基于PLC技术的硅基二氧化硅矩阵光开关的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光开关是全光网络中光插分复用器(OADM)和光交叉连接器(OXC)中的核心器件。硅基二氧化硅平面光波线路技术(PLC)具有与硅微电子工艺兼容等优点,广泛用于集成光波导器件的制作。本文将矩阵光开关网络结构和PLC技术相结合,从网络结构角度研究了基于PLC技术的小体积低损耗硅基二氧化硅矩阵光开关,提出了一种扩展Banyan网络(EBN)可重构无阻塞矩阵光开关结构,并针对该网络结构,研究了信号的动态路由算法。利用扩展Banyan网络结构和优化的MZI型开关单元,设计制作了2×2到16×16的硅基二氧化硅热光开关。
     论文首先系统阐述了光波导的基本理论。由麦克斯韦方程组出发,分析了三层平板波导的模式场分布,给出了矩形波导的理论模型,分别利用马卡梯里方法和有效折射率方法对矩形波导的模式特性进行了分析,推导了双波导定向耦合器的耦合系数和模式传播常数。
     从Mach-Zehnder干涉仪型光开关结构和原理出发,分析了3dB耦合器和波导臂对开关性能的影响,对3dB定向耦合器的性能进行了模拟,根据相移器原理设计了加热电极结构,经优化设计的MZI型开关单元长度为4.6mm。设计制作了非平衡式和平衡式两种结构的2×2光开关,其平均插入损耗分别为1.65dB和2.52dB,最大串扰分别为-21.82dB和-30.75dB,平均功耗分别为406mW和410mW。对矩阵光开关的网络结构进行了研究。分析了Crossbar型和Banyan型矩阵光开关网络结构,研究了Banyan网络的内部阻塞特性。Crossbar网络属于严格无阻塞结构,但需要的开关单元级联较多, N×N网络需要2N-1级开关单元;Banyan网络具有较少的开关单元级联, N×N网络只有log2 N +1级开关单元,但它属于内部阻塞型网络。本文在分析Banyan网络内部阻塞特性基础上,分析了构建可重构无阻塞扩展Banyan网络的条件,以及可重构无阻塞扩展Banyan网络的最简形式。提出了BEBN-I型、BEBN-II型和SEBN型三种扩展Banyan网络的可重构无阻塞矩阵光开关结构,三种结构的开关单元级数分别为级、级和级。
     分析了扩展型Banyan网络中信号路由的重构过程,并针对该扩展网络结构提出一种信号动态路由算法。该算法通过对网络中开关单元和端口地址进行二进制编码,从而能够根据信号的目的端口地址,动态选择信号路由,实现了网络的路由重构。
     利用优化的MZI型开关单元和扩展Banyan网络,基于PLC技术,在4’’硅片上设计制作了4×4、8×8和16×16的硅基二氧化硅矩阵光开关,并对光开关的性能参数进行了测试。其平均插入损耗分别为4.1dB、4.5dB和6.5dB,最大通道串扰分别为-32.55dB、-50.18dB和-32.95dB,消光比分别为30.6dB、27.75dB和39.52dB,单通道开关功率分别为1.5W、2W和2.5W。
Optical switch is a key component for OADM and OXC of all optical networks. PLC technology is compatible with Si-microelectronics techniques and is widely used in integrated light waveguide device. With the combination of matrix optical switch network construction and PLC technology, a small size and low loss PLC-based silica matrix optical switch is studied. Rearrangeable non-blocking constructions of matrix optical switches based on extended Banyan network are proposed and a kind of dynamic routing arithmetic of signals for this network is studied. With the extended Banyan network and optimized MZI switch units, a series of optical switches from 2×2 to16×16 are designed and fabricated.
     Firstly, the theory of light waveguide is introduced. Beginning with Maxwell equation group, the distribution of modal field of a three-layer planar waveguide is analyzed. Theoretical model of rectangle waveguide is obtained, and modal characters of rectangle waveguide are analyzed with effective refractive index method. The coupling coefficient and modal propagation constant of bi-waveguide direction coupler are deduced.
     Beginning with structure and theory of Mach-Zehnder interferometer optical switch, effect of 3dB coupler and waveguide arms on switch performance are analyzed. The performance of 3dB coupler is simulated and heating electrode structure is designed according to phase shifter theory. The length of optimized MZI switch unit is 4.6 mm. Two types of 2×2 optical switches are designed, one is unbalanced type, the other is balanced type, and the averaged insertion losses are 1.65 dB and 2.52 dB, respectively, maximum crosstalk are -21.82dB and -30.75dB, respectively, the averaged power consumption are 406mW and 410mW respectively.
