光学效应与介质微结构的对称性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,多铁材料由于其重要的理论价值和广泛的应用前景而备受关注。多铁材料指铁磁性、铁电性或铁弹性同时共存的材料,是同时具有时间反演和空间反转对称性破缺的材料,因此具有一些特异的光学性质。例如,可以产生与光的极化态无关的光学效应:取向双折射或二向色性,或具有非互易的传播特性,即所谓光磁电效应。对于一般的材料,从外界同时施加相互垂直的电场和磁场,也可以导致时空对称性同时破缺的坏境。因此,相互垂直的电场和磁场( )与光的波矢方向平行和反平行时的折射率或吸收系数将有差别。对于多铁材料,由于本身具有内禀的对称破缺特性,从而无须施加外界电场或磁场即可实现光的非互易的取向双折射。对这种与光极化状态无关的光学效应的研究,不仅在理论上具有重要的学术价值,应用上也有着广阔的前景,已成为凝聚态物理和材料科学界的前沿和热点课题。
     本文重点研究了与介质对称性相关的磁光效应以及与极化无关的非互易光磁电效应。主要集中在:
     1.可控的磁光克尔效应
     我们针对实现磁光效应可调这一目标,利用液晶的物理性质会随外电场、磁场或温度而发生非常显著变化的特点,首次将液晶材料引入磁光子晶体中,应用快速Berreman矩阵方法计算了系统的磁光克尔效应。这是一种新的调节磁光效应的方案。液晶作为各向异性材料,处理其光学行为是比较复杂的,需要计算液晶指向矢的空间分布情况,有很大的计算量。为了简便起见,我们在第二章第一部分首先视液晶为近似各向同性材料,利用其非常光折射率随着外电压改变而变化的特性进行计算。为了获得更精确的结果,我们进一步在连续弹性体理论的基础之上,根据自由能极小的原理,采用牛顿法计算了液晶指向矢在不同位置时的分布情况,并进而相对准确地提供了磁光克尔效应的值。我们的工作不仅对磁光子晶体的磁光效应的可控性做出了新的理论预测,更为进一步开展有关的实验工作提供了良好的基础。此外,在第二章第二部分我们应用磁性材料的特性随着外磁场以及温度变化的特点,提出实现磁场控制磁纳米线复合物负折射率的方案。
     2.运动介质的光磁电效应
     实现和增大光磁电效应是一个重要的研究课题。我们提出一个各向同性运动介质实现光磁电效应的新方案。运动介质的本构关系与反铁磁材料的本构关系具有很大的相似之处,而反铁磁Cr2 O3的旋磁双折射计算过程相对复杂,它将磁感应强度折算到电极化矢量中,给出了反铁磁材料有效的电极化矢量进行计算。我们发展了一种将电磁波方程和本构方程直接耦合的方法来计算磁电介质的光学效应,这样的算法简单而直接,适用性强。我们的计算结果表明:介质的运动所产生的各向异性将直接导致两个相反方向的波矢量大小的差异,而这正是光磁电效应的实质。这是由于物质的运动带来各向异性的电磁环境,从而电位移矢量和磁感应强度之间出现交叉耦合项,我们可以称之为“赝磁电耦合”项,正是它的存在直接导致了运动介质的光磁电效应。用介质的运动来实现光磁电效应的方案,创新性在于它与介质的运动速度和内禀折射率直接关联,可通过它们来调节光磁电效应的强弱,而且它扩大了选用材料的范围。我们的工作也提供了增强光磁电效应的可能性。
     3.磁光子晶体极化无关取向各向异性光效应
     对于周期单元由磁性材料和两个各向异性的介电材料组成的磁光子晶体,它包含了时间和空间对称性的破缺。由于光磁电效应极化无关的特性,我们将必须讨论非极化的电磁波与物质之间的相互作用,这就要求我们运用与以往讨论极化相关光学效应不同的理论处理方法。一般来讲,若需要讨论自然光和物质之间的相互作用,我们必须把琼斯(Jones)矩阵转化为穆勒(Muller)矩阵。穆勒矩阵多见于处理天体以及混沌问题,我们首次采用这样的矩阵计算了磁光子晶体的光学效应。我们的研究结果表明:在这样的磁光子晶体中的确存在与极化无关的非互易传播行为,它依赖于入射波的方向是从左侧入射还是右侧入射。系统的时空对称性破缺,具有非对称的色散谱,从而直接导致了非互易的传输特性。这个模型的创新性在于多相组分的复合材料可以实现光磁电效应,大大扩展了光磁电效应材料选择的范围。而这种构型的取向各向异性光效应的数量级也比较大,为非互易光学效应的应用提供重要参考。
In recent years, multiferroic materials have attracted much attention for its scientific and technologic significance. A single-phase multiferroic material is one that possesses two—or all three—of the so-called‘ferroic’properties: ferroelectricity, ferromagnetism, antiferroic order and ferroelasticity. Materials without space inversion and time reversal symmetries, including the multiferroics, show a unique nonreciprocal magneto-optical effect. Broken inversion symmetry and time-reversal symmetry give rise to directional birefringence even for unpolarized light, which is nonreciprocal. Such directional birefringence is conventionally termed optical magnetoelectric effect (OME) or magnetochiral effect (MCH). The nonreciprocal optical property derived from the OME effect depends on the direction of light propagation vectork , the applied electric and magnetic fields. The dielectric