几类非线性矩阵方程的理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性矩阵方程是数值代数领域和非线性分析领域中研究和探讨的重要课题之一.它在控制理论,运输理论,动态规划,梯形网络,统计过滤和统计学等科学和工程计算领域中有着广泛的应用.本篇博士论文系统地研究了如下几类非线性矩阵方程的理论与数值方法.
     基于不动点定理和Banach空间的序列原理,系统地研究了矩阵方程的Hermitian正定解,其中A为n×n阶非奇异复矩阵,Q为n×n阶正定矩阵,q≥1.给出了该矩阵方程存在正定解的一些新的充分条件和必要条件,构造了求解的数值方法.还对该矩阵方程进行了扰动分析,得到了新的正定解的扰动界.
     基于Brouwer不动点定理和Banach不动点定理,系统地研究了矩阵方程的Hermitian正定解的存在性,其中A为n×n阶非奇异复矩阵,Q为n×n阶正定矩阵,且s,t是正整数.给出了该矩阵方程存在正定解的一些新的充分条件,必要条件及充要条件.并对该矩阵方程进行了扰动分析,得到了新的正定解的扰动界.数值例子说明了所得结论的正确性.
     基于单调算子的动力学性质,研究了矩阵方程的Hermitian正定解,其中A_1,A_2,…,A_m是n×n阶复矩阵,Q为n×n阶正定矩阵,m是正整数.给出了该矩阵方程的Hermitian正定解的存在性定理及数值求解方法,并对其进行扰动分析,得到了新的正定解的扰动界.
     基于正规锥上单调和混合单调算子的不动点定理,研究矩阵方程的Hermitian正定解,其中A_1,A_2,…,A_m是n×n阶复矩阵,Q为n×n阶正定矩阵,0<|δ_i|<1,i=1,2,…,m.首次证明了该矩阵方程总是存在唯一正定解.首次提出了求解该矩阵方程的多步定常迭代方法,利用正规锥上序列的性质得到了相应的收敛性定理,并用数值例子验证了此方法的可行性.
     基于摄动引理和Ostrowski定理,研究矩阵方程的非奇异解,即研究矩阵A的非奇异平方根.当矩阵A非奇异时,对其等价方程构造Newton迭代法,并结合Samanskii技术得到了一种修正Newton法.给出了新Newton法及其修正方法的局部收敛性定理.证明了这两种方法具有较好的数值稳定性.数值实验表明,新Newton法及其修正方法具有精度高和迭代步数少等优点.当矩阵A是一类上三角Toeplitz矩阵时,提出了一种待定系数法求其平方根.数值实验表明,该方法是可行的.
Solving nonlinear matrix equations is one of important topics in the fields of numerical algebra and nonlinear analysis. Actually, it is widely used in areas of science and engineering computation, such as control theory, transport theory, dynamic programming, ladder networks, stochastic filtering and statistics. This dissertation studies systematacially the theories and numerical methods of the following nonlinear matrix equations.
     Basing on the fixed point theorem and sequence theory in Banach space, we study the Hermitian positive definite solution of the matrix equationwhere A is an n×n complex matrix, Q is an n×n Hermitian positive definite matrix and q≥1.We give some new sufficient conditions and necessary conditions for the existence of a positive definite solution, and propose two iterative methods to compute the positive definite solution. We also derive some new perturbation bounds of the positive definite solution.
     Basing on Brouwer's fixed point theorem and Banach's fixed point theorem, we study the existence of the Hermitian positive definite solution of the matrix equationwhere A is an n×n nonsingular matrix, Q is an n×n Hermitian positive definite matrix, s and t are positive integers. We give some new sufficient conditions and necessary conditions for the existence of a positive definite solution, and derive a new perturbation bound of the positive definite solution. The results are illustrated by numerical examples.
     Basing on the dynamics property of the monotone operator, we study the Hermitian positive definite solution of the general matrix equationwhere A_1,A_2,...,A_m are n×n complex matrix,Qisan n×n positive definite matrix and m is a positive integer. We give some sufficient conditions and necessary conditions for the existence of a positive definite solution, and construct an iterative method to solve it. We also derive a new perturbation bound of the positive definite solution.
