自适应滤波理论及其在回波消除中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应滤波器已经广泛应用于语音处理、回波消除、信道均衡、系统辨识、谱线增强、自适应阵列处理和生物医学信号处理等诸多领域中。而在调制解调器、长途电话、免提电话和电话会议系统中,回波消除技术占有极其重要的地位。但是,在声学回波消除应用中,往往需要上千个甚至更多的自适应滤波器系数才能达到回声消除的要求。这对自适应算法的计算负担提出了很高的要求。本论文主要研究了如何降低高阶自适应滤波器算法的计算复杂度及其在回波消除器中的应用。
     当输入信号为有色信号时,快速仿射投影算法的收敛速度比NLMS算法快,但计算量接近NLMS算法。为了减小快速仿射投影算法的计算量,我们提出了两种简化的仿射投影算法。这两种简化算法均节省了一定的计算量,并具有与快速仿射投影算法十分相近的收敛性能。简化算法中的前置滤波器可以采用Leaky LMS算法和噪声LMS算法两种方法实现。在声学回波消除应用中,即使采用计算复杂度为O(N)量级的自适应滤波算法,其计算量仍然显得过大。在自适应滤波器中采用分组处理技术,可以大大减小算法的运算量。因此,我们提出了一种分组准确快速仿射投影算法和分组准确简化仿射投影算法。分组准确仿射投影算法在数学上与原始的仿射投影算法完全等价,因此收敛性能也一样。但是,分组准确仿射投影算法大大降低了计算复杂度。分组准确仿射投影算法可以采用较小的分组以获得较短的处理延迟。此外,我们还尝试对回波消除器中的残差进行听觉加权,从而改善回波消除的主观质量。
     立体声回声消除可以看作是单路回声消除的直接推广。但是,在多路回声消除中,由于多路输入信号之间存在强相关性,消除多路回波出现了与单路回波消除不同的新问题。本文对各种立体声回声消除自适应算法进行了初步的研究,并提出了一种改进的非线性预处理方法,可以对多路输入信号进行更有效的去相关。另外,我们还根据矩阵求逆引理提出了一种计算量较小的两路仿射投影算法,并利用人耳的掩蔽效应进一步改善其收敛性能。
     在系统辨识应用中,要求直接求解自适应滤波器的权系数向量。我们提出了一种简化的逆QR分解递推最小二乘算法。该算法直接求解权系数向量,避免
Adaptive filtering has been widely used in many applications, such as speech signal processing, echo cancellation, channel equalization, system identification, line enhancement, adaptive beamformer and biomedical signal processing, etc. Echo cancellation is of major importance in MODEM, long distance telephone, hands-free telephone and teleconference. However, a major difficulty encountered in applications like acoustic echo cancellation is the requirement for very long adaptive filters (N>1000). The implementation of such long adaptive filters requires heavy computational resources. The dissertation is focused on the research of reducing the computational complexity of large adaptive filters and their applications in echo cancellation.
    Fast affme projection algorithm may possess NLMS like complexity while having a better convergence rate for colored input signals. In order to reduce the computational complexity of fast affine projection algorithm, two simplified algorithms are presented. The convergence performance of the simplified algorithms is comparable to that of affine projection algorithm even with less computational complexity. The prefilter in the simplified algorithms can be implemented by Leaky LMS or noisy LMS. In acoustic echo cancellation, the computational complexity is still too large even for algorithms with O(N) complexity. Block processing is an effective approach to further reduce the computational complexity. A block exact fast affine projection algorithm and a block exact simplified affine projection algorithm are proposed in the dissertation. The block exact affine projection algorithm is an exact equivalent of the original affine projection algorithm. Thus, it performs identically with affine projection algorithm and at the same time, offers a considerable saving in complexity. The block exact algorithm allows the use of small block length, thus making the effect of processing delay negligible. In order to improve the subject quality of echo cancellation, a perceptually weighted echo canceller is also
引文
[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] B. Widrow and S. D. Steams. Adaptive signal processing. Prentice-Hall, 1985
    [3] M.G. Bellanger. Adaptive digital filters and signal analysis. Marcel Dekker, Inc., 1987
    [4] 韦岗,邱伟编著。现代信号处理理论与技术。华南理工大学出版社,1994[5] 张贤达。现代信号处理.清华大学出版社,1995
    [6] 陈尚勤,李晓峰著.快速自适应信息处理。人民邮电出版社,1993
    [7] 覃景繁.回波消除理论与应用的研究。华南理工大学博士论文.1998
    [8] 宗凌.自适应回声消除理论与应用的研究.华南理工大学硕士论文.1996
    [9] 扬大力,刘泽民.“一种基于神经网络的自适应回波消除器”.通信学报.1993,14(6):16-21
    [10] J. J. Shynk. " Frequency-domain and multirate adaptive filtering". IEEE Signal Processing Magazine. 1992, 9 (1): 14-37