function depends on whether light propagation is parallel or antiparallel to the direction of . Multiferroic materials such as GaFeO3 exhibit the spontaneous OME effect even in the absence of the external fields because multiferroic materials do not support the spatial inversion and time reversal symmetries simultaneously. Optical effects in media with broken symmetry have been of great interest from both scientific and applicational viewpoints.
     The purpose of this work is to study optical properties of materials without time reversal symmetry and (or) spatial inversion symmetry. The main results of our study are listed as follows.
     I. The study of the controlled magneto-optical effect in one-dimensional magnetophotonic crystal
     An electrically controllable Kerr effect in magnetophotonic crystal consisting of magnetic materials and nematic liquid crystals is showed based on the properties of nematic liquid crystals. First, we treat nematic liquid crystal as a homogeneous isotropic dielectric layer approximately. Numerical results show that Kerr effect is changed remarkably by adjusting the permittivity of liquid crystal, and the maximum value of kerr rotation angle becomes large as the permittivity of liquid crystal increases. Such properties demonstrate the possibility of tunable magneto-optical devices based on nematic liquid crystal. It offers a new scheme to realize the tunable magneto-optical effect. Because of its simplicity and effectiveness, our model can offer a good theoretical basis for experiments in tunable magneto-optical effect. Furthermore, we investigate the tunable negative refraction of the ferromagnetic nanowires composite.
     II. The study of optical magnetoelectric effect with moving media
     We report a theoretical investigation of the possibility of realizing the optical magnetoelectric effect with a moving medium. The movement of the medium can develop the anisotropic electromagnetic environment; therefore, it will bring about the cross-coupling term between the electric displacement vector and magnetic induction in the rest frame of the laboratory. We may call the cross-coupling term in a moving media“pseudomagnetoelectric effect,”which will lead to optical magnetoelectric effect directly. This unique approach is quite distinct from other methods using conventional multiferroic materials or artificial materials with broken space inversion and time reversal symmetries simultaneously. Its advantage lies in the controllability of the optical properties, which change with the change of velocity and intrinsic refractive index of the moving medium. This work in the present frame offers a route to tune this phenomenon.
