UWB雷达目标频率响应和极点的求解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(UWB)雷达是现代雷达系统发展的重要方向之一,在频域上的大幅度扩展使其能够获取更为丰富的目标和环境波谱信息,特别地,UWB雷达可以激励仅与目标本质物理属性有关的谐振特征(极点),有利于提高精导武器和战场侦察系统的目标识别能力。从理论上分析UWB雷达目标频率响应与极点的数值求解技术,对UWB雷达系统下目标特性和目标识别的研究有着实际意义。本文针对这一应用背景,围绕UWB雷达目标的频率响应和极点两个重要特性,展开了四个方面的研究工作:首先是电磁场积分方程的高效矩量法求解技术,这是分析目标特性的数值工具;其次是UWB雷达目标的频率响应求解;然后研究任意复杂形状及不同材质目标的极点计算;最后利用频率响应数据及极点特征对白、色噪声环境下任意复杂形状及不同材质目标进行识别研究。
     本文首先从电磁场基本理论出发,利用等效原理和边界条件,归纳了用于分析金属、介质、金属与介质混合结构的边界积分方程表示式;概述了矩量法的一般过程。针对高阶基函数可以用较少的未知量数目满足较高求解精度的优点,论文研究了两类常用高阶叠层基函数:修正Legendre基函数和幂基函数。在矩量法阻抗矩阵填充方面,提出了以矩阵向量积求解多维数值积分的方法,积分节点及部分被积函数预先计算并存储,每次矩阵元素的填充只需要重新计算格林函数和一次低维矩阵向量积,从而实现了阻抗矩阵的快速填充。推导了数值积分中奇异处理的奇异提取解析法公式。讨论了Schwarz预处理和带阈值的不完全LU分解(ILUT)预处理在迭代求解矩阵方程中的应用。
     在目标超宽带频率响应的求解方面,传统的方法多采用渐近波形估计(AWE)和模基参数估计(MBPE)技术。鉴于AWE和MBPE的精度对采样频点和频段范围选择的敏感性,本文在目标低频区和谐振区低端,提出了积分核的Chebyshev多项式逼近方法,从积分方程核函数中分离出频率因子,只有Chebyshev多项式系数与频率有关,其它与空间参数有关的数据项预先计算并存储,不同频率下只需重新计算多项式系数,从而实现多频点散射响应的快速计算。当频率比较高时,则需采用逐点计算的方法,按照积分节点而不是基函数分组的原则,在高阶叠层基函数矩量法中引入了快速多极算法,并给出了求解步骤,加速了在迭代求解矩阵方程时矩阵矢量积的计算。
     在复杂雷达目标极点特征的数值求解方面,分析了常用的围线积分法在求解复杂目标极点时失效的原因。根据高阶矩量法未知量少的特点,对阻抗矩阵的性质做了分析,证明了极点相对于积分方程的独立性。提出了复频平面上搜索极点的区域差分、SVD技术,并求解了几类金属、金属介质混合结构等复杂目标模型的极点分布。为了进行数值验证,对从散射场提取极点的矩阵束法进行了改进,利用目标频率响应经逆傅立叶变换后得到的时域响应提取主极点,通过结果对比证明了理论方法的正确性。
     在极点特征于目标识别中的应用方面,分析了已有目标识别方案对白噪声环境下复杂目标模型的识别性能,研究了高阶统计量方法在色噪声环境下对复杂目标模型的识别性能,结果表明,色噪声环境下,采用高阶统计量的识别方法利用极点特征对复杂目标的识别是可行的。
The ultra wide-band (UWB) radar is an important development direction of modern radar system. Because of the widely expansion in frequency domain in the new radar system, much richer spectrum information of targets and environment can be obtained. Specially, features of resonance region (poles), which are only relative to physical attributes of objects, can be excited in UWB radar system. That will improve the target identification performance in the precise guidance weapon and battlefield surveillance system. So, it has importantly academic and actual significance to study on numerical calculation techniques of frequency responses and poles of UWB radar targets. Under that application background, on topics of two important features of frequency responses and poles, four parts of contents are investigated. Firstly, we study high efficient method of moments (MoM) to solve electromagnetic field integral equations, which is the numerical implement to analyze target features. Secondly, computing techniques of scattering responses in frequency domain for UWB radar targets are proposed. Then, calculation of poles of complex shaped and different material objects is analyzed. Lastly, the identification of complex targets in white or colour noise using poles' feature is studied through numerical results of frequency responses and poles.