    [11] J. J. Shynk. "Adaptive IIR filtering". IEEE Signal Processing Magazine. 1989, 6 (2): 4-21
    [12] W. B. Hsu, D. A. Hodges and D. G. Messerschmitt. " Acoustic echo cancellation for loudspeaker telephones". IEEE/IEICE Global Telecommunications Conference 1987, Tokyo, 1987:1955-1958
    [13] T. Schertler and G. U. Schmidt. " Implementation of a low-cost acoustic echo canceller". Proc. IWAENC-97, London, 1997:49-52
    [14] 韦岗,贺前华编著。神经网络模型,学习及应用.电子工业出版社,1994:290-327
    [15] K. S. Tang, K. F. Man, S. Kwong and Q. H. He. " Genetic algorithms and their applications". IEEE Signal Processing Magazine. 1996, 13 (6): 22-37
    [16] S. C. Ng, S. H. Leung, C. Y. Chung, A. Luk and W. H. Lau. " The genetic search approach: a new learning algorithm for adaptive IIR filtering". IEEE Signal Processing Magazine. 1996, 13(6): 38-46
    [17] S. Sundaralingam and K. Sharman. "Genetic evolution of adaptive filters". Proc. DSP UK, London, 1997:47-53
    [18] J. B. Evans. " A new variable step size method suitable for efficient VLSI implementation". Proc. ICASSP'91, Toronto, 1991:2105-2108
    [19] J. B. Evans. " Analysis of a low complexity variable step size adaptive algorithm". Proc. ICASSP'93,, 1993:484-487
    [20] M. S. Park and W. J. Song. "A complementary pair LMS algorithm for adaptive filtering". IEICE Transactions on Fundamentals of electronics, communications and??computer sciences. 1998, E81-A (7): 1493-1497
    [21] J. C. Lee and C. K. Un. " Performance of transform domain LMS adaptive filters". IEEE Transactions on Acoustics, Speech, and Signal Processing. 1986, 34 (6): 499-510
    [22] G. K. Boray and M. D. Srinath. " Conjugate gradient techniques for adaptive filtering". IEEE Transactions on Circuits and Systems-Ⅰ: Fundamental Theory and Applications. 1992, 39 (1): 1-10
    [23] D. F. Marshall and W. K. Jenkins. " A fast quasi Newton adaptive filtering algorithm". IEEE Transactions on Signal Processing. 1992, 40 (7): 1652-1662
    [24] M. L. R. de Campos and A. Antoniou. "A new Quasi-Newton adaptive filtering algorithm". IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing. 44 (11): 924-934
    [25] K. Berberidis and J. Palicot. "A block Quasi-Newton algorithm implemented in the frequency domain". Proe. ICASSP' 96, Atlanta, 1996:1732-1735
    [26] G. V. Moustakides and S. Theodoridis." Fast Newton transversal filters—a new class of adaptive estimation algorithms". IEEE Transactions on Signal Processing. 1991, 39 (10): 2184-2193
    [27] T. Petillon, A. Gilloire and S. Theodoridis. "The fast Newton transversal filter: an efficient scheme for acoustic echo cancellation in mobile radio". IEEE Transactions on Signal Processing. 1994, 42 (3): 509-518
    [28] 胡春风,高立,张筱华,王德隽.“一种改进的RLS自适应滤波器算法”.通信学报.1998,19(8):67-71
    [29] G. Carayannis, D. G. Manolakis, N. Kalouptsidis. "A fast sequential algorithm for Least-Squares filtering and prediction". IEEE Transactions on Acoustics, Speech, and Signal Processing. 1983, 31 (6): 1394-1402
    [30] D. T. M. Slock and T. Kailath. " Numerically stable fast transversal filters for recursive least squares adaptive filtering". IEEE Transactions on Signal Processing. 1991, 39 (1): 92-114
    [31] J. M. Cioffi and T. Kailath. " Windowed fast transversal filters adaptive algorithms with normalization". IEEE Transactions on Acoustic, Speech, and Signal??Processing. 1985, 33 (3): 607-625
    [32] 陈之远,乐光新.“基于子带分解的自适应滤波”。电路与系统学报.1998,3(1):86-91
    [33] A. Gilloire and M. Vetterli. " Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation". IEEE Transaction on Signal Processing. 1992, 40 (8): 1862-1875