     Ⅲ. The study of directional anisotropic optical effect in magnetophotonic crystal
     Polarization-independent directional anisotropic optical effect in one dimensional magnetophotonic crystals consisting of ferromagnetic materials and anisotropic dielectric layers with misaligned in-plain anisotropy is investigated. We have known that such a configuration do not support time reversal and space inversion symmetries simultaneously. The existence of the directional anisotropic optical effect is examined according to Muller matrix method based on the asymmetric properties of the system. Our results show that this effect can be realized in such magnetophotonic crystals without the presence of the multiferroic materials. And the directional anisotropic optical effect has directional anisotropy which depends on whether the wave propagates from the left or right side of the magnetophotonic crystal. Furthermore, the order of magnitude of this unique electromagnetic effect can be up to 10?3 . We expect that our results could be useful for the design of polarization-independent devices based on magnetophotonic crystals.
引文
[1]. E. Yablonovitch, Phys. Rev. Lett., 1987, 58: 2059.
    [2]. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K.Nishimura, M. Inoue, J. Appl. Phys., 2003, 93: 3906.
    [3]. M. Inoue, K. Arai, T. Fujii, M. Abe, J. Magn. Soc. Jpn, 1999, 23: 1861.
    [4]. S. Sakaguchi, N. Sugimoto, Opt. Commun., 1999, 162: 64.
    [5]. A. Figotin and I. Vitebskiy, Phys. Rev. B, 2003, 67: 165210.
    [6]. A. Figotin and I. Vitebskiy, Phys. Rev. E, 2001, 63: 066609.
    [7]. A. Figotin and I. Vitebskiy, J. Magn. Magn. Mater., 2003, 67: 165210.
    [8]. Manfred Fiebig, J. Phys. D: Appl. Phys. 2005, 38: R123-R152; M. Fiebig et al, Nature, 2002, 419: 818.
    [9]. W. F. Brown, JR. R. M. Hornreich, and S. Shtrikman, Phys. Rev. , 1968, 168: 574.
    [10]. Haim Yatom and Robert Englman, Phys. Rev., 1969, 188: 793.
    [11]. Geroge T. Rado, Phys. Rev. Lett., 1969, 13: 335.
    [12]. Schmid H 2004 Magnetoelectric Interaction Phenomena in Crystals ed M. Fiebig et al (Dordrecht:Kluwer) p1.
    [13]. Aizu K 1970 Phys. Rev. B, 2: 754; M. Murakami, etal, Appl. Phys. Lett., 2006, 88: 152902.
    [14]. Newnham R E and Cross L E 1974 Mater. Res. Bull. 9: 927; M. Ye, etal, Appl. Phys. Lett., 2005, 87: 222114.
    [15]. Newnham R E and Cross L E, Mater. Res. Bull., 1974, 9: 1021.
    [16]. Newnham R E, Am. Mineral., 1974, 59: 906.
    [17]. Newnham R E and Cross L E, Ferroelectrics, 1976, 10: 269; Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima and Y. Tokura, Phys. Rev. Lett., 2006, 96: 207204; Kouhei Takahashi, Noriaki Kida, and Masayoshi Tonouchi, Phys. Rev. Lett., 2006, 96: 117402.
    [18]. Kei Sawada and Naoto Nagaosa, Phys. Rev. Lett., 2005, 95: 237402.
    [19]. Alok Sharan, etal, Appl. Phys. Lett., 2003, 83: 5169.
    [20]. Alok Sharan, etal, Phys. Rev. B, 2004, 69: 214109.
    [21]. V. E. Koronovskyy, S. M. Ryabchenko and V. F. Kovalenko, Phys. Rev. B, 2005, 71: 172402.
    [22]. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 2006, 442: 759; T. Kimura et al., Nature, 2003, 426, 55; Y. Tokura, Science, 2006, 312: 1481; Sang-Wook Cheong and Maxim Mostovy, Nature materials, 2007, 6: 13.
    [23]. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S-W. Cheong, Nature, 2004, 429: 392; Nicola A. Spaldin and Manfred Fiebig, Science, 2005, 309: 391; R.Ramesh and Nicola Spaldin, Nature materials, 2007, 6: 21.
