中光折变热固定过程的准实时可视化研究[J].光子学报, 2008. 37(5): 964-968.
    [108] Yansheng Song, Jiarong Ji, and Wenhua Dou. Theoretical study on lifetime of thermal-fixed volume holographic phase grating in photorefractive crystals[J]. Chinese Optics Letters, 2010. 8(3): 320-322.
    [109] Yansheng Song, Jiarong Ji, Wenhua Dou, et al. Study on the forming of ionic grating in paraelectric potassium tantalate-niobate crystals at large modulation depths based on the finite element method[J]. Optical Engineering, 2010. 49(10): 105801.
    [110] D.L.Staebler, W.J.Burke, W.Philips, et al. Multiple Storage and Erasure of Fixing Holograms in Fe-doped LiNbO_3[J]. Appl. Phys. Lett., 1975. 26(1): 182-184.
    [111] F.Heanue, M.C.Bashaw, A.J.Daiber, et al. Digital Holographic Storage System Incorporating Thermal Fixing in Lithium Niobate.[J]. Opt. Lett., 1996. 19(21): 1615-1617.
    [112] X.An, D.Psaltis, and G.W.Burr. Thermal Fixing of 10000 Holograms in LiNbO_3:Fe[J]. Appl. Opt. , 1999. 38(2): 386-392.
    [113]江竹青,孟纲,陶世荃.光折变晶体中多重全息图分批定影热固定的研究.[J].激光杂志., 2000. 21(4): 25-26.
    [114]江竹青,陶世荃, and袁韡等.光折变多重全息图分批热固定的光擦除特性[J].中国激光, 2005. 32(2): 236-239.
    [115] Xiaolin Tong, Min Zhang, Amnon Yariv, et al. Thermal fixing of volume holograms in potassium niobate[J]. Appl. Phys. Lett., 1996. 69(26): 3966-3968.
    [116] Aharon Agranat, Victor Leyva, and Amnon Yariv. Voltage-controlled photorefractive effect in paraelectric KTa_(1-x)Nb_xO_3: Cu,V[J]. Opt . Lett . 1989. 14(18): 1017-1019.
    [117] Aharon J. Agranat, Victor Leyva, and Koichi Sayano. Photorefractive properties of KTa_(1-x)Nb_xO_3 in the paraelectric phase[J]. Nonlinear Optical Properties of Materials, SPIE 1989. 1148: 52-66.
    [118] Vladimir A. Trepakov, Lubomir Jastrabik, and Siegmar Kapphan. Phase transitions, related properties and possible applications of (K,Li)(Ta,Nb)O_3 crystals[J]. Optical Materials, 2002. 19(1): 13-21.
    [119] Aharon J. Agranat, Elon Littwitz, and Meir Razvag. Electroholographic wavelength selective photonic switch for WDM routing[P]. World Intellectual Property Organization: WO0107946A1, Feb. 01, 2001.
    [120] Assaf Rubissa, Dono Van Meirop, and Rotem Levy. Method and system for switching and routing, while logically managing and controlling, multichannel optical signals in an optical communication system[P]. United States Patent: US20020163693A1, Nov.7, 2002.
    [121] Rudolf Hofmeister, Amnon Yariv, and Aharon Agranat. Potassium lithium tantalate niobate photorefractive crystals[P]. United States Patent: US005614129A, Mar. 25, 1997.
    [122] Aharon J. Agranat, C.E.M. de Oliveira, and G. Orr. Dielectric electrooptic gratings in potassium lithium tantalate niobate[J]. Journal of Non-Crystalline Solids, 2007. 353(47-51): 4405-4410.
    [123] Gabriel Bitton, Yuri Feldman, and Aharon J. Agranat. Relaxation processes of off-center impurities in KTN: Li crystals[J]. Journal of Non-Crystalline Solids, 2002. 305(1-3): 362-367.