    [34] J. Qu, Z. Q. Luo and K. M. Wong. " Optimum filter banks for signal decomposition and its application in adaptive echo cancellation". IEEE Transactions on Signal Processing. 1996, 44 (7): 1669-1680
    [35] Y. Yamada, H. Ochi and H. Kiya. " A subband adaptive filter allowing maximally decimation". IEEE Journal on Selected Areas in Communications. 1994, 12 (9): 1548-1552
    [36] U. Iyer, M. Nayeri and H. Ochi. " Polyphase based adaptive structure for adaptive filtering and tracking". IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing. 1996, 43 (3): 220-233
    [37] H. Ochi, Y. Higa and S. Kinjo. " A subband adaptive filter with the optimum analysis filter bank". Proc. ICASSP'95, Detroit, 1995:993-996
    [38] Y. Higa, H. Ochi and S. Kinjo. "A subband adaptive filter with a variable analysis filter bank". Proc. ICASSP'96, Atlanta, 1996:1727-1730
    [39] S. Zimmermarm and G. A. Williamson. " Subband adaptive filters with zero alias component constraints". Proc. ICASSP'96, Atlanta, 1996:1735-1738
    [40] H. Sakai and N. Hirayama. " Analysis of subband adaptive filters". Proc. ICASSP'96, Atlanta, 1996:1303-1306
    [41] A. R. Rodrigues and M. R. Petraglia and J. Szczupak. " An adaptive filtering subband structure with critical sampling". Proc. ISCAS'96, Piscataway, 1996: 368-371
    [42] S. Makino, J. Noebauer, Y. Haneda and A. Nakagawa. " SSB subband echo canceller using low-order projection algorithm". Proc. ICASSP'96, Atlanta, 1996: 945-948
    [43] K. Ashihara, K. Nishikawa and H. Kiya. " Improvement of convergence speed??for subband adaptive digital filters using the multirate repeating method". Proc. ICASSP'95, Detroit, 1995:989-992
    [44] J. C. Lee and C. K. Un. " Performance analysis of frequency-domain block LMS adaptive digital filters". IEEE Transactions on Circuits and Systems. 1989, 36 (2): 173-189
    [45] D. Mansour and A. H. Gray, Jr. " Unconstrained frequency-domain adaptive filter". IEEE Transactions on Acousitcs, Speech, and Signal Processing. 1982, 30 (5): 726-734
    [46] 胡春风,高立,张筱华,王德隽。“一种改进的频域LMS自适应滤波器算法”。通信学报.1998,19(9):75-79
    [47] J. Makhoul. " A class of all-zero lattice digital filters: properties and applications". IEEE Transactions on Acoustics, Speech, and Signal Processing. 1978, 26 (4): 304-314
    [48] G. R. L. Sohie and L. H. Sibul. " Stochastic convergence properties of the adaptive gradient lattice". IEEE Transactions on Acoustics, Speech, and Signal Processing. 1984, 32 (1): 102-107
    [49] K. Ozeki, and T. Umeda. " An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties". Electronics and Communications in Japan. 1984, 67-A (2): 126-132
    [50] S. L. Gay, and S. Tavathia. " The fast affine projection algorithm". Proc. ICASSP'95, Detroit, 1995:3023-3026
    [51] M. Tanaka, Y. Kaneda, S. Makino and J. Kojima. "A fast projection algorithm for adaptive filtering". IEICE Transactions on Fundamentals of electronics, communications and computer sciences. 1995, E78-A (10): 1355-1361
    [52] J. Benesty, P. Duhamel and Y. Grenier. " A multichannel affine projection algorithm with applications to multichannel acoustic echo cancellation". IEEE Signal Processing Letters. 1996, 3 (2): 35-37
    [53] M. M. Sondhi, D. R. Morgan and J. L. Hall. " Stereophonic acoustic echo cancellation——an overview of the fundamental problem". IEEE Signal Processing Letters. 1996, 2 (8): 148-151[54] J. Benesty, D. R. Morgan and M. M. Sondhi. " A better understanding and an improved solution to the problems of stereophonic acoustic echo cancellation". Proc.ICASSP'97, Munich, 1997: 303-306
    