     Basing on fixed point theorems for monotone and mixed monotone operators in a normal cone, we study the Hermitian positive definite solution of the matrix equation where A_1,A_2,...,A_m axe nxn complex matrix, Q is an n×n Hermitian positive definite solution, and 0<|δ_i|<1, i=1,2,...,m.We firstly prove that the matrix equation always has a unique positive definite solution. We firstly propose a muti-step stationary iterative method to compute the unique positive definite solution, and the convergence theorem is proved by the property of sequence in normal cone. The results are illustruted by numerical examples.
     Basing on perturbation lemma and Ostrpwski theorem, we study the nonsingular solution of the matrix equationThat is to say, we investigate the nonsingular square root of the matrix A. When A is an n×n nonsingular complex matrix, we apply Newton's method to its equivalent equation for computing the nonsingular square root of the matrix A. We also derive a modified Newton's method by using Samanskii technique. We give local convergence theorem for these new methods, and we also prove that these new methods have good numerical stability. Numerical examples show that these new methods are accurate and effective when they are used to compute the matrix nonsingular square root. When A is a kind of the upper triangular Toeplitz matrix, we propose a method of undeterminated coefficients to compute its square root. Numerical examples show that this numerical method is feasible.
引文
[1] Jacobs O L R. Introduction to Control Theory. London: Oxford University Press, 1974,217-219
    [2] Lancaster P, Rodman L. Algebraic Riccati Equations. Oxford: The Clarendon Press,1995,105-192
    [3] Engwerda J C,Ran A C M,Rijkeboer A L. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A~*X~(-1)A = Q. Linear Algebra Appl.,1993,186:255-275
    [4] Ferrante A, Levy B C. Hermitian solutions of the equation X = Q + NX~(-1)N~*.Linear Algebra Appl., 1996,247:359-373
    [5] Buzbee B L, Golub G H, Nielson C W. On direct methods for solving Poisson's equations.SIAM J. Numer. Anal., 1970,7:627-656
    [6] Kenney C, Laub A J. Condition estimates for matrix functions. SIAM J. Matrix Anal.Appl., 1989,10:191-209
    [7] Levy B C, Frezza R, Krener A J. Modeling and estimation of discretetime Gaussian reciprocal processes. IEEE Trans. Automat. Control, 1990,35:1013-1023
    [8] Pusz W, Woronowitz S L. Funcitonal calculus for sequilinear forms and the purification map. Rep. Math. Phys., 1975,8:159-170
    [9] Anderson W N, Morley T D, Trapp G E. Ladder networks, fixed points and the geometric mean. Circuits Systems Signal Process., 1983,3:259-268
    [10] Ando T. Limit of cascade iteration of matrices. Numer. Funct. Anal. Optim.,1980,21:579-589
    [11] Zemanian J. Non-uniform semi-infinite grounded grids. SIAM J. Appl. Math., 1982,13:770-788
    [12] Anderson W N, Kleindorfer G B, Kleindorfer M B, et al.Consistent estimates of the paramters of a linear system. Ann. Math. Statist., 1969,40:2064-2075
    [13] Ouellette D V. Schur complements and statistics. Linear Algebra Appl., 1981,36:187-295
    [14] Anderson W N, Morley T D, Trapp G E. Positive solutions to X = A - BX~(-1)B~*.Linear Algebra Appl., 1990,134:53-62
    [15] Engwerda J C. On the existence of a positive definite solution of the matrix equation X + A~TX~(-1)A=I.Linear Algebra Appl., 1993,194:91-108