    [24]. A. Cotton and M. Mouton, Compt. Rendu., 1902, 135: 235; 1905, 141: 349; 1907, 145: 229; 1907, 145: 870.
    [25]. F. Pockels, Radium, 1913, 10: 152.
    [26]. S. Kielich, in Molecular Electro-Optics, edited by C. T. O’Konski (Marcel Dekker, New York, 1976, p. 445.
    [27]. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, and J. Y. Thepot, Phys. Rev. Lett., 2001, 87: 183003.
    [28]. G. L. J. A. Rikken, C. Stronhm, and P. Wyder, Phys. Rev. Lett., 2002, 89: 133005.
    [29]. J. H. Jung, etal, Phys. Rev. Lett., 2004, 93: 037403.
    [30]. M. Kubota, etal, Phys. Rev. Lett., 2004, 92: 137401.
    [31]. N. Kida, etal, Phys. Rev. Lett., 2005, 94: 077205.
    [32]. Kei Sawada, etal, Appl. Phys. Lett., 2005, 87: 042503.
    [33]. N. Kida, etal, Phys. Rev. Lett., 2006, 96: 167202.
    [34]. B. B. Krichevtsov et al., J. Phys.: Condens. Matter, 1993, 5: 8233.
    [35]. J. H. Jung, Journal of the Korean Physical Society (2005, 46, 508; Phys. Rev. Lett., 2004, 93: 037403.
    [36]. M. Golosovsky, Y. Neve-Oz, and D. Davidov, Phys. Rev. B, 2005, 71: 195105.
    [37]. Jiang-Tao Liu and Kai Chang, Appl. Phys. Lett., 2007, 90: 061114.
    [38]. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams and I. C. Khoo, Phys. Rev. B, 2005, 72: 233105.
    [39]. Chen-Yang Liu and Lien-Wen Chen, Phys. Rev. B, 2005, 72: 045133.
    [40]. V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, V. A. Melnikov, E. V. Astrova and Yu. A. Zharova, Appl. Phys.Lett., 2007, 90: 011908.
    [41]. Oleg P. Pishnyak and Oleg D. Lavrentovich, Appl. Phys. Lett., 2006, 89: 251103.
    [42]. W. F. Brown, Jr., S. Shtrikman, and D. Treves, J. Appl. Phys., 1963, 34: 1233.
    [43]. B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge, Phys. Rev. Lett, 2000, 85: 844.
    [44]. V. V. Pavlov and R. V. Pisarev, A. Kirilyuk and Th. Rasing, Phys. Rev. Lett., 1997, 78: 2004.
    [45]. F. A. Pinheiro1, A. S. Martinez, and L. C. Sampaio1, Phys. Rev. Lett., 2000, 84: 1435.
    [46]. Masanori Abe and Takeshi Suwa, Phys. Rev. B, 2004, 70: 235103.
    [47]. N. A. Yusuf, J. Shobaki, H. Abu-Sa and I. Abu-Aljarayesh, J. Magn. Magn. Mater., 1995, 149: 0373.
    [48]. M. Rasa and A. P. Philipse and D. Jamon, Phys. Rev. E, 2003, 68: 031402.
    [49]. M. Mansuripur, The Principles of Magneto-Optical Recording (Cambridge University Press, Cambridge, 1995).
    [50]. S. Y. Yang, Y. P. Chiu, B. Y. Jeang, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett., 2001, 79: 2372; H.-E. Horng, C.-Y. Hong, S. L. Lee, C. H. Ho, S. Y. Yang, and H. C. Yang, J. Appl. Phys., 2000, 88: 5904; C.-Y. Hong, J. Appl. Phys., 1999, 85: 5962.
    [51]. M. Golosovsky, Y. Neve-Oz, and D. Davidov, Phys. Rev. B, 2005, 71: 195105.