    [55] J. Benesty, F. Amand, A. Gilloire and Y. Grenier. " Adaptive filtering algorithms for stereophonic acoustic echo cancellation". ICASSP'95, Detroit, 1995:3099-3042
    
    [56] M. G. Bellanger. " The FLS-QR algorithm for adaptive filtering". Signal Processing. 1989, 17 (4): 291-304
    
    [57] M. G. Bellanger. " A survey of QR based fast least squares adaptive filters: from principles to realization". ICASSP'91, Toronto, 1991:1833-1836
    
    [58] S. T. Alexander and A. L. Ghirnikar. " A method for recursive least squares filtering based upon an inverse QR decomposition". IEEE Transactions on Signal Processing. 1993,41 (1): 20-30[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] B. Widrow and S. D. Steams. Adaptive signal processing. Prentice-Hall, 1985
    [3] K. Ozeki, and T. Umeda. " An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties". Electronics and Communications in Japan. 1984, 67-A (2): 126-132
    [4] S. L. Gay, and S. Tavathia. " The fast affine projection algorithm". Proc. ICASSP'95, Detroit, 1995:3023-3026
    [5] M. Tanaka, Y. Kaneda, S. Makino and J. Kojima. " A fast projection algorithm for adaptive filtering". IEICE Transactions on Fundamentals of electronics, communications and computer sciences. 1995, E78-A (10): 1355-1361
    [6] M. Tanaka, Y. Kaneda, S. Makino and J. Kojima. "Fast projection algorithm and its step size control". Proc. ICASSP'95, Detroit, 1995:945-948
    [7] Q. G. Liu, B. Champagne and K. C. Ho. " On the use of a modified fast affine projection algorithm in subbands for acoustic echo cancelation". Proc. 1996 IEEE??Digital Signal Processing Workshop, Loen, Norway, 1996: 354-357
    
    [8] S. C. Douglas. " Efficient approximate implementations of the fast affine projection algorithm using orthogonal transforms". Proc. ICASSP'96, Atlanta, 1996:1657-1660
    
    [9] M. Rupp. " A family of adaptive filter algorithms with decorrelating properties".IEEE Transactions on Signal Processing. 1998, 46 (3): 771-775
    
    [10] D. R. Morgan and S. G. Kratzer. " On a class of computationally efficient, rapidly converging, generalized NLMS algorithms". IEEE Signal Processing Letters. 1996,3 (8): 245-247
    
    [11] K. Kurosawa and T. Furusawa. " A geometric interpretation of adaptive algorithms". IEEE/IEICE Global Telecommunications Conference 1987, Tokyo, 1987:1966-1970
    