    [16] Zhan X Z, Xie J J. On the matrix equation X + A~TX~(-1)A=I.Linear Algebra Appl.,1996,247:337-345
    [17] El-Sayed S M. A two-sided iterative method for computing positive definite solutions of a nonlinear matrix equation. ANZIAM J., 2003,44:145-152
    [18] El-Sayed S M. An algorithm for computing positive definite solutions of the nonlinear matrix equation X + A~*X~(-1)A=I.Inter. J. Comput. Math., 2003,80(12):1527-1534
    [19] Xu S F. On the maximal solution of the matrix equation X + A~TX~(-1)A=I. Acta Sci.Natur. Univ. Pekinensis, 2000,36(1):29-38
    [20] Su Y F, Bhaya A. On iterative solvers of the matrix equation X + A~TX~(-1)A=I.In:Proceedings of the 38~(th) Conference on Decision & Control. Arizona, 1999,2744-2749
    [21] Ivanov I G, Hasanov V I, Uhlig F. Improved methods and starting values to solve the matrix equations X±A~*X~(-1)A=I iteratively. Math. Comp., 2004,74(249):263-278
    [22] Zhan X Z. Computing the extremal positive definite solutions of a matrix equation. SIAM J. Sci. Comput., 1996,17(5):1167-1174
    [23] Guo C H, Lancaster P. Iterative solution of two matrix equations. Math. Comp.,1999,68(228):1589-1603
    [24] El-Sayed S M, Al-Dbiban A M. A new inversion free iteration for solving the equation X + A~*X~(-1)A=Q. J. Comput. Appl. Math., 2005,181:148-156
    [25] Lin W W, Xu S F. Convergence analysis of structure-preserving doubling algorithms for riccati-type matrix equations. SIAM J. Matrix Anal. Appl., 2006,28(1):26-36
    [26] Meini B. Efficient computation of the extreme solutions of X + A~*X~(-1)A =Q and X -A~*X~(-1)A=Q.Math.comp., 2001,71(239):1189-1204
    [27] Guo C H. Convergence rate of an iterative method for a nonlinear matrix equation. SIAM J.Matrix Anal. Appl., 2001,23(1):295-302
    [28] Chu E K, Hwang T M, Lin W W, et al.On a doubling algorithm for the nonlinear matrix equation X + A~TX~(-1)A=Q when |λ(X~(-1)A)|≤1.http://math.cts.nthu.edu.tw/Mathematics/preprints/prep2006-11-003.pdf.Taiwan,2006-10-12
    [29] Ran A C M,Reurings M C B. A nonlinear matrix equation connected to interpolation theory. Linear Algebra Appl., 2004,379:289-302
    [30] Ivanov I G, El-Sayed S M. Properties of positive definite solutions of the equation X+A~*X~(-2)A=I.Linear Algebra Appl., 1998,279:303-316
    [31] Ivanov I G, Hasanov V I, Minchev B V. On matrix equations X±A~*X~(-2)A=I.Linear Algebra Appl., 2001,326:27-44
    [32] Ramadan M A. Necessary and sufficient conditions for the existence of positive definite solutions of the matrix equation X+A~TX~(-2)A=I.Inter. J. Comput. Math., 2005,82(7):865-870
    [33] Zhang Y H. On Hermitian positive definite solutions of matrix equation X+A~*X ~(-2)A=I.Linear Algebra Appl., 2003,372:295-304
    [34] Ramadan M A, El-Danaf T S, El-Shazly N M. Iterative positive definite solutions of the two nonlinear matrix equations X±A~TX~(-2)A= I. Appl. Math. Comput., 2005,164:189-200
    [35] Wang M H, Wei M S. On the maximal-like solution of matrix equation X + A~*X~(-2)A=I.Numerical Mathematics-A Journal of Chinese Universities, 2006,15(1):67-73
    [36] Guo X X. On Hermitian positive definite solution of nonlinear matrix equation X+A~*X~(-2)A=Q. J. Comput. Math., 2005,23(5):513-526
    [37] Cheng M S. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A~*X~(-2)A=I.Acta Sci. Natur. Univ. Pekinensis,2005,41(1):55-61