     Above all, the boundary integral equations for metallic structures, dielectric structures, composite metallic and dielectric structures are elaborated uniformly based on the surface equivalence principle and boundary conditions. The solving procedures of MoM are also summarized. The higher order basis functions in MoM have many advantages to low order ones, such as fewer unknowns. So, we analyze two kinds of higher order hierachical basis functions including modified Legendre functions and power functions. On impedance-matrix filling, it is proposed that multi-dimension integrations are replaced by matrices products. The quadrature nodes and some integrated functions are calculated and stored in advance. Only Green's functions and one time low dimension matrix-vector product are to be computed each time when impedance matrix is filled. So, the matrix is fast filled. What's more, near singular process procedure is presented to increase the precision of results for irregular shaped scatterers. It is also discussed for the Schwarz preconditioner and incomplete LU decomposition with threshold preconditioner used in higher order MoM.
     On the aspect of calculation techniques of scattering response in frequency domain, the asymptotic waveform evaluation (AWE) and model-based parametric evaluation (MBPE) are usually used. Considering that the precision of AWE and MBPE is sensitive to sampling frequencies and the choice of frequency range, we propose Chebyshev polynomial approximation of integral nucleus in low frequency domain or resonance domain. Then, the frequency factor can be separated from integration, and only the coefficients of polynomials are relative to frequency. Other terms relative to space parameters are computed and stored. At different frequency, only the coefficients need be computed. That will largely speed up the calculation of scattering responses in a wide frequency domain. When frequency is high, the method of point-by-point should be adopted. The fast multipole method (FMM) is applied in higher order MoM on the basis of point-to-point interactions, and the particular procedure is presented. That largely accelerates the matrix-vector product in iterative process.
     On the aspect of calculation of poles of complex shaped and mixture objects, it is firstly reasoned that traditional contour integration is invalid for complex objects. Then, using the character of fewer unknowns in higher order MoM, the property of impedance matrix is analyzed, and the domain difference method and SVD technique to search poles are proposed. Poles of several metallic and composite metallic/dielectric target models are computed. For validate numerical results, the matrix pencil method is modified to extract dominant poles from scattering responses using frequency responses and inverse fast Fourier transformation (IFFT). The relative errors between two approaches testify the proposed methods.
     Lastly, the application of poles in target identification is studied. The performance of existent discrimination schemes to complex targets in white noise is analyzed. The performance of higher-order statistics for complex targets identification in the presence of colour noise is studied. The numerical results show that it is doable using the higher-order statistics to identify targets in complex background.
引文
[1] http://www.ee.duke.edu/~lcarin/.
    
    [2] Huang C, Su Y. A new GPR calibration method for high accuracy thickness and permittivity measurement of multi-layered pavement. IEEE International Geoscience and Remote Sensing Symposium, 2005, 1729-1733.
    
    [3] Lei W, Su Y, Huang C. An UWB impulse surface penetrating radar system for pavement evaluation. 2th International Workshop on Ultra Wideband and Ultrashort Impulse Signals (UWBUSIS),Proceedings Sevastopol, Ukraine, 2004,195-197.
    
    [4] Lei W, Huang C, Su Y. Optimization based underground cylindrical objects position and electromagnetic parameters joint reversion. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005, 1772-1776.
    
    [5] 梁甸农,周智敏.穿透叶簇超宽带 sar体制及关键技术.国防科技大学研究报告, 2000,
    [6] Harrignton R F. Field computation by moment methods. New York: MacMillan,1968.
    [7] Merewether D E. Transient currents induced on a metallic body of revolution by an electromagnetic pulse. IEEE Trans. Electromagnetic Compatibility, 1971, 13(2): 41-44.
    [8] Baum C E. On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems. AFWL Interaction Notes, Note 88, 1971.
    [9] Tesche F M. On the analysis of scattering and antenna problems using the singularity expansion technique. IEEE Trans. Antennas Propagat., 1973, 21 (1):53-62.
    [10] Tesche F M. On the singularity expansion method as applied to electromagnetic scattering from thin-wires. AFWL Interaction Notes, 1972, Note 102
    
    [11] Crow T T, Graves B D, Talor C D. The singularity expansion method as applied to perpendicular cross wire. IEEE Trans. Antennas Propagat., 1975, 23 (4): 540-564.