    [52]. Jiang-Tao Liu and Kai Chang, Appl. Phys. Lett., 2007, 90: 061114.
    [53]. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams and I. C. Khoo, Phys. Rev. B, 2005, 72: 233105.
    [54]. Chen-Yang Liu and Lien-Wen Chen, Phys. Rev. B, 2005, 72: 045133.
    [55]. V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, V. A. Melnikov, E. V. Astrova and Yu. A. Zharova, Appl. Phys. Lett., 2007, 90: 011908.
    [56]. Oleg P. Pishnyak and Oleg D. Lavrentovich, Appl. Phys. Lett., 2006, 89: 251103.
    [57]. Douglas H. Werner, Do-Hoon Kwon, Iam-Choon Khoo, Alexander V. Kildishev and Vladimir M. Shalaev, Optics Express, 2007, 15: 3342.
    [58]. Qian Zhao, Lei Kang, Bo Du, Bo Li, Ji Zhou, Hong Tang, Xiao Liang, and Baizhe Zhang, Appl. Phys. Lett., 2007, 90: 011112.
    [59]. Yao-Yu Wang, and Lien-Wen Chen, Optics Express, 2006, 14: 10580.
    [60]. Lei Kang, Qian Zhao, Bo Li, Ji Zhou, and Hao Zhu, Appl. Phys. Lett., 2007, 90: 181931.
    [19]. I. C. Koo, D. H. Werner, X. Liang, and A. Diaz, Optics Letters, 2006, 31: 2592.
    [20]. A. Figotin and I. Vitebskiy, Phys. Rev. E, 2005, 71, 036612; A. Figotin and I. Vitebsky, Phys. Rev. E, 2003, 68: 036609.
    [21]. H. X. Da, C. Xu, and Z. Y. Li, Eur. Phys. J. B, 2005, 45: 347.
    [22]. H. Wohler, G. Haas, M. Fritsch, and D. A. Mlynski, J. Opt. Soc. Am. A, 1988, 5: 1554.
    [23]. Chun-Yeol You and Sung-Chul Shin, Appl. Phys. Lett., 1997, 70: 2595.
    [24]. K. Balasubramanian, A. Marathay, and H. A. Macleod, Thin Solid Films, 1988, 164: 391.
    [25]. C.-S. Kee, J. Y. Park, S. J. Kim, H. C. Song, Y. S. Kwon, N. H. Myung, S. Y. Shin, and H. Lim, Phys. Rev. E, 1999, 59: 4695; C.-S. Kee, J.-E. Park, and H. Lim, IEEE Trans. Microwave Theory Tech., 1999, 47: 2148.
    [26]. A. Saib, D. Vanhoenacker-Janvier, I. Huynen Laboratoire, A. Encinas, L. Piraux, E. Ferain and R. Legras, Appl. Phys. Lett., 2003, 83: 2378-2380.
    [27]. M Inoue, R Fujikawa, A Baryshev, A Khanikaev, P B Lim, H Uchida, O Aktsipetrov, A Fedyanin, T Murzina and A. Granovsky, J. Phys. D: Appl. Phys., 2006, 39: R151-161.
    [28]. A. G. Zhdanov, A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, H. Uchida and M. Inoue,Journal of Magnetism and Magnetic Materials, 2006, 300: e253-e256.
    [29]. A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, K. Nishimura, H. Uchida and M. Inoue,Journal of Magnetism and Magnetic Materials, 2004, 282: 256-259.
    [30]. Roland H. Tarkhanyan and Dimitris G. Niarchos, Optics Express, 2006, 14: 5433.
    [31]. King-Yan Fong and P. M. Hui, Appl. Phys. Lett., 2007, 91: 171101.
    [32] V. A. Tolmachev, T. S. Perova, S. A. Grudinkin, V. A. Melnikov, E. V. Astrova and Yu. A. Zharova, Appl. Phys. Lett., 2007, 90: 011908.