    [12] J. M. Cioffi and T. Kailath. " Windowed fast transversal filters adaptive algorithms with normalization". IEEE Transactions on Acoustic, Speech, and Signal Processing. 1985, 33 (3): 607-625
    
    [13] P. P. Mavridis and G. V. Moustakides. " Simplified Newton-Type adaptive estimation algorithms". IEEE Transactions on Signal Processing. 1996, 44 (8): 1932-1940
    
    [14] S. H. Leung and B. L. Chan. " Fast Converging LMS Equaliser". Electronics Letters. 1993,29 (10): 829-830
    
    [15] M. G. Bellanger. Adaptive digital filters and signal analysis. Marcel Dekker,Inc., 1987
    
    
    [16] S. C. Douglas. " Performance comparison of two implementations of the Leaky LMS adaptive filter". IEEE Transactions on Signal Processing. 1997, 45 (8): 2125-2129[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] J. Benesty and P. Duhamel. "A fast exact least mean square adaptive algorithm". IEEE Transactions on Signal Processing. 1992, 40 (12): 2904-2920
    [3] M. Montazeri and P. Duhamel. " A set of algorithms linking NLMS and Block RLS algorithms". IEEE Transactions on Singal Processing. 1995, 43 (2): 444-453
    [4] T. Furukawa, H. Kubota and S. Tsujii. "The orthogonal projection algorithm for block adaptive signal processing". Proc. ICASSP'89, Glasgow, 1989:1059-1062
    [5] K. Berberidis and S. Theodoridis. "An efficient block Newton-type algorithm". Proc. ICASSP'95, Detroit, 1995:1133-1136
    [6] G.V. Moustakides and S. Theododdis. "Fast Newton transversal filters——a new class of adaptive estimation algorithms". IEEE Transactions on Signal Processing. 1991, 39 (10): 2184-2193
    [7] M. Tanaka, S. Makino and J. Kojima. " A block exact fast affine projection algorithm". IEEE Transactions on Speech And Audio Processing. 1999, 7 (1): 79-86
    [8] P. Heitkamper. " Optimization of an acoustic echo canceller combined with adaptive gain control". Proc. ICASSP'95, Detroit, 1995:3047-3050
    [9] W.B. Hsu, D. A. Hodges and D. G. Messerschmitt. "Acoustic echo cancellation for loudspeaker telephones". IEEE/IEICE Global Telecommunications Conference 1987, Tokyo, 1987:1955-1958
    [10] M. R. Asharif, F. Amano, S. Unagami and K. Murano. "Acoustic echo canceler based on frequency bin adaptive filtering (FBAF) ".IEEE/IEICE Global Telecommunications Conference 1987, Tokyo, 1987:1940-1944
    [11] J. C. Lee and C. K. Un. "Performance analysis of frequency-domain block LMS adaptive digital filters". IEEE Transactions on Circuits and Systems. 1989, 36 (2): 173-189
    [12] D. Mansour and A. H. Gray, Jr. " Unconstrained frequency-domain adaptive filter". IEEE Transactions on Acousitcs, Speech, and Signal Processing. 1982, 30 (5): 726-734[13] H. K. Kwan and M. T. Tsim. " High speed 1-D FIR digital filtering architecture using polynomial convolution". Proc. ICASSP'87, Dallas, 1987: 1863-1866
    
    [14] Z. J. Mou and P. Duhamel. " A unified approach to the fast FIR filtering algorithms". Proc. ICASSP'88, New York, 1988: 1914-1917
    
    [15] Z. J. Mou and P. Duhamel. " Fast FIR filtering: algorithms and implementations". Signal Processing. 1987,13 (4): 377-384
    
    [16] Z. J. Mou and P. Duhamel. " Short-Length FIR filters and their use in fast nonrecursive filtering". IEEE Transactions on Signal Processing. 1991, 39 (6): 1322-1332[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    
    [2] M. M. Sondhi, D. R. Morgan and J. L. Hall. " Stereophonic acoustic echo cancellation — an overview of the fundamental problem". IEEE Signal Processing Letters. 1996,2 (8): 148-151
    