     The networks of matrix optical switches are studied. Crossbar and Banyan network construction of matrix optical switch are analyzed and internal blocking characters of Banyan network are studied. Crossbar network is strictly non-blocking, however, it needs much switch units and linkings, and concludes 2N-1 stages of units for an N×N network; while Banyan network needs less switching units and includes stages of switching units for an log_2 N +1network, but it is a kind of internal blocking network. Based on the internal blocking characters of Banyan network, the condition of constructing rearrangeable non-blocking extended Banyan network is analyzed, and the briefest construction of rearrangeable non-blocking extended Banyan network is proposed. Three types of rearrangeable non-blocking extended Banyan network of BEBN-I type, BEBN-II type and SEBN type, which including switching units of 2 log_2 N -2, 2 log_2 N-2, and , respectively, are proposed.
     The rearranging process of signal routing of extended Banyan network is analyzed and a novel signal dynamic routing arithmetic is proposed. The arithmetic coded the switch unit and port address of network with binary code, and decided signal routing dynamically according to signals’destination addresses to realize routing rearranging of network.
     With the optimized MZI switch unit and extended Banyan network, the 4×4, 8×8 and 16×16 silica-on-silicon matrix optical switches are designed and fabricated in 4’’wafer basing on PLC technology. The performance of optical switches are measured, the averaged insertion loss are 4.1dB, 4.5dB and 6.5dB respectively, maximum crosstalk are -32.55dB, -50.18dB and -32.95dB respectively, the ER are 30.6dB, 27.75dB and 39.52dB respectively, switching power of single channel are 1.5W, 2W and 2.5W, respectively.
引文
[1]C. K. Hao and G. A. Hockham. Dielectric-fiber surface waveguides for optical frequencies. Proc. IEEE. 1966, 113(7): 1151-1158
    [2]R. Dupuis, N. Holonyak Jr, M. I. Nathan, et al. Papers on early history of semiconductor laser diode. IEEE Quantum Electron. 1987, 23(6): 651-695
    [3]A. R. Chraplyvy and R. W. Tkach. Terabit/second transmission experiments. IEEE Quantum Electronics. 1998, 34(11): 2103-2108
    [4]A. R. Chraplyvy. Terabit/s Long-Haul Transmission. IEEE Workshop on New and Emerging Technologies. 2001
    [5]A. R. Chraplyvy. High-Capacity Lightwave Transmission Experiments. Bell Labs Technical Journal, Optical Networking, 1999, 4(1)
    [6]赵秀丽,硅基二氧化硅马赫-曾德尔干涉仪型热光开关,博士学位论文,哈尔滨工业大学,2004
    [7]张书贤,全光网络技术及其发展前景,通信管理与技术,2006(2):45-46
    [8]National Reseach Council. Optical Science and Engineering for the 21st Century, National Academy Press, Washington D. C., 1998
    [9] 彭 承 柱 , 彭 明 宇 , 全 光 网 络 的 发 展 历 程 与 发 展 趋 势 , 广 播 电 视 信息,2003(3):32-39
    [10]许国亚,赵季红等,智能光网络的生存性研究和关键技术,光通信技术,2004,28(9):41-45
    [11]唐治果,李乐民,下一代光网络的发展和关键技术,信息技术,2005(9):52-54
    [12]吴春雨,李蔚,刘德明,一种全光波长路由器的实现,光通信研究,2005, 132(6):60-62
    [13]P. Green. Progress in Optical Networking. IEEE Communications Magazine, 2001. 54-61
    [14]张宝富等,全光网络,北京:人民邮电出版社,2001:1-22
    [15]O. Gerstel. On the future of Wavelength Routing Networks, IEEE Network, 1996. 14-20
    [16]李先源,波分复用光传输技术-加宽信息高速公路上的快车道,光纤通信技术,1999,2:4-7
    [17]Special issue on multi-wavelength optical technology and networks. J. Lightwave Technol.,1996, 14(6)
    [18]R. E. Wagner, R. C. Alferness, A. A. M. Saleh, et al. MONET-Multiwavelength optical networking. J. Lightwave Technol. 1996, 14(6): 1349-1355