    
    [12] Marin L. Natural-Mode Representation of transient scattered fields from rotationally symmetric, perfectly conducting bodies and numerical results for a prolate spheroid. AFWL Interaction Notes, 1972, Note 119
    [13] Ramm A G. Theoretical and practical aspects of singularity and eigenmode expansion methods. IEEE Trans. Antennas Propagat., 1980, 28 (6): 897-901.
    [14] Dolph C L, Cho S K. On the relationship between the singularity expansion method and the mathematical theory of scattering. IEEE Trans. Antennas Propagat.,1980, 28(6): 888-897.
    [15] CHEN K-M, WESTMORELAND D. Impulse response of a conducting sphere based on singularity expansion method.PROCEEDING OF THE IEEE,1981,69(6):747-750.
    [16]龙云亮.顺变电磁场中奇点展开法的研究[博士论文].成都:电子科技大学,1992.
    [17]Felsen L B.The singularity expansion method in Transient Electromagnetic Field.New York:Spring-Verlag,1978.
    [18]Baum C E.The singularity expansion method in Transient Electromagnetic Field.New York:Spring-Verlag,1978.
    [19]Umashanker K R,Wilton D R.Transient scattering of a L-shaped wire using the SEM.IEEE Trans.Antennas Propagat.,1975,23(6):838-841.
    [20]Kristensson G.Natural frequencies of circular disks.IEEE Trans.Antennas Propagat.,1984,32(5):442-448.
    [21]Merchant B L,Moser P J,Nagl A,et al.Complex pole patterns of the scattering amplitude for conducting spheroids and finite-length cylinders.IEEE Trans.Antennas Propagat.,1988,36(12):1769-1778.
    [22]Howard A Q.A geometric theory of natural oscillation frequencies in exterior scattering problems.AFWL Interaction Notes,Note 378,1979.
    [23](U|¨)berall H,Gaunaurd G C.The physical content of SEM.Appl.phys.Lett.,1981,39(4):362-364.
    [24](U|¨)berall H,Gaunaurd G C.Relation between the ringing of resonances and surface waves in radar scattering.IEEE Trans.Antennas Propagat.,1984,32(10):1071-1079.
    [25]Heyman E,Felsen L B.Creeping waves and resonances in transient scattering by smooth convex objects.IEEE Trans.Antennas Propagat.,1983,31(3):426-437.
    [26]Heyman E,Felsen L B.A wavefront interpretation of the singularity expansion method.IEEE Trans.Antennas Propagat.,I985,33(7):706-718.
    [27]Felsen F B.Target strength:some recent theorectical developments.IEEE Journal of Oceanic Engineering,1987,12(2):443-452.
    [28]Shirai H,Felsen L B.Modified GTD for generating complex resonances for flat strips and disks.IEEE Trans.Antennas Propagat.,1986,34(6):779-790.
    [29]Merchant B L,Nagl A,(U|¨)berall H.A method for calculating eigenfrequencies of arbitrary shaped convex targets:eigenfrequencies of conducting spheroids and their relation to helicoidal surface wave paths.IEEE Trans.Antennas Propagat.,1989,37(5):629-634.
    [30]徐海,汪文秉.散射体外部振荡轨迹.电子学报,1990,18(5):75-78.
    [31]吴先良,焦丹,王良知.用积分方程求解散射体自然频率的新方法.电子科技大学学报,1997,26(4):374-377.
    [32]Rao S M,Wilton D R,Glisson A W.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans.Antennas Propagat.,1982,30(3):409-418.
    [33]龙云亮,林怡堃,彭仲秋.导电矩形体的自然频率.微波学报,1995,11(1):26-33.
    [34]Sadiku M N O.Numerical techniques in electromagnetics.New York:CRC Press,2001.
    [35]盛新庆.计算电磁学要论.北京:科学出版社,2004.
    [36]Andersen L S,Volakis J L.Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics.IEEE Trans.Antennas Propagat.,1999,47(1):112-120.
    [37]Sheng X Q,Yung E K N.On the computing algorithms of the hybrid FEM/MLFMA.Microwave Opt.Tech.Lett,2002,33(4):265-268.
    [38]刘培国.超宽带信号辐射与散射研究[博士论文].长沙:国防科学技术大学,2001.
