GaAs/GaAlAs材料双异质结BOA型光开关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
未来基于光分插复用(OADM)和光交叉连接(OXC)的全光网需要能满足其高速交换需要的光开关单元及其阵列。波导类光开关以其高速的特性将在全光交换系统中得到广泛应用,因此研制高性能的波导型光开关单元有其重要性和迫切性。
     本文在GaAs/GaAlAs双异质结材料上采用BOA型结构进行波导型光开关的集成光学芯片的研制。基于GaAs材料的集成光学器件不仅具有良好的光传输特性、温度特性、抗辐射能力和其较宽的透明波长范围,还有望进一步实现芯片与光源、光调制器、光探测器和半导体光放大器等其它光电器件以及集成电路的单片集成;采用GaAs/GaAlAs双异质结材料制作的光开关可以得到较低的开关电压,而且采用GaAs/GaAlAs异质结材料的光传输损耗很小。而BOA型结构(或称为零间隙定向耦合型)光开关利用了最大的模色散(△β),不需要严格控制特殊的制造长度或制造范围,结构简单,从其两个输出端可以得到很高的消光比,是一种很好的2×2波导型光开关单元,同时也是光开关阵列的一种较好的选择。本研究就是在GaAs/GaAlAs双异质结材料上设计高消光比,低驱动电压,高速度,较宽范围工作波长不敏感的高性能BOA光开关。
     本文所设计的GaAs/GaAlAs双异质结材料BOA光开关的设计包括两部分:脊波导和开关结构设计以及电极结构的设计。在脊波导的设计中,我们的分析表明BOA光开关的电极覆盖双模波导区对TE/TM具有不同的传输损耗,对TE模的损耗很小,可以忽略不计;而对TM模,通过优化设计材料结构可以得到显著的吸收。利用此特性可消除输入TE/TM模式偏振对开关消光比的影响。在BOA结构设计中,为了实现器件的低损耗设计,我们采用上升反正弦S弯曲构成对称Y分支。
     在电极结构设计中,我们首先提出并运用传输矩阵理论和有效折射率法系统地分析了BOA光开关的电极特性,分析表明:可以通过选取电极的最优宽度使半波电压最小;电极的偏移对消光比的影响起主要作用,要得到大于40dB的消光比,电极位置的偏差要小于0.3μm;对于通常的器件制作工艺,很难达到要求,在本文中,作者提出一种电极的自对准工艺技术,消除了电极的套刻偏差,可得到大于40dB的消光比,预期该技术将有利于提高BOA型光开关阵列的成品率和提高消光比。
     结合理论分析并结合具体工艺条件,我们优化设计了GaAs/GaAlAs双异质结BOA型光开关。我们设计的集总电极型BOA光开关理论3dB调制带宽大于2.5GHz,半波电压为5V,消光比大于40dB,对TM模的理论衰减大于45dB,而对TE模的损耗小于0.15dB。
     为了满足更高速光开关的需求,我们提出将行波电极结构运用于
    
     浙江大学傅士学位论文
    GaAS/GaAIAS双异质结BOA光开关,并应用谱域法分析了行波电极型BOA光开关
    微波特性,我们发现:基于重掺杂衬底的BOA光开关由于重掺杂衬底的慢波效应,
    无法实现微波和光波的速度匹配。我们选择在 SI GaAS衬底上生长重掺杂层,通
    过控制其厚度来设计速度匹配的BOA光开关行波电极,实现BOA光开关的高速和
    高带宽,本文结合BOA型光开关的特点提出一种行波电极型BOA光开关结构,其
    理论3dB调制带宽大于20GHZ。。i
     在对芯片的各部分进行理论分析和设计的同时,我们研究了器件的制作工
    艺,并提出了一种有效提高GaAs/GaAIAS双异质结BOA光开关性能的新型工艺,
    预期该技术将有利于提高BOA型光开关阵列的成品率和提高消光比。
     在前面器件理论分析、设计和工艺研究的基础上,我们完成了GaAS/GaAIAS
    双异质结BOA波导型光开关集成光学芯片的制作,单个器件的大小可以控制在
    15Xlnd以内,制作后的器件形状较理想c但目前由于条件所限,我们目前仅测
    量了器件的AI--GaAS SChottky特性和器件初步效应。进一步的参数测量,我们
    正与相关单位合作待器件封装后作进一步测试。
     本文的理论分析和设计思想,不仅适应于GaAS材料的BOA器件,也适用于
    其他的制作波导类器件的材料。本文提出的新型工艺可以为BOA器件的实用化所
    应用,同时本文提出的行波电极型BOA光开关为BOA应用于超高速开关提出了创
    新的设计思路。
All-Optic-Network based on OXC and OADM needs high-speed optical switch to realize photonic switching. Due to high switching speed, waveguide optical switch will be applied widely to optical switching systems. It is urgent and important to develop waveguide optical switch with high performance.