    [19]L. Wei. et al. The evolution of China’s optical fiber networks. Bell Labs Technical Journal. 1999. 125-143
    [20]胡军武,吴涛,光开关和光开关阵列技术的发展研究,光通信研究,2001, 108(6):58-6
    [21]L. Y. Lin, E. L. Goldstcin, R. W. Tkach, Free-space micromachined optical switches for optical networking, IEEE J. of Selected Toptics in Quantum Electronics, 1999, 5(1):4-9
    [22]K. Morito, Dynamic analysis of MZI-SOA all optical switches for balanced switching, 23rd European Conference on Optical Communications, 1997, 2:81-84
    [23]M. P. Earnshaw, Compact, low-loss 4×4 optical switch matrix using multimode interferometers, Electronics Letters, 2001,37(2):115-116
    [24]马慧莲,光开关研究新进展,光通信研究, 2003, 117(3):51-55
    [25]T. Saito, S. Tabata, A. Sugitatsu, and T. Hatta, Mechanical optical switch using flexible polymeric waveguide, OFC2002, 14-15
    [26]S. U. Lee, W. S. Seo, Design of an optical cross-connect architecture, 6th IEE Conference on Telecommunications, 1998, 198-201
    [27]T. Bakke, C. P. Tigges and C. T. Sullivan, 1×2 MOEMS switch based on silicon-on-insulator and polymeric waveguides, Electronics Letters, 2002,38(4): 177-178.
    [28]E. Thielicke and E. Obermeier, New MOEMS-switch device with electrostatic actuator, International conference on Optical MEMS, 2002: 159-160.
    [29]H. Cai, J. H. Wu, L. J, X. M. Zhang, Y. X. Wang, C. Lu, A. Q. Liu, Optical MEMS switch control and packaging, EPTC 2003, 291-293.
    [30]G. X. Shen, T. H. Cheng, S. K. Bose, C. Lu, T. Y. Chai, Architectural design for multistage 2-D MEMS optical switches, Lightwave Technology, 2002, 20(2): 78-187.
    [31]Y. Wang, Z. H. Li, D. T. McCormick, N. C. Tien, A low-voltage lateral MEMS switch with high RF performance, Microelectromechanical Systems, 2004, 13(6):902-911.
    [32]Q. F. Yan, J. Z. Yu, S. W. Chen, et al., 2×2 electrooptical switch in silicon-on-insulator waveguide, EDSSC 2003, 91-94
    [33]J. Goldhar, M. henesian, Large-aperture electrooptical switches with plasma electrodes, IEEE J. Quantum Electronics, 1986, 22(7): 1137-1147
    [34]L. McCaughan, Low-loss polarization-independent electrooptical switches at λ=1.3μm, J. Lightwave Technology, 1984, 2(1):51-55
    [35]S. J. Chua, J. H. Teng, and B. J. Li, Electro-optical switching in SiGe/Si waveguide devices, First IEEE International Conference on Group IV Photonics, 2004, 43-45
    [36]H. C. Tapalian, J. P. Laine, and P. A. Lane, Thermooptical switches using coated microsphere resonators, IEEE Photonics Technology Letters, 2002, 14(8): 1118-1120
    [37]C. Fernando, S. Janz, J. M. Baribeau, R. Normandin, J. S. Wight, Thermo-optical switching in Si/Si1-xGex distributed Bragg reflectors, 1994, 30(11):901-903
    [38]L. Guiziou, P. Ferm, J. M. Jouanno, L. Shacklette, Low-loss and high extinction ratio 4×4 polymer thermo-optical switch, 27th ECOC, 2001, 2:138-139
    [39]刘国祥,胡力,叶昆珍,2×2 全光纤声光开关的实验研究,激光技术,2006,30(1):53-55
    [40]吴磊,郑远等,用形状双折射实现零耦合器声光开关偏振不敏感,半导体光电,2001,22(5):327-330
    [41]M. Cohen, W. J. Hsieh, G. Almasi, Analytical model of a bubble switch, IEEE Magnetics Trans., 1997, 13(4): 1035-1041
    [42]I. Gergis, T. Kobayashi, Replicate/transfer bubble switch, IEEE Magnetics Trans., 1978, 14(1): 1-4
    [43]F. Yamauchi, K. Yoshimi, S. Fujiwara, et al., Bubble switch and circuit utilizing YY overlay, IEEE Magnetics Trans., 1972, 8(3): 372-374
    [44]J. Prisco, A low-crosstalk liquid crystal optical switch, J. Lightwave Technology, 1985, 3(1): 37-38