    [124] Aharon J. Agranat, Benny Pessach, and Larry Rudolph Rogel. Electro-holographic optical switch[P]. United States Patent: US6542264B1, Apri. 01, 2003.
    [125]田浩.顺电相钽铌酸钾锂晶体的生长及电控光折变性质研究[D].哈尔滨工业大学,博士, 2008.
    [126]宋艳生,季家镕.电控全息光开关的研究进展[J].光学与光电技术, 2008. 6(6): 17-20.
    [127]刘思敏,郭儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社. 2004: 105-117,135-175.
    [128]季家镕,冯莹.高等光学教程——非线性光学与波导光学[M].北京:科学出版社. 2008: 85-94,165-180.
    [129]李铭华,杨春晖,徐玉恒等.光折变晶体材料科学导论[M].北京:科学出版社. 2003.
    [130]成丽华.基于透射式体全息光栅的波分复用器设计[D].浙江大学,硕士, 2006: 57-65.
    [131] F. S. Chen. Optically induced change of refractive indices in LiNbO_3 and LiTaO_3[J]. J. Appl. Phys., 1969. 40(8): 3389-3396.
    [132] D. L. Staebler and J. J. Awodei. Coupled-wave analysis of holographic storage inLiNbO_3[J]. J. Appl. Phys., 1972. 43(3): 1042-1049.
    [133] A. M. Glass. High-voltage bulk photovoltaic effect and the photorefrective process in LiNbO_3[J]. Appl. Phys. Lett., 1974. 25(4): 233-235.
    [134] T. Volk and M.W¨ohlecke. Thermal Fixation of the Photorefractive Holograms Recorded in Lithium Niobate and Related Crystals[J]. Critical Reviews in Solid State and Materials Sciences, 2005. 30(3): 125-151.
    [135]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社. 1988: 529-555.
    [136]马洪波.铁电相变的影响因素研究[J].吉林师范大学学报(自然科学版), 2007(1): 74-78.
    [137]许煜寰.铁电与压电材料[M].北京:科学出版社. 1978.
    [138]余文海,刘皖育.晶体物理学[M].合肥:中国科学技术大学出版社. 1998: 177-187.
    [139]姜彦岛.光折变晶体的现状和发展[J].硅酸盐学报, 1992. 20(2): 181-185.
    [140]王民,管庆才,王继扬等. KTN: Cu晶体的铁电和光折变性能[J].无机材料学报, 1992. 7(3): 264-268.
    [141]岳雪峰,邵宗书.光折变材料及其应用[M].济南:山东科学技术出版社. 1994.
    [142]王民,王继扬,刘耀岗等.均匀KTN晶体的铁电性质与相变[J].自然科学进展——国家重点实验室通讯, 1991. 1(5): 433-436.
    [143]管庆才,王继扬,魏景谦等. Fe: KTN晶体的二波耦合特性研究[J].光学学报, 1992. 12(11): 1049-1052.
    [144] Qingcai Guan, Jiyang Wang, and Yingwu Lian. Influences of iron doping on the photorefractive properties of KTa_(1-x)Nb_xO_3 crystals[J]. Appl. Phys. Lett., 1993. 63(16): 2186-2188.
    [145]王继扬,岳书斌,刘耀岗等.钽铌酸钾晶体相结构和相变的研究[J].无机材料学报, 1989. 4(3): 276-279.
    [146]管庆才,岳学锋,王继扬等. KTN及其掺铜晶体632.8nm光折变性能研究[J].应用激光, 1992. 12(5): 207-209.
    [147]王旭平,刘冰,李帅.立方相钽铌酸钾晶体的生长、组分及结构性能研究[J].山东科学, 2009. 22(5): 9-14.
    [148]刘耀岗,管庆才,魏景谦等.熔盐提拉法生长光折变晶体K(Ta, Nb)O_3[J].硅酸盐学报, 1990. 18(6): 529-535.