    In this dissertation, a BOA-type waveguide optic switch with double-heterostructure GaAs/GaALAs has been researched. GaAs-based integrated optical devices have good temperature, good anti-radiation and optical-transmission characteristics, and also have wide transparent range of wavelength. They can also be integrated on a chip with optical active devices and electronic devices, such as semiconductor laser, optical modulation, optical amplifier, PIN, and so on. The optical switch with double-heterostructure GaAs/GaALAs has low switching-voltage and light loss. And the BOA-type optical switch utilizes maximum modal dispersion (A P ), does not require a specific fabrication length or length range to operate, has simple structure, and can exhibit very high extinction-ration from its two output ports; So it is suitable for a 2 X 2 unit of optical switch array. In this dissertation, the BOA device with high extinction-ration, low drive-voltage, high-speed switch and insensitive to wide range of light wavelength, has been developed on double-heterostructure GaAs/GaAIAs.
    In this dissertation, the design of the BOA-rype waveguide optical switch mainly consists of two parts:
    1. The design of rib waveguide and structure. Analyzing the characteristic of rib waveguide, we obtain that the loss of different modes (TE or TM mode) is different in the dual-zone of up-electrode. So, it can be used as TE/TM mode polarizer to eliminate the polarization of input light by meanings of optimal design of rib waveguide. A S-bend symmetric Y-branch has been proposed to obtain lower light transmission loss.
    2. The design of electrode structure. The relationships between extinction-ration, half-wave voltage and electrode structure have been analyzed with transfer matrix theory and effective index method. The following conclusions have been made: 1). The electrode width can be optimized to get the lowest half-wave voltage of BOA-type optical switch. 2). The symmetry of electrode is crucial for
    
    
    
    the extinction-ration. Results show: To gain extinction-ration greater than 40dB, the offset of electrode position should be less than 0.3 micron. 3). A process so-called Self-adjustable Technics has been proposed to get high extinction-ration. With adopting the technics, the BOA device fabricated will have the excellent symmetry of electrode and the high extinction-ration (>40dB). According to our theoretic analysis and the realistic fabricating condition, the BOA device with double-heterostructure GaAs/GaALAs has been proposed to obtain 3dB bandwidth greater than 2.5 GHz, half-wave voltage about 5V, extinction-ration less than -40dB, transmission loss of TM mode greater than 45dB and transmission of TE mode less than 0.15dB.
    To obtain higher switching speed, we proposed that traveling-wave electrode is applied to BOA device. The traveling-wave electrode BOA-type device has been analyzed with Spectrum Domain Method. The results show: The BOA device of N+-doped substrates can not obtain the velocity-match between the lightwave and microwave due to the slow-wave and skin effect of N+-doped substrates; we can choose the thickness of N^-doped layer on the S.I. substrates so as to give a microwave index close to the optical index, thus the high bandwidth and high switching speed of the BOA device can been gained; Combining the characteristics of the BOA device, we proposed a traveling-wave electrode BOA-type device of 3dB bandwidth greater than 20GHz.
    On the basis of the theoretical analysis, design and the study on the fabricating technique, we have made the fabrication of the chip using the self-adjusted technics. The size of the chip is within 15xlmm2. The shape of the optical switch unit satisfied our design. Because of the limitation of the m
引文
1. P. Lagasse, P. Demeester, A. Ackaert, W. Van Parys, B. Van Caenegem (IMEC), M. O'Mahony, A Tzanakaki (UoE), K. Stubkjaer (DTU), and J. Benoit (ENST), A European view by the HORIZON project and the ACTS Photonic Domain (Nov 1999 draft edition )
    2. www.c-fol.net
    3. Cada M., Muller G., Greil A., Stoll L., and Wolff U., "Dynamic switching characteristics of a 4*4 InP/InGaAsP matrix switch", Electronics Letters, vol.28(23) , pp.2149-2150, 1992
    4. Sahara R.T., Hummel S.G., Steier W.H., and Dapkus P.D.," AlGaAs waveguide optically controlled directional coupler latch" . Journal of Lightwave Technology, vol.11(10) , pp.1533-1538, 1993
    5. Holtman C., " Integration and applications of Ⅲ-V semiconductor optical amplifiers", 1998. 24th European Conference on Optical Communication, vol.1, pp.499-500, 1998
    6. Peng Jihu, Li Dejie, Shen Lei, and Wang Weidong, "A novel BOA type polarization independent optical switch", 1990 IEEE Region 10 Conference on Computer and Communication Systems 1990. IEEE TENCON'90. , vol.1 , pp.128-129, 1990
    7. McGuire A., Thomas A.P. Booth, and R.C., "Optimisation of LiNbO3 BOA waveguide switches operating at 1. 3μm", Electronics Letters, vol.26(25) , pp.2077-2079, 1990
    8. Wang W., Tavlykaev R., Ramaswamy, and R.V., "Bandpass traveling-wave Mach-Zehnder modulator in LiNbO3 with domain reversal", IEEE Photonics Technology Letters, vol.9(5) , pp.610-612, 1997
    9. Fujiwara T., Watanabe A., and Mori H. "Measurement of uniformity of driving voltage in Ti:LiNbO3 waveguides using Mach-Zehnder interferometers", IEEE Photonics Technology Letters, vol.2(4) , pp.260-261, 1990
    10. S.Samson, R. F. Tavlykaev, and R. V. Ramaswamy, "Two-Section Reversed △ β Switch with Uniform Electrodes and Domain Reversal", IEEE Photon. Technol. Lett., vol. 9(2) , pp.197-199, 1997.