    [39]Strain J.Locally-corrected multimensional quadrature rules for singular functions.SIAM J.Sci.Comput.,1995,16(4):992-1017.
    [40]Canino L S,Ottusch J J,Stalzer M A,et al.Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nystr(o|¨)m discritization.J.Comput.Phys.,1998,146 627-663.
    [41]Glisson A W,Wilton D R.Simple and efficient methods for problems of electromagnetic radiation and scattering from surfaces.IEEE Trans.Antennas Propagat.,1980,28(4):593-603.
    [42]Graglia R D,Wilton D R,Peterson A F.Higher order interpolatory vector bases for computational electromagnetics.IEEE Trans.Antennas Propagat.,1997,45(3):329-342.
    [43]Djordjevic I,Notaros B M.Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatters.IEEE Trans.Antennas Propagat.,2004,52(8):2118-2129.
    [44]Coifman R,Rokhlin V,Wandzura S.The fast multipole method for the wave eqution:a pedestrian prescription.IEEE Antennas and Propagation Magazine,1993,35(3):7-12.
    [45]Miller E K.Model-based parameter estimation in electromagnetics:Part Ⅰ.Background and theoretical development.IEEE Antennas and Propagation Magzine,1998,40(1):42-52.
    [46]Miller E K.Model-based parameter estimation in electromagnetics:Part Ⅱ.Applications to EM observables.IEEE Antennas and Propagation Magzine,1998,40(2):51-65.
    [47]Miller E K.Model-based parameter estimation in electromagnetics:Part Ⅲ.Applications to EM integral equations.IEEE Antennas and Propagation Magzine, 1998, 40(3): 49-66.
    [48] Reddy C J, Deshpande M D, Cockrell CR,et al. Fast rcs computation over a frequency band using method of moments in conjunction with asymptotic waveform evaluation technique. IEEE Trans. Antennas Propagat., 1998, 46 (8):1229-1233.
    [49] Blaricum M L V, Mittra R. A technique for extracting the poles and residues of a system directly from its transient response. IEEE Trans. Antennas Propagat., 1975,23(6): 777-781.
    [50] Blaricum M L V, Mittra R. Problems and solutions associated with Prony's method for processing transient data. IEEE Trans. Antennas Propagat., 1978, 26 (1):174-182.
    [51] Senior T B A, Pond J. Pole Extraction in the Frequency Domain. AFWL Interaction Notes, Note 411,1981.
    [52] Rahman M A, Yu K B. Total least squares approach for frequency estimation using linear prediction. IEEE Trans. Antennas Propagat., 1987, 35 (10): 1440-1454.
    [53] Kumaresan R, Tuffts D W. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise. IEEE Trans. Antennas Propagat., 1982,30 (6): 833-840.
    [54] Lee J-H, Kim H-T. Selecting sampling interval of transient response for the improved Prony method. IEEE Trans. Antennas Propagat., 2003, 51 (1): 74-77.
    [55] Lee J-H, Kim H-T. Selecting sampling interval for least squares Prony method.Electronics Letters, 2005,41 (1): 47-48.
    [56] Jain V K, Sarkar T K, Weiner D D. Rational modelting by pencil-of function method. IEEE Trans. ASSP, 1983, 31 (3):
    [57] Hua Y, Sarkar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans. Antennas Propagat., 1989,37 (2): 229-234.
    [58] Sarkar T K, Pereira O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas and Propagation Magazine,1995, 37(1): 48-55.
    [59] Wang Y, Shuley N. Complex resonant frequencies for the identification of simple objects in free space and lossy environments. Progress In Electromagnetics Research, 2000, PIER 27: 1-18.
    [60] Rothwell E J, Chen K M. A hybrid E-pulse/least squares technique for natural resonance extraction. Proc. IEEE, 1988, 76 (3): 296-298.
    [61] Turhan-Sayan G, Kuzuoglu M. Pole estimation for arbitrarily-shaped dielectric targets using genetic algorithm based resonance annihilation technique.Electronics Letters, 2001, 37 (6): 380-381.
    [62] Umesh S. Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood extimation with application to NMR spectroscopy data.IEEE Trans.Antennas Propagat.,1996,44(9):2245-2259.