    [45]J. Whinnery, C. Hu, Y. Kwon, Liquid-crystal waveguides for integrated optics, IEEE J. Quantum Electronics, 1977, 13(4): 262-267
    [46]J. Skinner, C. H. R. Lane, A low crosstalk microoptic liquid crystal switch, IEEE J. Selected Areas in Communications, 1988, 6(7): 1178-1185
    [47]W. A. Crossland, I. G. Manolis, M. M. Redmond, et al., Holographic optical switching: the “ROSES” demonstrator, J. Lightwave Technology, 2000, 18(12): 1845-1854
    [48]J. Dandurand, C. Lacabanne, J. Y. Moisan, and C. Servens, Polarization phenomena in resinic esters of photothermoplastic devices for applications to holographic optical switching, 6th ISE, 1988, 241-245
    [49]S. W. Smith, A. A. Yasseen, M. Mehregany, and F. L. Merat, Micromotor grating optical switch, Optics Letters, 1995, 20(16): 1734-1736
    [50]S. Diez, R. Ludwig, R. Patzak, H. G. Weber, Novel gain-transparent SOA-switch for high bitrate OTDM add/drop multiplexing, 24th ECOC, 1998: 461-462
    [51]S. Diez, R. Ludwig, R. Patzak, H. G. Weber, Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing, 1999, 11(1): 60-62
    [52]K. Morito. Dynamic analysis of MZI-SOA all optical switches for balanced switching[A]. 23rd European Conference on Optical Communication[C], 1997,2: 81-84
    [53]Fouquet J E, Compact scalable cross-connect switch using total internal reflection due to thermally-generated bubbles[C], LEOS Proceedings of the 1998 11th Annual Meeting, IEEE Lasers and Electro-optics Society, 1998:169-170
    [54]王启明,支撑光网络发展的光子集成器件研发与趋势,深圳大学学报,2004,21(3):189-195
    [55]李苹,王俊华,万红,光开关技术研究,光通信技术,2004,28(4):15-17
    [56]张宁,纪越峰,光通信网络中的光开关技术,光通信技术,2004,28(4):7-10
    [57]H. Snnncrrud, J. Li, P. A. Audrekson, et al. Experimental quantification of soliton robustness to polarization-mode dispersion in dispersion managed systems, IEEE Photonics Tech Lett., 2001,13(2):118-120
    [58]Y. Su, S. Chandrasekhar, R. Ryf, et al. A multirate upgradable 1.6-Tb/s hierarchical OADM network, IEEE Photon. Tech. Lett., 2004,16(1):317-319
    [59]http://www.jdsu.com/
    [60]http://www.alcatel-lucent.com/wps/portal
    [61]http://www.onixmicrosystems.com/
    [62]A. Neukemans, R. Ramaswami. MEMS technology for optical networking applications. IEEE Communications, 2001, 39(1): 62-69
    [63]Y. Hida, H. Onose, S. Imamura, Polymer waveguide thermooptic switch with low electric powerconsumption at 1.3μm, IEEE Photonics Technology Letters, 1993, 5(7): 782-784
    [64]N. Kein, H. H. Yao and C. Zawadzki, Polymer waveguide optical switch with <-40dB polarization independent crosstalk, Electron. Lett, 1996, 32: 655
    [65]R. krahenbuhl, R. Kyburz, W. Voqt, et al., Low-loss polarization-insensitive InP-InGaAsP optical spaceswitches for fiber optical communication, IEEE Photonics Technology Letters, 1996, 8(5): 632-634
    [66]S. S. Lee, S. W. Ahn, S. Y. Shin, Electro-optic polymer digital optical switch with photobleached waveguides and a self-aligned electrode, Optics Communications, 1997, 138(4): 298-300
    [67]M. C. Oh, W. Y. Hwang, H. M. Lee, et al., Electrooptic polymer modulators operating in both TE and TM modesincorporating a vertically tapered cladding, IEEE Photonics Technology Letters, 1997, 9(9):1232-1234
    [68]W. H. Nelson, InP optical switches, CLEO’95, 1995, 81
    [69]Y. Takahashi, H. Inoue, T. Kato, et al., High-speed switching characteristics of integrated 4×4 Inp optical switch array, Electronics Letters, 1989, 25(15): 964-965
    [70]R. Walker, High speed III-V semiconductor intensity modulators. IEEE J Quantum Electron, 1991, QE-27(3): 654-667.