    11. Meinrad Schienle, Gundolf wenger, Sepp Eichinger. Jurgen Muller, Lotharstoll, and Gustav Muller, "A 1×8 InP/InGaAsP Optical Matrix Switch with Low Insertion Loss and High crosstalk Suppression", J. Lightwave Technol, vol. 14(5) , pp. 822-825, 1996.
    
    
    12. M. Schienle, R. Kyburz, W. Vogt, M. Bachmann, T. Brenner, E. Gini, and H. Melchior, "Low-Loss Polarization-Insensitive InP-InGaAsP Optical Space Switches for Fiber Optical Communication", IEEE Photon. Technol. Lett., vol. 8(5) , pp.632-634, 1996.
    13. Takashi Goh, Mitsuho Yasu, Kuninori Hattori, Akira Himeno, Masayuki Okuno, and Yasuji Ohmori, "Low-Loss and High-Extincrion-Ration Silica-Based Strictly Nonblocking 16×16 Thermooptic Matrix Switch", IEEE Photon. Technol. Lett, vol. 10(6) , pp. 810-812, 1998.
    14. Ali Shakouri, Bin Lin, Boo-Gyoun Kim, Patrik Abraham, Andrew W. Jachson, Arthur C. Gossad, and John E. Bowers, "Wafer-Fused Optoelectronic for Switching", J. Lightwave Technol, vol.16(12) , pp. 2236-2242, 1998.
    15. Boussey J. , and Chouteau S. , " Optoelectronic integration in silicon-on-insulator technologies" , 1998. CAS '98 Proceedings, vol.2 , pp.407-415, 1998
    16. Goh T., Yasu M., Hattori K.,Himeno A., Okuno M., and Ohmori Y, "Low-loss and high-extinction-ratio silica-based strictly nonblocking 16/spl times/16 thermooptic matrix switch", IEEE Photonics Technology Letters, vol. 10(6) , pp.810-812, 1998
    17. Himeno A., Kato K., and Miya T., Silica-based planar lightwave circuits ", IEEE Journal on Selected Topics in Quantum Electronics, vol.4(6) , pp.913-924, 1998
    18. Imamura S. , " Polymeric optical waveguides [materials, packaging and applications]", 1998 IEEE/LEOS Summer Topical Meetings Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and Optoelectronics., pp.Ⅲ/35-Ⅲ/36, 1998
    19. Diemeer M.B.J., Brons J.J., and Trommel E.S., "Polymeric optical waveguide switch using the thermooptic effect", Journal of Lightwave Technology, vol.7(3) , pp.449-453, 1989
    20. Hida Y, Ooba N., Yoshimura R., Watanabe T., Hikita M., and Kurihara T., "Influence of humidity on transmission in a Y-branch thermo-optic switch composed of deuterated fluoromethacrylate polymer waveguides", Electronics Letters, vol.33(7) , pp.626-627, 1997
    21. Nobert Keil, Huihai Yao, and Crispin Zawadzki, "A Novel Type of 2×2 Digital Optical Switch Realized by Polymer Waveguide Technology", ECOC'96, v.2, pp. 71-74, 1996.
    22. Tateni Ido, Mari Koizumi, and Hiroakl Inoue, "A 1×8 Digital-Optical
    
    Switch using Fluorinated-Polyimide Waveguide" , OFC' 98, pp. 148-149, 1998.
    23. Albert Borreman, Tsjerk Hoekstra, and Mart Diemeer, "Polymeric 8×8 Digital Optical Switch Matrix", ECOC'96, v.5, pp. 59-62, 1996.