    [63]Pearson T W,Blaricum M L V,Mittra R.A new method for radar target recognition based on the singularity expansion for the target.Proc.Of 1975 Radar Conference,1975,452-457.
    [64]Moffatt D L,Mains R K.Detection and discrimination of radar targets.IEEE Trans.Antennas Propagat.,1975,23(3):358-367.
    [65]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.长沙:国防科技大学出版社,1995.
    [66]Chen K M.Radar waveform synthesis method-A new radar detection scheme.IEEE Trans.Antennas Propagat.,1981,29(4):553-566.
    [67]Chen K M,Nyquist D P,Rothwell E J,et al.Radar target discrimination by convolution of radar return with extinction-pulses and signal-mode extraction signals.IEEE Trans.Antennas Propagat.,1986,34(7):896-904.
    [68]Carrion M C,Gallego A,Porti J,et al.Subsectional-polynomial E-pulse synthesis and application to radar target discrimination.IEEE Trans.Antennas Propagat.,1993,41(9):1204-1211.
    [69]Mooney J E,Ding Z,Riggs L S.Performance analysis of an automated E pulse target discrimination scheme.IEEE Trans.Antennas Propagat.,2000,48(5):616-628.
    [70]Blanco D,Ruiz D P,Alameda E,et al.An asymptotically unbiased E-pulse-based scheme for radar target discrimination.IEEE Trans.Antennas Propagat.,2004,52(5):1348-1350.
    [71]Blanco D,Ruiz D P,Alameda E,et al.Extinction pulses synthesis for radar target discrimination using β-splines,new E-pulse condictions.IEEE Trans.Antennas Propagat.,2006,54(5):1577-1585.
    [72]Gallego A,Ruiz D P,Carrion M C.Radar target discrimination using a hybrid E-pulse fourth-order moments technique.IEE Proc.-Radar,Sonar Navig.,1997,144(6):355-360.
    [73]Mooney J E,Ding Z,Riggs L S.Robust target identification in white gaussian noise for ultra wide-band radar systems.IEEE Trans.Antennas Propagat.,1998,46(12):1817-1823.
    [74]Mooney J E,Ding Z,Riggs L S.Performance analysis of a GLRT in late-time radar target detection.Progress In Electromagnetics Research,1999,PIER 24:77-96.
    [75]王党卫.超宽带雷达目标电磁特征抽取与识别方法研究[博士论文].长沙:国防科学技术大学,2006.
    [76]许俊刚,柯有安.投影法雷达目标识别.电子学报,1994,22(7):28-34.
    [77] Baev A, Kuznetsov Y. Technique of ultra wideband radar target discrimination using natural frequencies. Microwave, Radar and Wireless Communications, 15th International Conference on., 2004.
    [78] Geng N, Jackson D, Carin L. On the resonances of dielectric bodies of revolution buried in lossy, dispersive layered mediums. IEEE Trans. Antennas Propagat,1999,47(8): 1305-1313.
    [79] Stenholm G J, Rothwell E J, Nyquist D P, et al. E-pulse diagnostics of simple layered materials. IEEE Trans. Antennas Propagat., 2003, 51 (12): 3221-3227.
    [80] Lui H-S, Li B K, Shuley N, et al. Preliminary Investigation of Breast Tumor Detection using the E-Pulse Technique. 2006 IEEE, 2006.
    [81] 万继响,张玉,项铁铭,et al. FMM结合改进自适应MBPE技术快速求解单站RCS.电波科学学报, 2004, 19 (1): 72-76.
    [82] Mendes L S, Carvalho S A. Scattering of EM waves by homogeneous dielectrics with the use of the method of moments and 3D solenoidal basis functions.Microwave and Optical Technique, 1996, 12 (6): 327-331.
    [83] Franceschetti G, Iodice A, Riccio D, et al. Extended boundary condition method for scattering and emission from natural surfaces modeled by fractals. IEEE Trans.Geoscience and Remote Sensing, 2005,48 (5): 1115-1125.
    [84] Su C C. The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT.IEEE Trans. Microwave Theory Tech., 1993, 41 (3): 510-515.
    [85] Kang G, Song J, Chew W C, et al. A novel grid-robust higher order vectro basis function for the method of moments. IEEE Trans. Antennas Propagat., 2001, 49(6): 908-915.