    [71]P. J. Stabile, A. Rosen, D. Gilbert, et al., High power, high speed Si and GaAs optical switching devices utilizing semiconductor lasers as an optical source, Electro International, 1991, 85-89
    [72]K. Jurya, M. Tohru, S. Shigekuni, et al., Directional couplers using fluorinated polyimide waveguides, Journal of Lightwave Technology, 1998, 16(4): 610-614
    [73]J. L. Thackara, J. C. Chon, G. C. Bjorklund, et al., Polymeric electro-optical Mach-Zehnder switches, Appl. Phys. Lett., 1995, 67(26): 3874-3876
    [74]C. F. Janz, B. P. Keyworth, W. Allegretto, et al., Mach-Zehnder switch using an ultra-compact directional coupler in astrongly-confining rib structure, IEEE Photon. Technology Letters, 1994, 6(8): 981-983
    [75]J. P. Lorenzo and R. A. Soref, 1.3μm electro-optic silicon switch, Appl. Phys. Lett., 1987, 51(1): 6-8
    [76]C. Z. Zhao, A. H. Chen, E. K. Liu, et al., Silicon-on-insulator asymmetric optical switch based on total internal reflection, IEEE Photonics Technology Letters, 1997, 9(8): 113-115
    [77]Y. Silberberg, P. Perlmetter, and J. E. Baran, Digital optical switches, Appl. Phys. Lett., 1987, 51(16): 1230-1232
    [78]R. B. William and A. F. Millton, Mode conversion in planar-dielectric separating waveguides, IEEE J. of Quantum Electronics, 1975, QE-11(1): 32-39
    [79]T. Goh, A. Himeno, M. Okuno, et al., High-extinction ratio and low-loss silica-based 8×8 thermooptic matrix switch, IEEE Photonics Technology Letters, 1998, 10(3): 358-360
    [80]N. Shuichi, M. Goh, Y. Mikito, et al., InGaAsP/InP multimode interference photonic switches for monolithic photonic integrated circuits, J. Appl. Phys., 1999, 38(2B): 1269-1272
    [81]N. Keil, H. H. Yao, C. Zawadzki, et al., Hybrid polymer/silica vertical coupler switch with -32dB polarization-independent crosstalk, Electron. Lett., 2001, 37(2): 89
    [82]上海光机所基于 MOEMS 无阻塞 16×16 阵列光开关研制成功,传感器世界,2005,6:36
    [83]杨家德,张蜀平,廖先炳,集成光学技术及其应用. 北京:科学技术文献出版社. 1999:8
    [84]Y. P. Li and C. H. Herry, silica-based integrated circuits. IEE Proc. Opto-electron, 1996, 143(5): 263-280
    [85]M. Kawachi, Recent progress in silica-based planar lightwave circuits on silicon IEE Proc. Opto-electron, 1996, 143(5): 257-261
    [86]Planar lightwave circuits (PLCs), photonic networks: advances in optical communications, Prati, Giancarlo ed (London, Springer), 1997: 119-131
    [87]N. Kell, B. Strebel, H. Yao, et al., Application of optical polymer waveguide devices on future optical communications and signal processing, In Photopolymer Devices Physics, Chemistry and applications II, Proc. SPIE, 1991: 278-287
    [88]F. J. Leonberger and S. W. Merritt. Technology and application of commercial LiNbO3 integrated optical devices, Proc. ECTO’95, Delft
    [89]F. Wehrmann, C. Harizi, H. Herrann, et al., Fully packaged integrated optical acoustically tunable add-drop-multiplexers in LiNbO3, Proc. ECIO’95, Delft, The Netherlands, 487-490
    [90]R. Yoshimura, M. Hikita, S. Tomaru, et al., Low loss polymeric optical waveguides fabricated with deuteratedpolyfluoromethacrylate, J. Lightwave Technol., 1998, 16(6): 1030-1037
    [91]T. Watanabe, N. Oba, S. Hayashida, et al., Polymeric optical waveguide circuits formed using silicone resin, 1998, 16(6): 1049-1055
    [92]C. F. Kane and R. R. Krchnavek, Benzocyclobutene optical waveguides, IEEE Photo. Technol. Lett., 1995, 7: 535-537
    [93]D. P. Prakash, D. C. Scott, H. R. Fetterman, et al., Integration of polyimide waveguides with traveling wave phototransistors, IEEE Photo. Technol. Lett., 1997, 9: 800-802
    [94]T. Matsuura, J. Kobayashi, S. Ando, et al., Heat-resistant flexible-film optical waveguides from fluorinated polyimides., Appl. Optics, 1999, 38(6): 966-971