    24. Kato Y., Mori K., Mase T., Takahashi A., Imaki O., and Kaku R., " Development of 4×4 MEMS optical switch", 2000 IEEE/LEOS International Conference on Optical MEMS, pp.95-96, 2000
    25. Lin L.Y., and Goldstein E.L., "MEMS for free-space optical switching", LEOS '99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting, vol.2, pp.483-484, 1999
    26. Lin L.Y, Goldstein E.L., Lunardi L.M., and Tkach R.W., " Micromachined optical-switching technologies for WDM networks" , Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest of the LEOS Summer Topical Meetings, pp.Ⅱ57-Ⅱ58, 1999
    27. Hartnagel H.L., Mutamba K., Pfeiflfer J., Riementschneider R., and Peerlings J., "MEMS based on Ⅲ-V-compounds for sensing applications and optical communication", 1999 57th Annual Device Research Conference Digest, pp.112-115, 1999
    28. Viktorovitch P., Leclercq J.-L., Letartre X., Benyattou T., Greek S., Hjort K., Chitica N. , and Daleiden J. , " Tunable microcavity based on Ⅲ-V semiconductor micro-opto-electromechanical structures (MOEMS) with strong optical confinement", 1998 IEEE/LEOS Summer Topical Meetings Broadband Optical Networks and Technologies: An Emerging Reality/Optical MEMS/Smart Pixels/Organic Optics and Optoelectronics., pp.Ⅱ/63-Ⅱ/64, 1998
    29. Zhang Z.L., Porkolab G.A., and MacDonald N.C., ''Submicron, movable gallium arsenide mechanical structures and actuators", 1992. MEMS '92, IEEE Proceedings. An Investigation of Micro Structures. Sensors. Actuators, Machines and Robot., pp.72-77, 1992
    30. C. Gonzalez, and S. Collins, "Magnetically Actuated Fiber-Optic Switch with Micromachined Positioning Stages". Opt. Lett., vol. 22(10) . pp.709-711, 1997.
    31. C. Randy Giles. "Novel Micromechnical Network Elements", OFC'2000. pp. 243,2000.
    32. H.Toshiyoshi, and H.Fujita, "Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix", J. Microelectromech. Syst., vol. 5(4) , pp. 231-237, 1996.
    
    
    33. Makoto Sato, Fusao Shimokawa, Shuichiro Inagaki, and Yasuhide Nishida, "Waveguide Optical Switch for 8:1 Standby System of Optical Line Terminals", OFC'98, pp. 194-195, 1998.
    34. J.E. Fouquet, "Compact Optical Cross-Connect Switch Based on Total Internal reflection in a Fluid-Containing Planar Lightwave Circuit", OFC'2000, pp. 204-206, 2000.
    35. N.Riza, and S.Yuan, "Low Optical Interchannel Crosstalk, Fast Switching Speed, Polarisation Independent 2×2 Fiber Optic Switch using Ferroelectric Liquid crystals", Electron. Lett., vol. 34(13), pp.1341-1342, 1998.
    36. J. Bell, K. Al-hemyari, J. S. Aritchison, C. N. Ironside, G. T. Kennedy, and W. Sibbent, "Demonstration of All-Optical Switching ina a Symmetric Mach-Zehnder Interferometer", Electron. Lett., vol. 31(24), pp. 2095-2096, 1995.
    37.李德杰,彭吉虎,吴伯瑜,王卫东,“耦合系数可调定向耦合光开关阵”,第五届全国纤维光学与集成光学学术讨论会(厦门),pp.262—263,1992
    38.陆荣鑫,杨德伟,“1.3μm Ti:LiNbO_3 4×4光开关阵列”,电子科技大学学报vol.20(4),pp.431—435,1991
    39. H. Feng, X. Li, Z. Yang, and M. Wang, "2×2 GaAs asymmertric Mach-Zehnder interferometer switch", Appl. Phys. Lett., vol. 60(3), pp. 2843-2845, 1992
    40.冯浩,李锡华,王明华,杨左娅,“GaAs 2×2 Mach—Zehnder光波导开关/调制器”,光学学报,vol.12(11),pp.1043—1047,1992
    41.冯浩,王明华,“GaAs 1×2 Mach—Zehnder波导开关/调制器”,半导体学报,vol.15(2),pp.102,1993
    42.庄婉如,林雯华,杨培生,李任,“载流子注入全内反射型GaAs/GaAlAs光波导开关”,光电子器件与集成技术年会论文集(北京),pp.505—509,1989
    43.刘恩科,刘育梁,张声良,李国正,周帆,程美乔,李秉臣,葛璜,赵长威,王昕,沈宏,“非对称全内反射型硅红外波导光开关”,光电子器件与集成技术年会论文集(杭州),pp.165—166,1994
    44.曾庆济,黄勇,钟祖平,“一种新型德LD增益光门空分矩阵光开关”,光电子器件与集成技术年会论文集(杭州),pp.171—172,1994
    45. Ce Zhou Zhao, Ai Hua Chen, E. K. Lin, and G. Z. Li, "Silicon-on-Insulator Asymmetric Optical Switch Based on Total Internal Reflection", IEEE Photon. Technol. Lett., vol.9(8), pp. 1113-1115, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700