    [86] Jung B H, Sarkar T K, Chung Y-S. A survey of various frequency domain integral equations for the analysis of scattering from three-dimensional dielectric objects.Progress In Electromagnetics Research, 2002, PIER 36: 193-246.
    [87] Yeung M S. Single Integral Equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects. IEEE Trans. Antennas Propagat., 1999,47(10): 1615-1622.
    [88] Yla-Oijala P, Taskinen M, Sarvas J. Surface integral equation method for general composite metallic and dielectric structures with junctions. Progress In Electromagnetics Research, 2005, PIER 52: 81 -108.
    [89] Kolundzija B M. Electromagnetic modeling of composite metallic and dielectric structures. IEEE Trans. Microwave Theory Tech., 1999, 47 (7): 1021-1032.
    [90] Sarkar T K, Rao S M, Djordjevic A R. Electromagneic scattering and radiation from finite microstrip structures. IEEE Trans. Microwave Theory Tech., 1990, 38(11): 1568-1575.
    
    [91] Rao S M, Sarkar T K, Midya P, et al. Electromagnetic radiation and scattering from finite conducting and dielectric structures:surface/surface formulation.IEEE Trans.Antennas Propagat.,1991,39(7):1034-1037.
    [92]Sarkar T K,LEE W,Rao S M.Analysis of transient scattering from composite arbitrarily shaped complex structures.IEEE Trans.Antennas Propagat.,2000,48(10):1625-1634.
    [93]Rao S M,Sarkar T K.Numerical solution of time domain integral equations for arbitrarily shaped conductor/dielectric composite bodies.IEEE Trans.Antennas Propagat.,2002,50(12):1831-1837.
    [94]Yuan N,Yeo T S,Nie X C,et al.Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm.J.of Electromagn.Waves and Appl.,2003,17(3):499-515.
    [95]Li J-Y,Li L-W.Electromagnetic scattering by a mixture of conducting and dielectric objects:Analysis using method of moments.IEEE Trans.Vehicular Technology,2004,53(2):514-520.
    [96]Donepudi K C,Jin J-M,Chew W C.A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies.IEEE Trans.Antennas Propagat.,2003,51(10):2814-2821.
    [97]Dudley D G.Error minimization and convergence in numerical methods.Electromagnetics,1985,15(1):89-97.
    [98]Sarkar T K.A note on the choice of weighting functions in the method of moments.IEEE Trans.Antennas Propagat.,1985,33(4):436-441.
    [99]Wandzura S.Optimality of Galerkin method for scattering computations.Microwave and Optical Technology Letters,1991,4(5):199-200.
    [100]Warnick K F,Chew W C.On the spectrum of the electric field integral equation and the convergence of the moment method.Int.J.Numer.Meth.Engineering,2001,51:31-56.
    [101]Peterson A F,Wilton D R,Jorgenson R E.Variational nature of galerkin and non-galerkin moment method solutions.IEEE Trans.Antennas Propagat.,1996,44(4):500-503.
    [102]Jorgensen E.Higher-order integral equation methods in computational electromagnetics.[Dissertation].Technical University of Denmark,2003.
    [103]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[博士论文].长沙:国防科学技术大学,2005.
    [104]Song J M,Chew W C.Moment method solutions using parametric geometry.J.of Electromagn.Waves and Appl.,1995,9(1/2):71-83.
    [105]胡俊.复杂目标矢量电磁散射的高效方法——快速多极子方法及其应用[博士论文].成都:电子科技大学,2000.
    [106]Cui T J,Chew W C,Chen G,et al.Efficient MLFMA,RPFMA,and FAFFA algorithms for EM scattering by very large structures.IEEE Trans.Antennas Propagat.,2004,52(3):759-770.
    [107]Bleszynski E,Bleszynski M,Jaroszewicz T.AIM:Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems.Radio Science,1996,31(5):1225-1251.
    [108]Nie X-C,Li L-W,Yuan N,et al.Precorrected-FFT Solution of the volume integral equation for 3-D inhomogeneous dielectric objects.IEEE Trans.Antennas Propagat.,2005,53(1):313-320.
    [109]Jφrgensen E,Volakis J L,Meincke P,et al.Higher order hierarchical legendre basis functions for electromagnetic modeling.IEEE Trans.Antennas Propagat.,2004,52(11):2985-2995.