    [33] Young-Ki Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee and H. Lim, and J. C. Lee, Appl. Phys. Lett., 2001, 79: 15.
    [1]. J. B. Pendry, Phys. Rev. Lett., 2000, 85: 3966.
    [2]. Hongsheng Chen, Bae-Ian Wu, Baile Zhang, and Jin Au Kong, Phys. Rev. Lett., 2007, 99: 063903.
    [3]. Cheng-Wei Qiu, Hai-Ying Yao, Le-Wei Li, Said Zouhdi, and Tat-Soon Yeo, Phys. Rev. B, 2007, 75: 155120.
    [4]. R. A. Shelby, D.R. Smith, S. Schultz, Science, 2002, 292: 77.
    [5]. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, Phys. Rev. Lett., 2006, 97: 073905.
    [6]. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, Appl. Phys. Lett., 2007, 91: 062511; W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee and R. D. Averitt, Phys. Rev. Lett., 2007, 96: 107401; Aloyse Degiron, Jack J. Mock, and David R. Smith, Opt. Express, 2007, 15: 1115.
    [7]. Dongxing Wang, Lixin Ran, Hongsheng Chen, Mingkai Mu, Jin Au Kong and Bae-Ian Wu, Appl. Phys. Lett., 2007, 91: 164101.
    [8]. Hongsheng Chen, Bae-Ian Wu, Lixin Ran, Tomasz M. Grzegorczyk, and Jin Au Kong, Appl. Phys. Lett., 2006, 89: 053509.
    [9]. A. W. Clark, A. K. Sheridan, A. Glidle, D. R. S. Cumming, and J. M. Cooper, Appl. Phys. Lett., 2007, 91: 093109.
    [10]. A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, and K. Samwer, Phys. Rev.Lett., 2007, 98: 197401.
    [11]. Chiharu Mitsumata, and Satoshi Tomita , Appl. Phys. Lett., 2007, 91: 223104.
    [12]. A. Encinas-Oropesa, M. Demand, L. Piraux, I. Huynen and U. Ebels, Phy. Rev. B, 2001, 63: 104415.
    [13]. Hongjie Zhao, Ji Zhou, Qian Zhao, Bo Li, Lei Kang and Yang Bai, Appl. Phys. Lett., 2007, 91: 131107; Frederic J. Rachford, Douglas N. Armstead, Vincent G. Harris and Carmine Vittoria,Phys. Rev. Lett., 2007, 99: 057202; Yongxue He, Peng He, SoackDae Yoon, P.V. Parimi, F.J.Rachford, V.G. Harris and C. Vittoria, J. Magn. Magn. Mater., 2007, 313: 187.
    [14]. Schlomann E, J. Appl. Phys., 1970, 41, 204; Green J and Sandy F, IEEE Trans., 1974, 22: 641.
    [15]. A. Saib, D. Vanhoenacker-Janvier, I. Huynen, A. Encinas, L. Piraux, E. Ferain, R. Legras, Appl. Phys. Lett., 1999, 83: 1769; P.M. Hui, D. Stroud, Appl. Phys. Lett., 1987, 50: 950.
    [16]. A. Encinas-Oropesa, M. Demand, L. Piraux, U. Ebels and I. Huynen, J. Appl. Phys., 2001, 89: 6704.
    [61]. G. L. J. A. Rikken et al., Phys. Rev. Lett., 2002, 89: 133005.
    [62]. J. H. Jung et al., Phys. Rev. Lett., 2004, 93: 037403.
    [63]. N. Kida et al., Phys. Rev. Lett., 2006, 96: 167202.
    [64]. N. Kida et al., Phys. Rev. Lett., 2005, 94: 077205.
    [65]. Kei Sawada and Naoto Nagaosa, Appl. Phys. Lett., 2005, 87: 042503.