    [95] M. Lawachi, Silica waveguides on silicon and their application to integrated optic components, Opt. Quantum Electr., 1990, 22: 391-416
    [96]M. Mccourt, Status of glass and silicon-based technologies for passive components, Proc. of European Conference on Integrated Optics, 1993: 9.1-9.4
    [97]M. Benatsou, B. Capoen and M. Bouazaoui, Preparation and characterization of Sol-Gel derived Er3+ Al2O3-SiO2 planar waveguides, Appl. Phys. Lett., 1997, 71(4): 428-430
    [98]C. K. Nadler, E. K. Wildermuth, M. Lanker, et al., Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules. IEEE J. Sel. Top. Quantum Electron, 1999, 5(5): 1407-1412
    [99]H. Takahashi, Y. Hibina, Y. Ohmmori, et al., Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensation film, IEEE Photon. Technol. Lett., 1993, 5(6): 707-708
    [100]M. Okuno, A. Sugita, K. Jinguji, et al., Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch, J. Lightwave Technol., 1994, 12(4): 625-633
    [101]J. Canning and M. Aslund, Birefringence compensation improved fringe contrast and trimming in an integrated asymmetric mach-zehnder interferometer using Mid-IR laser processing, 2000, 14(2): 175-183
    [102]J. Canning, M. Aslund, A. Ankiewicz, et al., Birefringence control in plasma-enhanced chemical vapor deposition planar waveguides by ultraviolet irradiation, Appl. Opt., 2000, 39(24): 4296-4299
    [103]S. Suzuki, Y. Inoue and Y. Ohmori, Polarization-insensitive arrayed-waveguide grating multiplexer with SiO2-on-SiO2 Structure, Electron. Lett., 1994, 30(8): 642-643
    [104]R. Ramaswami and K. N. Sivarajan, Optical Networks: A practical perspective, morgan kaufmann publisher, 1998
    [105]R. Kasahara, M. Yanagisawa, A. Sugita, et al., Low-power consumption silica-based 2×2 thermooptic switch using trenched silicon substrate. IEEE Photon. Technol. Lett., 1999, 11(9): 1132-1134
    [106]T. Yoshimura, S. Tsukada, S. Kawakami, et al., Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches. Opt. Eng. 2003, 42(2): 439446
    [107]M. Okuno, K. Kato, R. Nagase, et al., Silica-based 8×8 optical matrix switch integrating new switching units with large fabrication tolerance, J. Lightwave Technol., 1999, 17(5): 771-780
    [108]M. P. Earnshaw, J. B. D. Soole, M. Cappuzzo, et al., 8×8 optical switch matrix using generalized Mach-Zehnder interferometers. IEEE Photon. Technol. Lett., 2003, 15(6): 810-812
    [109]T. Goh, A. Himeno, M. Okuno, et al., High-extinction ratio and low-loss silica-based 8×8 strictly nonblocking thermooptic matrix switch. J. Lightwave Technol., 1999, 17(7): 1192-1199
    [110]T. Goh, M. Yasu, K. Hattori, et al., Low-loss and high-extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. J. Lightw. Technol., 2001,19(3): 371-379 第二章
    [111]马春生,刘式墉等,光波导模式理论,长春:吉林大学出版社,2006
    [112]叶培大,吴彝尊,光波导技术基本理论,北京:人民邮电出版社,1981
    [113]W. P. Huang, C. L. Xu, Simulation of three-dimentional optical waveguides by a full-vector beam propagation method, IEEE J Quantum Electron, 1993,29:2639-2649
    [114]J. Yamauchi, T. Ando, and H. Nakano, Beam-propagation analysis of optical fibers by alternating direction implicit method, IEEE Electron. Lett., 1991,27:1663-1665
    [115]P. L. Liu and B. J. Li, Semivectorial beam-propagation method for analysizing polarized modes of rib waveguides, IEEE J. Quantum Electron., 1992,28:778-782
    [116]Y. L. hsueh, M. C. Yang, and H. C. Chang, Three-dimensional noniterative full-vectorial beam propagation method based on the alternating direction implicit method, IEEE J of Lightwave Technol., 1999,17:2389-2397
    [117]G. R. Hadley, Multistep method for wide-angle beam propagation, Optics Lett.,1992,17:1743-1745