    [110]Kolundzija B M,Popovic B D.Entire-domain Galerkin method for analysis of metallic antennas and scatterers.IEE Proceedings-H,1993,140(1):1-10.
    [111]Djordjevic M,Notaros B M.Higher-order hierarchical basis functions with improved orthogonality properties for moment-method modeling of metallic and dielectric microwave structures.Microwave and Optical Technology Letters,2003,37(2):83-88.
    [112]郭敦仁.数学物理方程.北京:人民教育出版社,1965.
    [113]Notaros B M,Popovic B D.Optimized entire-domain moment-method analysis of 3D dielectric scatterers.Int.J.Numerical Modelling:Electronic Networks,Devices and Fields,1997,10(5-6):177-192.
    [114]Wilton D R,Rao S M,Glisson A W,et al.Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains.IEEE Trans.Antennas Propagat.,1984,32(3):276-281.
    [115]Yl(a|¨)-Oijala P,Taskinen M.Calculation of CFIE impedance matrix elements with RWG and n×RWG functions.IEEE Trans.Antennas Propagat.,2003,51(8):1837-1846.
    [116]Herschlein A,Hagen J V.Methods for evaluation of regular,weakly singular and strongly singular surface reaction integrals arising in method of moments.ACES Journal,2002,17(1):63-73.
    [117]Chakraborty S,Jandhyala V.Evaluation of Green's function integrals in conducting mehia.IEEE Trans.Antennas Propagat.,2004,52(12):3357-3363.
    [118]J(a|¨)rvenp(a|¨)(a|¨) S,Taskinen M,Yl(a|¨)-Oijala P.Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles.IEEE Trans.Antennas Propagat.,2006,54(6):42-49.
    [119]王少刚,关鑫璞,王党卫,et al.求解电场积分方程的高阶矩量法.电子与信息学报,2007.
    [120]Graglia R D.On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle.IEEE Trans.Antennas Propagat.,1993,41(10):1448-1455.
    [121]Saad Y.Iterative methods for sparse linear systems.Boston:PWS Publishing Compony,1996.
    [122]Su C-C.Calculation of electromagnetic scattering from a dielectric cylinder using the conjugate gradient method and FFT.IEEE Trans.Antennas Propagat.,1987,35(12):1418-1425.
    [123]Hagen J v,Wiesbeck W.Physics-based preconditioner for iterative algorithm in MoM-problems.IEEE Trans.Antennas Propagat.,2002,50(9):1315-1316.
    [124]Saitoh A,Kamitani A.GMRES with new preconditioning for solving BEM-type linear system.IEEE Trans.Magnetics,2004,40(2):1084-1087.
    [125]Carr M,Bleszynski M,Volakis J L.A near-field preconditioner and its performance in conjunction with the BiCGstab(ell) solver.IEEE Antennas and Propagation Magazine,2004,46(2):23-30.
    [126]项铁铭,梁昌洪.计算电磁学中稠密线性方程组的迭代求解.西安电子科技大学学报(自然科学版),2003,30(6):748-751.
    [127]Kolundzija B,Sarkar T.Iterative solvers in frequency analysis of complex structures based on MoM solution of surface integral equations.Proceedings of the 2001 IEEE Antennas and propagation Soc.Int.Symp.,Boston,2001:588-591.
    [128]王少刚,关鑫璞,王党卫,et al.一种高阶矩量法迭代求解的预处理技术.微波学报(增),2007.
    [129]Wang P,Xia M Y,Zhou L Z.Analysis of scattering by composite conducting and dielectric bodies using the single integral equation method and multilevel fast multipole algorithm.Microwave and Optical Technique Letters,2006,48(6):1055-1059.
    [130]Newman E H.Generation of wide-band data from the method of moments by interpolating the impedance matrix.IEEE Trans.Antennas Propagat.,1988,36(12):1820-1824.
    [131]Reddy C J.Application of Model Based Parameter Estimation for RCS Frequency Response Calculations Using Method of Moments.NASA/CR-1998-206951,1998.
    [132]Reddy C J,Deshpande M D.Application of AWE for RCS frequency response calculations using method of moments.America:NASA Contractor Report 4758,1996.
    [133]Slone R D,Lee R,Lee J-F.Well-conditioned asymptotic waveform evaluation for finite elements.IEEE Trans.Antennas Propagat.,2003,51(9):2442-2447.