    [149]王旭平,王继扬,于永贵等.提拉法生长立方相KTa_(1-x)Nb_xO_3晶体[J].稀有金属, 2006. 30(6): 841-845.
    [150]王旭平,王继扬,刘冰.提拉法生长KTa_(1-x)Nb_xO_3晶体的组分均匀性研究[J].人工晶体学报, 2010. 39(增刊): 48-53.
    [151] Herwig Kogelnik. Coupled wave theory for thick hologram grating[J]. The Bell System Technical Journal, 1969. 48(9): 2909-2947.
    [152]宋艳生,季家镕,窦文华,温昌礼.顺电相KTN晶体中反射型相位栅的衍射效率分析[J].激光技术, 2010. 34(6): 736-738.
    [153]宋艳生,季家镕,窦文华,温昌礼.顺电相KTN晶体中透射型相位栅的衍射效率分析[J].激光技术, 2010. 34(1): 85-87.
    [154]孙程君,许士文,张中兆.氧化还原处理对Fe:LiNbO_3晶体光折变性能及热固定效果的影响[J].高技术通讯, 2000. 10(12): 46-49.
    [155]刘香茹,陈庆东,李立本.全息光栅的制作及光栅常数测定的研究[J].大学物理实验, 2008. 21(1): 20-22.
    [156]于美文.光全息学及其应用[M].北京:北京理工大学出版社. 1996.
    [157] Joseph E.Ford, Yoshinao Taketomi, Sing H. Lee, et al. Effects of applied voltage on holographic storage in SBN: 60[J]. Nonlinear Optical Properties of Materials, 1989. SPIE Vol. 1148: 12-24.
    [158]杨德兴,赵建林,李恩普. LiNbO_3: Fe晶体全息写入中的光感应光散射[J].西北工业大学学报, 2000. 18(2): 190-193.
    [159]王秀敏.全息光栅的制作及光栅常数测定的研究[J].大学物理实验, 2008. 21(1): 4-6.
    [160]郭儒,潘士宏,张光寅.光折变晶体中的稳态光扇[J].物理学报, 1996. 45(12): 2005-2009.
    [161] G. Montemezzani, M. Zgonik, and P. Giinter. Photorefractive charge compensation at elevated temperatures and application to KNbO_3[J]. J.Opt.Soc.Am B, 1993. 10(2): 171-185.
    [162]戴翠霞,于瀛洁,刘德安,刘立人. LiNbO_3:Ce:Cu晶体中绿光非挥发全息记录优化[J].中国激光, 2008. 35(7): 1045-1049.
    [163]吉选芒,王金来,刘劲松.高斯光束在有外电场的中心对称光折变材料中的演化[J].光学学报, 2008. 28(9): 1798-1804.
    [164]申岩,孙秀冬,张国权等.连续光条件下对L iNbO_3:Fe:Mn晶体全息存储性能的理论研究[J].光学学报, 2008. 28(8): 1450-1456.
    [165]刘红梅,阎晓娜.光折变LiNbO_3晶体中单光栅实现波长解复用方案[J].光学学报, 2008. 28(10): 1893-1897.
    [166] M. G. Moharam, T. K. Gaylord, R. Magnusson, et al. Holographic grating formation in photoref ractive crystals with arbitrary electron transport lengths[J]. J. Appl. Phys., 1979. 50(9): 5642-5651.
    [167] C. H. Kawk, S. Y. Park, J. S. Jeong, et al . An analytical solution for large modulation effects in photorefractive two-wave couplings[J]. OpticsCommunications, 1994. 105(5-6): 353-358.
    [168] G. A. Brost. Photoref ractive grating formations at large modulations with alternating electric fields[J]. J. Opt. Soc. Am. B, 1992. 9(8): 1454-1460.
    [169] G. A. Brost. Numerical analysis of photorefractive grating formation dynamics at large modulation in BSO[J]. Optics Communications, 1993. 96(1-3): 113-116.