    [118]G. R. Hadley, Wide-angle beam propagation using pade approximant operators, Opt. Lett., 1992,17:1426
    [119]Yasuhiro Hida, hidekatsu Onose, and Saburo Imamum. Polymer waveguide thermo-optic switch with low electric power consumption at 1.3μm. IEEE Photonics Tech. Lett.1993,5( 7):782-784
    [120]J. A. Besley, J. D. Love and W. Langer. A multimode planar power splitter. Journal of lightwave technology. 1998, 16(4): 678-684
    [121]J. M. Heaton, R. M. Jenkins and D. R. Wight. Novel 1-to-N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides. Appl. Phys. Lett. 1992,61(15):1754-1756
    [122]J. Leuthold, J. Eckner and E. Gamper. Multimode interference couplers for the conversion and combining of Zero- and First-order modes, Journal of Lightwave Technology. 1998,16(7):1228-1239
    [123]R. M. Jenkins, R. W. J. Devereux and J. M. Heaton. Waveguide beam splitters and re-combiners based on multimode propagation phenomena. Optics Letters. 1992,17(14):991-993
    [124]Q. Lai, W. Hunziker and H. Melchior. Low-power compact 2×2 thermo-optic silica-on-silicon waveguide switch with fast response, IEEE Photonics Technology Letters, 1998,10(5):681-683
    [125]L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology. 1995,13(4):615-627
    [126]M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, A rigorous comparison of the performance of directional couplers with multimode interference devices. Journal of Lightwave Technology. 1999, 17(2):243-248
    [127]David S. Levy, Robert Scarmozzino and Richard M. Osgood, A new design for ultra-compact multimode interference-based 2×2 couplers. IEEE Photonics Tech. Lett. 1998,10(1):96-98
    [128]David S. Levy, Robert Scarmozzino and Richard M. Osgood, Length reduction of tapered N×N MMI devices, IEEE Photonics Tech. Lett. 1998,10(6):830-832
    [129]David S. Levy, Robert Scarmozzino and Richard M. Osgood, Fabrication of ultra-compact 3dB 2×2 MMI power splitters. IEEE Photonics Tech. Lett. 1999,11(8):1009-1011
    [130]T. Goh, A. Himeno, M. Okuno, et al., High-extinction ratio and low-loss silica-based 8×8 thermooptic matrix switch, IEEE Photonics Technology Letters, 1998, 10(3):358-360
    [131]T. Goh, M. Yasu, K. Hattori, et al., Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch, IEEE Photonics Technology Letters, 1998, 10(6):810-812
    [132]D. G. Sun, Q. Xiang, N. X. Wang, et al., Butterfly interconnection implementation for an n-bit parallel full adder/subtractor, Optical Engineering, 1992, 31(7): 1568-1575
    [133]D. G. Sun, W. Y. Deng, S. L. E, et al., Study for performance of thermo-optic matrix switches with flexible switching units and Banyan networks, Optical Engineering, 2006, 45(1): 014602
    [134]K. E. Batcher, Sorting network and their applications, 1968 SJCC, AFIPS Conference Proceeding, 1968, 37: 307-314
    [135]A. Huang, and S. Knauer, Starlite: A wideband digital switch, in Proc. IEEE GLOBCOM’84, Atlanta, GA, 121-125
    [136]N. F. Tzeng, P. C. Yew, and C. Q. Zhu, A fault-tolerant scheme for multistage interconnection networks. Parallel Processing. Proc. Int’l Conf. 1985,(1): 368-375
    [137]H. Miyahara, Y. Teshiqawara, T. Haseqawa, Delay and throughput evaluation of switching methods in computer communication networks, IEEE Trans. Commun., 1978, 26(3): 337-344
    [138]C. Clos, A study of non-blocking switching networks, Bell System Tech. Jour., 1953, 407-424 第六章
    [139]Y. Zha, D. G. Sun, T. G. Liu, Y. Zhang, X. Q. Li and X. H. Fu, Rearrangeable nonblocking 8×8 matrix optical switch based on silica waveguide and extended banyan network, IEEE Photonics Technology Letters (Acceptted)
    [140]查英,孙德贵,刘铁根,张鹰,李小奇,基于Banyan网络的严格无阻塞SiO2波导 4×4 矩阵光开关,光电子激光(已录用)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700