    [134]万继响,梁昌洪.WCAWE技术快速求解宽频带散射特性.电子学报,2004,32(6):1001-1004.
    [135]万继响,梁昌洪.矩量法快速求解全频带特性的AMWCAWE-MNM技术.电 子学报,2004,32(6):911-914.
    [136]Donepudi K C,Song J,Jin J-M,et al.A novel implementation of multilevel fast multipole algorithm for higher oder Galerkin's method.IEEE Trans.Antennas Propagat.,2000,48(8):1192-1197.
    [137]周后型.大型电磁问题快速算法的研究[博士论文].南京:东南大学,2002.
    [138]Shaogang W,Xinpu G,Xingyi M,et al.A fast method of moment to calculate monostatic RCS of arbitrary shaped conducting objects.Proceedings of 2006 CIE International Conference on Radar,2006,1660-1662.
    [139]齐治昌.数值分析及其应用.长沙:国防科技大学出版社,1998.
    [140]Jφrgensen E,Kim O S,Meincke P,et al.Higher order hierarchical discretization scheme for surface integral equations for layered media.IEEE Trans.Geoscience and Remote Sensing,2004,42(4):764-772.
    [141]关鑫璞,王少刚,王党卫,et al.一种解决MOO算法求解任意形状导电目标瞬态散射稳定性的方法.电子学报,2007,35(3):430-434.
    [142]Marx L.Natural-mode representation of transient scattered fields.IEEE Trans.Antennas Propagat.,1973,21(6):809-818.
    [143]Hsiao G C,Kleinman R E.Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics.IEEE Trans.Antennas Propagat.,1997,45(3):316-328.
    [144]张黎阳.电磁场中本征值问题的研究[博士论文].西安:西安交通大学,1992.
    [145]Canning F X.Singular value decomposition of integral equations of EM and applications to the cavity resonance problem.IEEE Trans.Antennas Propagat.,1989,37(9):1156-1163.
    [146]Borel S,Levadoux D P,Alouges F.A new well-conditioned integral formulation for maxwell equations in three dimensions.IEEE Trans.Antennas Propagat.,2005,53(9):2995-3004.
    [147]袁安民.非旋转对称金属散射体极点的计算[硕士论文].西安:西安交通大学,1990.
    [148]Erez E,Leviatan Y.Analysis of natural frequencies of cavities and scatterers using an impulsive current model.IEEE Trans.Antennas Propagat.,1990,38(4):524-540.
    [149]Leviatan Y,Boag A,Boag A.Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution.IEEE Trans.Antennas Propagat.,1988,36(12):1722-1734.
    [150]徐雪萍,张安学,蒋延生.复杂导体目标的极点提取研究.西安交通大学微波所技术报告,2004.
    [151]王少刚,陈夏萌,关鑫璞,et al.利用遗传算法求解雷达目标极点分布.电波科学学报,2004,20(1):157-160.
    [152]王少刚,关鑫璞,王党卫,et al.任意形状导体目标的极点求解.电子学报,2007,35(6):1074-1078.
    [153]Chauveau J,Beaucoudrey N d,Saillard J.Characterization of radar targets in resonance domain with a reduced number of natural poles.Radar Conference,2005.EURAD 2005,2005,85-88.
    [154]焦琳琳.超宽带雷达目标的极点特征提取与E脉冲识别方法研究[硕士论文].长沙:国防科学技术大学,2005.
    [155]Gallego A,Ruiz D P,Carri6n M C.E-pulse scheme based on higher-order statistics for radar target discrimination in the presence of coloured noise.Electronics Letters,1996,32(4):396-397.
    [156]Rothwell E,Nyquist D P,Chen K-M,et al.Radar target discrimination using the extinction-pulse technique.IEEE Trans.Antennas Propagat.,1985,33(9):929-937.
    [157]韩鸿哲,陈曾平,庄钊文.无约束E-脉冲波形综合方法.系统工程与电子技术,1999,21(10):23-26.
    [158]Ruiz D P,Carrion M C,Gallego A,et al.Parameter estimation of exponentially damped sinusoids using a higher order correlation-based approach.IEEE Trans.Signal Processing,1995,43(11):2665-2676.
    [159]Morgan M A,Walsh N J.Ultra-wide-band transient electromagnetic scattering laboratory.IEEE Trans.Antennas Propagat.,1991,39(8):1230-1234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700