    [38] Zhang Y H. On Hermitian positive definite solutions of matrix equation X-A~*X~(-2)A =I.J.Comput. Math., 2005,23(4):408-418
    [39] Hasanov V I, Ivanov I G. Positive definite solutions of the equation X+A~*X~(-n)A=I.In: Lect. Notes Comput. Sci.-Numer.Anal. Appl. Sofia, 2001,377-384
    [40] El-Sayed S M. Two iteration processes for computing positive definite solutions of the equation X-A~*X~(-n)A=Q.Comput. Math. Appl., 2001,41:579-588
    [41] 廖安平.矩阵方程X+A~*X~(-n)A=I的正定解.高等学校计算数学学报。2004,26(2):156-161
    [42] El-Sayed S M, Al-Dbiban A M. On positive definite solutions of the nonlinear matrix equation X+A~*X~(-n)A=I.Appl. Math. Comput., 2004,151:533-541
    [43] El-Sayed S M, El-Alem M. Some properties for the existence of a positive definite solution of matrix equation X+A~*X~(-2~m)A=I.Appl.Math. Comput., 2002,128:99-108
    [44] Hasanov V I, Ivanov I G.On the matrix equation X-A~*X~(-n)A=I.Appl. Math. Comput.,2005,168:1340-1356
    [45] Hasanov V I, Ivanov I G.Solutions and perturbation estimates for the matrix equations X±A~*X~(-n)A=Q.Appl. Math. Comput., 2004,156:513-525
    [46] Ivanov I G. Properties of solutions of the matrix equation X+A~*X~(-2~k)A=Q.In:Proceedings of Dynamical Systems and Applications. Turkey, 2004, 408-418
    [47] Ivanov I G. On positive definite solutions of the family of matrix equations X+A~*X~(-n)A=Q.J.Comput. Appl. Math., 2006,193:277-301
    [48] Hasanov V I. Solutions and perturbation theory of nonlinear matrix equations: [dissertation]. Bulgarian: University of Shoumen, 2003, 16-52
    [49] 尹小艳,刘三阳,房亮.矩阵方程X+A~*X~(-n)A=P的Hermite正定解及其扰动分析.计算数学,2008,30(1):37-48
    [50] Liu X G, Gao H. On the positive definite solutions of the matrix equations X~s±A~TX~(-t)A=I_n,Linear Algebra Appl.,2003,368:83-97
    [51] Du S P, Hou J C. Positive definite solutions of operator equations X~m+A~*X~(-n)A=I.Linear and Multilinear Algebra, 2003,51(2):163-173
    [52] Hasanov V I. Positive definite solutions of the matrix equations X±A~*X~(-q)A=Q.Linear Algebra Appl., 2005,404:166-182
    [53] 王进芳.非线性矩阵方程X+A~*X(-q)A=I(q>0)的Hermitian正定解:[山东大学硕士学位论文].济南:山东大学数学学院,2004,9-24
    [54] Hasanov V I, El-Sayed S M. On the positive definite solutions of nonlinear matrix equation X+A~*X~(-δ)A=Q.Linear Algebra Appl., 2006,412:154-160
    [55] Peng Z Y, El-Sayed S M. On positive definite solution of a nonlinear matrix equation.Numer.Linear Algebra Appl., 2007,14:99-113
    [56] Peng Z Y, El-Sayed S M, Zhang X L. Iterative methods for the extremal positive definite solution of the matrix equation X+A~*X~(-α)A=Q. J.Comput.Appl.Math.,2007,200:520-527
    [57] Reurings M C B. Contractive maps on normed linear spaces and their applications to nonlinear matrix equations. Linear Algebra Appl., 2006,418:292-311
    [58] Reurings M C B. Symmetric matrix equation:[dissertation]. Amsterdam: Univ. of Amsterdam, 2003,80-128
    [59] 王进芳,张玉海,朱本仁.矩阵方程X+A~*X~(-q)A=I(q>0)的Hermite正定解.计算数学,2004,26(1):61-72
    [60] 张玉海.非线性矩阵方程X+A~*X~qA=I(q>0)Hermite正定解的存在性.高等学校计算数学学报,2005,27:110-113
    [61] Shi X Q, Liu F S, Umoh H, et al.Two kinds of nonlinear matrix equations and their corresponding matrix sequences. Linear and Multilinear Algebra, 2004,52(1):1-15
    [62] El-Sayed S M, Petkov M G. Iterative methods for nonlinear matrix equations X+A~*X~(-α)A=I.Linear Algebra Appl., 2005,403:45-52
    [63] 高东杰,张玉海.矩阵方程X-A~*X~qA=Q(q>0)的Hermite正定解.计算数学,2007,29(1):73-80