    [3] J. Benesty, D. R. Morgan and M. M. Sondhi. " A better understanding and an improved solution to the problems of stereophonic acoustic echo cancellation". Proc.ICASSP'97, Munich, 1997: 303-306
    
    [4] J. Benesty, F. Amand, A. Gilloire and Y. Grenier. " Adaptive filtering algorithms for stereophonic acoustic echo cancellation". Proc. ICASSP'95, Detroit, 1995: 3099-3042
    
    [5] S. Shimauchi and S. Makino. " Stereo projection echo canceller with true echo path estimation". Proc. ICASSP'95, Detroit, 1995: 3059-3062
    
    [6] J. Benesty, P. Duhamel and Y. Grenier. " A multichannel affine projection algorithm with applications to multichannel acoustic echo cancellation". IEEE Signal Processing Letters. 1996, 3 (2): 35-37
    
    [7] F. Amand, J. Benesty, A. Gilloire and Y. Grenier. " A fast two-channel projection algorithm for stereophonic acoustic echo cancellation". Proc. ICASSP'96,Atlanta, 1996: 949-952
    
    [8] S. Makino, K. Strauss, S. Shimauchi, Y. Haneda and A. Nakagawa. " Subband stereo echo canceller using the projection algorithm with fast convergence to the true echo path". Proc. ICASSP'97, Munich, 1997: 299-302
    
    [9] F. Alberge, P. Duhamel and Y. Grenier. " A combined FDAF/WSAF algorithm for stereophonic acoustic echo cancellation". Proc. ICASSP'98, Seattle,1998: 1413-1416
    
    [10] T. Hoya, Y. Loke, J. A. Chambers and P. A. Naylor. " Application of the leaky extended LMS ( XLMS ) algorithm in stereophonic acoustic echo cancellation".Signal Processing. 1998,64: 87-91
    