    [170] E. Serrano, V. Lopez, M. Carrascosa, et al Recording and erasure kinetics in photorefractive materials at large modulation depths[J]. J. Opt. Soc. Am. B, 1994. 11(4): 670-675.
    [171] E. Serrano, M. Carrascosa, F. Agullo-Lopez. Analytical and numerical study of photorefractive kinetics at high modulation depths[J]. J. Opt. Soc. Am. B, 1996. 13(11): 2587-2594.
    [172]周忠祥,姜永远,孙秀冬等.外加电场对光折变高阶响应影响的微扰分析[J].光学学报, 1997. 17(6): 710-716.
    [173] PDE Solutions Inc. Manual of FlexPDE V6.06. 2009.
    [174]李大汕,刘德安,职亚楠等. (Ce,Cu): LiNbO_3晶体非挥发全息记录理论研究与优化[J].光学学报, 2007. 27(11): 1960-1966.
    [175]申岩,孙秀冬,张国权,许京军,赵业权.连续光条件下对LiNbO_3:Fe:Mn晶体全息存储性能的理论研究[J].光学学报, 2008. 28(8): 1450-1456.
    [176] Yong Qiao, Sergei Orlov, and Demetri Psaltis. Electrical fixing of photorefractive holograms in Sr_(0.75)Ba_(0.25)Nb_2O_6[J]. Opt . Lett . 1993. 18(12): 1004-1006.
    [177] Victor Leyva, Aharon Agranat, and Amnon Yariv. Fixing of a photorefractive grating in KTa_(1-x)Nb_xO_3 by cooling through the ferroelectric phase transition[J]. Opt. Lett., 1991. 16(8): 554-556.
    [178] Stephen Ducharme and Jack Feinberg. Speed of the photorefractive effect in a BaTiO_3 single crystal[J]. J. Appl. Phys., 1984. 56(3): 839-842.
    [179] Jack Feinberg, D.Heiman, and A.R.Tanguay. Photorefractive effects and light-induced charge migration in barium titanate[J]. J. Appl. Phys., 1980. 51(3): 1297-1305.
    [180] Robert W. Boyd. Nonlinear Optics[M]. San Diego: Academic Press, Inc. 1992.
    [181]酆达,李铮,唐丹.高速光脉冲的测量方法[J].强激光与粒子束, 2003. 15(9): 863-868.
    [182] Tammo Heeren, Takahisa Ueno, Douyan Wang, et al. Novel Dual Marx Generator for Microplasma Applications[J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005. 33(4): 1205-1209.
    [183]朱军,叶志生,王升平等.纳秒上升时间Q开关高压脉冲发生器的设计[J].光电子·激光, 2003. 14(3): 256-260.
    [184]时利勇,刘百玉,欧阳娴等.一种用于电光开关的高速、高压电脉冲的产生[J].光子学报, 2006. 35(10): 1501-1504.
    [185]刘宏伟,谢卫平,李洪涛等.紧凑型电感隔离快Marx发生器[J].高电压技术, 2008. 34(7): 1436-1439.
    [186]高景明,刘永贵,刘金亮等.陡化前沿Marx发生器的设计与初步实验[J].强激光与粒子束, 2008. 20(1): 167-170.
    [187]蔡厚智,刘进元.超快脉冲电路的研制及应用[J].深圳大学学报理工版, 2010. 27(1): 33-36.
    [188]郭宝平,牛憨笨.雪崩晶体管的导通方式讨论[J].高速摄影与光子学, 1990. 19(4): 386-390.
    [189]李晓坤.超宽带双极性高压脉冲研究[D].中国科学院西安光学精密机械研究所,硕士, 2009.
    [190] Yansheng Song, Jiarong Ji, Wenhua Dou, et al. Design and simulation of fast pulse control signal generator for the electro-holographic optical switch[C]. Conference of Photonics Asia 2010, Proceedings of SPIE,Vol. 7847: 784720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700