    [66]. M. Matsubara et al., Phys. Rev. B, 2005, 72: 220404R.
    [67]. Y. Shimada et al., Appl. Phys. Lett., 2006, 89: 101112.
    [68]. S. Di Matteo and Y. Joly, Phys. Rev. B, 2006, 74: 014403.
    [69]. B. B. Krichevtsov et al., J. Phys.: Condens. Matter, 1993, 5: 8233.
    [70]. V. N. Muthukumar et al., Phys. Rev. B, 1995, 54: 433.
    [71]. Roser Valenti and Claudius Gros, arXiv:cond-mat/9811318
    [72]. Tomasz M. Grzegorczyk and Jin Au Kong, Phys. Rev. B, 2006, 74: 033102.
    [73]. R. M. Hornreich and S. Shtrikman, Phys. Rev., 1968, 171: 1065
    [74]. G. L. J. A. Rikken and C. Rizzo, Phys. Rev. A, 2000, 63: 012107.
    [75]. J. A. Kong, Electromagnetic Wave Theory EMW, Cambridge, MA, 2005.
    [76]. Mario Silveirinha and Nader Engheta, Phys. Rev. Lett., 2006, 97: 157403.
    [77]. G. L. J. A. Rikken, C. Strohm, and P. Wyder, Phys. Rev. Lett., 2002, 89: 133005.
    [78]. J. H. Jung, M. Matubara, T. Arima, J. P. He, Y. Kaneko, and Y. Tokura, Phys. Rev. Lett., 2004, 93: 037403.
    [79]. N. Kida, Y. Kaneko, J. P. He, M. Matsubara, H. Sato, T. Arima, H. Akoh and Y. Tokura, Phys. Rev. Lett., 2006, 96: 167202.
    [80]. N. Kida, T. Yamada, M. Konoto, Y. Okimoto, T. Arima, K. Koike, H Akoh, and Y. Tokura, Phys. Rev. Lett., 2005, 94: 077205.
    [81]. K. Sawada and N. Nagaosa, Appl. Phys. Lett., 2005, 87: 042503.
    [82]. M. Matsubara, Y. Shimada, T. Arima, Y. Taguchi, and Y. Tokura, Phys. Rev. B, 2005, 72: 220404R.
    [83]. Y. Shimada, M. Matsubara, Y. Kaneko, J. P. He, and Y. Tokura, Appl. Phys. Lett., 2006, 89: 101112.
    [84]. S. Di Matteo and Y. Joly, Phys. Rev. B, 2006, 74: 014403.
    [85]. B. B. Krichevtsov, V. V. Pavlov, R. V. Pisarev, and V. N. Gridnev, J. Phys.: Condens. Matter, 1993, 5: 8233.
    [86]. G. L. J. A. Rikken and E. Raupach, Nature, 1997, 390: 493; Phys. Rev. E, 1998, 58: 5081.
    [87]. M. Kubota, T. Arima, Y. Kaneko, J. P. He, X. Z. Yu, and Y. Tokura, Phys. Rev. Lett., 2004, 92: 137401.
    [88]. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, J. Appl. Phys., 2003, 93: 3906.
    [89]. M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Magn. Soc. Jpn., 1999, 23: 1861.
    [90]. S. Sakaguchi and N. Sugimoto, Opt. Commun., 1999, 162: 64.
    [91]. A. Figotin and I. Vitebskiy, Phys. Rev. B, 2003, 67: 165210; Phys. Rev. E, 2001, 63: 066609; J. Magn. Magn. Mater., 2003, 67: 165210.
    [92]. K.-Y. Jung, B. Donderici, and F. L. Teixeira, Phys. Rev. B, 2006, 74: 165207.
    [93]. S.-C. Huang, M. Kato, E. Kuramochi, C.-P. Lee, and M. Notomi, Opt. Express, 2007, 15, 3543.
    [94]. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, 1977, Vol. 1, pp. 56–65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700