    [64] El-Sayed S M, Ramadan M A. On the existence of a positive definite solution of the matrix equation X-A~*(?)A=I.Inter. J. Comput. Math., 2001,76:331-338
    [65] Ramadan M A, El-Shazly N M. On the matrix equation X+A~T(?)A=I.Appl.Math. Comput., 2006,173:992-1013
    [66] 李静,张玉海.矩阵方程X-A~*X~(-q)A=Q当q>1时的Hermite正定解.工程数学学报,2005,22(4):679-686
    [67] Cross G W, Lancaster P. Square roots of complex matrices. Linear and Multilinear Algebra, 1974,1:289-293
    [68] Johnson C R, Okubo K, Reams R. Uniqueness of matrix square roots and an application.Linear Algebra Appl., 2001,323:51-60
    [69] Johnson C R, Okubo K. Uniqueness of matrix square roots under a numerical range condition. Linear Algebra Appl., 2002,341:195-199
    [70] Bj(?)rek (?),Hammatling S. A schur method for the square root of a matrix. Linear Algebra Appl., 1983,52:127-140
    [71] Higham N J. Computing real square roots of a real matrix. Linear Algebra Appl.,1987,88:405-430
    [72] 朱德高.一个Jordan块的平方根矩阵.数学物理学报,1999,19(3):318-321
    [73] 朱德高.具有两个Jordan块的Jordan标准形的平方根矩阵.数学物理学报,2000,20(4):451-460
    [74] Higham N J. Newton's method for the matrix square root. Math. Comp., 1986,46(174):537-549
    [75] Hoskins W D, Walton D J. A faster method of computing the square root of a matrix.IEEE Trans. Automat. Control, 1978,23(3):494-495
    [76] Iannazzo B. A note on computing the matrix square root. CALCOLO, 2003,40:273-283
    [77] Sherif N. On the computation of a matrix inverse square root. Computing, 1991,46:295-305
    [78] Higham N J. Stable iterations for the matrix square root. Numer. Algorithms, 1997,15:227-242
    [79] Kim H M. Computing square roots of a matrix: [thesis]. Manchester: Univ. of Manchester,1997,37-46
    [80] Hasan M A. A power method for computing square roots of complex matrices. J. Math.Anal. Appl. 1997,312:393-405
    [81] Meini B. The matrix square root from a new functional perspective: theoretical results and computational issues. SIAM J. Matrix Anal. Appl., 2004,26(2):362-376
    [82] Gupta D K, Kaul C N. Enclosing the square root of a positive definite symmetric matrix.Inter. J. Comput. Math., 1999,71:105-115
    [83] Liu Z Y, Zhang Y L, Ralha R. Computing the square roots of matrices with central symmetry. Appl. Math. Comput., 2007,186:715-726
    [84] Alefeld G, Schneider N. On square roots of M-matrices. Linear Algebra Appl., 1982,42:119-132
    [85] Cardoso J R, Kenney C S, Leite F S. Computing the square root and logarithm of a real P-orthogonal matrix. Appl. Numer. Math., 2003,46:173-196
    [86] Faβbender H, Mackey D S, Mackey N, et al.Hamiltonian square roots of skew-Hamiltonian matrices. Linear Algebra Appl., 1999,287:125-159
    [87] Ikramov K D. Hamiltonian square roots of skew-Hamiltonian matrices revisited. Linear Algebra Appl., 2001,325:101-107
    [88] Zecevic A I, Siljak D D. Solution of Lyapunov and Riccati equations in a multiprocessor environment. Nonlinear Analysis TMA, 1997,30(5):2815-2825
    [89] Guo C H, Lancaster P. Analysis and modification of Newton's method for algebraic Riccati equations. Math. Comp., 1998,67(223):1089-1105
    [90] Laub A J. A schur method for solving algebraic Riccati eaquation. IEEE Trans. Automat.Control, 1979,24(6):913-921
    [91] Byers R. Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl., 1987,85:267-279
    [92] Lu L Z, Lin W W. On iterative algorithm for the solution of the discrete time algebraic Riccati equation. Linear Algebra Appl., 1993,188:465-488
    [93] 郭晓霞.若干非线性矩阵方程的理论与算法:[中国科学院博士学位论文].北京:数学与系统科学研究院,2006,23-69
    [94] Higham N J, Kim H M. Numerical analysis of a quadratic matrix equation. IMA J. Numer.Anal., 2000,20:499-519
    [95] Bai Z Z, Guo X X, Yin J F. On two iteration methods for the quadratic matrix equations.Inter. J. Numer. Anal. Model.,2005,2:114-122
    [96] Tisseur F, Meerbergen K. The quadratic eigenvalue problem. SIAM Review,2001,43(2):235-286
    [97] Sun J G, Xu S F. Perturbation analysis of the maximal solution of the matrix equation X+A~*X~(-1)A=Pп.Linear Algebra Appl., 2003,362:211-228
    [98] Sun J G. Perturbation analysis of the matrix equation X=Q+A~H((?)-C)~(-1)A.Linear Algebra Appl., 2003,372:33-51
    [99] Ivanov I G.Perturbation analysis for solutions of X±A~*X~(-n)A=Q.Linear Algebra Appl., 2005,395:313-331
    [100] Hasanov V I, Ivanov I G. On two perturbation estimates of the extreme solutions to the equations X±A~*X~(-1)A=Q.Linear Algebra Appl., 2006,413:81-92
    [101] Cheng M S, Xu S F. Perturbation analysis of the Hermitian positive definite solution of the matrix equation X-A~*X~(-2)A=I.Linear Algebra Appl., 2005,394:39-51
    [102] Xu S F, Cheng M S. Perturbation analysis of a nonlinear matrix equation. Taiwan J.Math., 2006,10(5):1329-1344
    [103] Ran A C M,Reurings M C B, Rodman L. A perturbation analysis for nonlinear selfadjoint operator equations. SIAM J. Matrix Anal. Appl., 2006,28(1):89-104
    [104] 陈小山,黎稳.关于矩阵方程X+A~*X~(-1)A=P的解及其扰动分析.计算数学,2005,27(3):303-310
    [105] Xu S F. Perturbation analysis of the maximal solution of the matrix equation X+A~*X~(-1)A=P.Linear Algebra Appl.,2001,336:61-70
    [106] Boneva J K, Konstantinov M M, Petkov P H. Perturbation analysis for the complex matrix equation Q±A~HX~PA-X=0.Surveys in Mathematics and its Applications, 2007,2:29-41
    [107] 郭大钧.非线性泛函分析.济南:山东科学技术出版社,2001,235-358
    [108] Gilbert R P,Guo D J. Fixed points of mixed monotone operators with applications. Appl.Anal., 1998,31:215-224
    [109] Guo D J, Lakshmikantham V. Nonlinear Problems in Abstract Cones. London: ACADEMIC Press, 1988,59-82
    [110] 张石生.不动点理论及其应用.重庆:重庆出版社,1984,18-34
    [111] 李庆扬,莫孜中,祁力群.非线性方程组的数值解法.北京:科学出版社,1999.7-29
    [112] Zhan X Z. Matrix Inequalities. Germany: Springer-Verlag Press, 2002,7-29
    [113] Furuta T. Operator inequalities associated with Holder-McCarthy and Kantorovich inequalities. J. Inequal. Appl., 1998,2:137-148
    [114] Golub G H, Vanloan C F. Matrix computations. Maryland: The Johns Hopkins University Press, 1983,77-81
    [115] Bhatia R. Matrix Analysis. New York: Springer-Verlag New York Press, 1997,304-306
    [116] Lancaster P, Tismenetsky M. The Theory of Matrices with Applications. London: ACADEMIC Press, 1985,76-79
    [117] Zhang F Z. Matrix Theory Basic Results and Techniques. New York: Springer-Verlag New York Press, 1999,61-63
    [118] Yang Y T. The iterative method for solving nonlinear matrix equation X~*+A~*X~(-t)A=Q.Appl. Math. Comput.,2007,188:46-53
    [119] El-Sayed S M, Ran A C M. On an iterative method for solving a class of nonlinear matrix equations.SIAM J. Matrix Anal. Appl., 2001,23(3):632-645
    [120] Cheng S H, Higham N J, Kenney C S, et al.Approximating the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl., 2001,22:1112-1125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700