    [11] A. Gilloire and V. Turbin. " Using auditory properties to improve the behaviour??of stereophonic acoustic echo cancellers". Proc. ICASSP'98, Seattle, 1998:3681-3684
    [12] M. Ali. " Stereophonic acoustic echo cancellation system using time-varying allpass filtering for signal decorrelation". Proc. ICASSP'98, Seattle,1998:3689-3672
    [13] J. Benesty, D. R. Morgan, J. L. Hall and M. M. Sondhi. " Stereophonic acoustic echo cancellation using nonlinear transformations and comb filtering". Proc. ICASSP'98, Seattle,1998:3673-3676
    [14] Y. Joncour and A. Sugiyama. " A stereo echo canceler with pre-processing for correct echo-path identification". Proc. ICASSP'98, Seattle,1998:3677-3680
    [15] S. Shimauchi and S. Makino. " Stereo echo cancellation algorithm using imaginary input-output relationships". Proc. ICASSP'96, Atlanta, 1996:941-944
    [16] M. G. Bellanger. Adaptive digital filters and signal analysis. Marcel Dekker, Inc., 1987
    [17] Q. G. Liu, B. Champagne and K. C. Ho. " On the use of a modified fast affine projection algorithm in subbands for acoustic echo cancelation". Proc. 1996 IEEE Digital Signal Processing Workshop, Loen, Norway, 1996:354-357
    [18] 杨行峻,迟惠生等。语音信号数字处理。电子工业出版社,1995[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] S. T. Alexander and A. L. Ghirnikar. " A method for recursive least squares filtering based upon an inverse QR decomposition". IEEE Transactions on Signal Processing. 1993, 41 (1): 20-30
    [3] A. A. Rontogiannis and S. Theodoridis. " New fast inverse QR least squares adaptive algorithms". Proc. ICASSP'95, Detroit, 1995: 1412-1415
    [4] A. A. Rontogiannis and S. Theodoridis. " New fast QR decomposition least squares adaptive algofithrns". IEEE Transactions on Signal Processing. 1998, 46 (8): 2113-2121
    [5] A.P. Varvitsiotis and S. Theodoridis. "A pipelined structure for QR. adaptive LS system identification". IEEE Transactions on Signal Processing. 1991, 39 (8): 1920-1923
    [6] J. G. McWhirter. " Systolic array for recursive LS minimisation". Electronic Letters. 1983, 19:729-730
    [7] J. M. Cioffi. " A fast QR/frequency-domain RLS adaptive filter". Proc. ICASSP'87, Dallas, 1987:407-410
    [8] M. G. Bellanger. " The FLS-QR algorithm for adaptive filtering". Signal Processing. 1989, 17 (4): 291-304
    [9] M. G. Bellanger. "A survey of QR based fast least squares adaptive filters: from principles to realization". ICASSP'91, Toronto, 1991: 1833-1836
    [10] J. M. Cioffi. "The fast adaptive ROTOR's RLS algorithm". IEEE Transactions on Acoustics, Speech and Signal Processing. 1990, 38 (4): 631-653
    [11] J. A. Apolinario Jr. and P. S. R. Diniz. " A new fast QR algorithm based on a Priori errors". IEEE Signal Processing Letters. 1997, 4 (11): 307-309
    [12] J. Cioffi. " The fast Householder filters RLS adaptive filter". Proc. ICASSP'90, Albuquerque, 1990:1619-1622
    [13] Proudler, J. G. McWhirter and T. J. Shepherd. " Computationally efficient QR decomposition approach to least squares adaptive filtering", IEE Proceedings-F. 1991,??138(4):341-353
    [14] 罗家洪编。矩阵分析引论。华南理工大学出版社。1992
    [15] D. T. M. Slock and T. Kailath. " Numerically stable fast transversal filters for recursive least squares adaptive filtering". IEEE Transactions on Signal Processing. 1991, 39 (1): 92-114[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985
    [3] 韦岗,邱伟编著。现代信号处理理论与技术。华南理工大学出版社,1994
    [4] 张贤达.现代信号处理.清华大学出版社,1995
    [5] M. Vukadinovic and T. Aboulnasr. " A study of adaptive intersubband tap assignment algorithms from a psychoacoustic point of view". Proc. ISCAS'96, Piscataway, 1996:65-68
    [6] A. Sugiyama and F. Landais. " A new adaptive intersubband tap-assignment algorithm for subband adaptive filters". Proc. ICASSP'95, Detroit, 1995:3051-3054
    [7] N. Nice. " Using A Frequency Weighted Error Function To Improve Performance Of Adaptive Filters". Proc. IEEE Workshop on VLSI Signal Processing, Veldhoren, 1993:379-387
    [8] 杨行峻,迟惠生等。语音信号数字处理。电子工业出版社,1995:40-46
    [9] K.S. Tang, K. F. Man, S. Kwong and Z. F. Liu. "Design and optimization of IIR filter structure using hierarchical genetic algorithms". IEEE Transactions on Industrial Electronics. 1998, 45 (3): 481-487
    [10] 韦岗,贺前华编著.神经网络模型,学习及应用.电子工业出版社,1994:290-327
    [11] K. S. Tang, K. F. Man, S. Kwong and Q. H. He. " Genetic algorithms and their applications". IEEE Signal Processing Magazine. 1996, 13 (6): 22-37[1] S. Haykin. Adaptive filter theory. 3rd Edition. Prentice-Hall, 1996
    [2] B. Widrow and S. D. Steams. Adaptive signal processing. Prentice-Hall, 1985
    [3] M.G. Bellanger. Adaptive digital filters and signal analysis. Marcel Dekker, Inc., 1987
    [4] 韦岗,邱伟编著.现代信号处理理论与技术。华南理工大学出版社,1994
    [5] 陈尚勤,李晓峰著。快速自适应信息处理.人民邮电出版社,1993
    [6] E. H. Satorius and S. T. Alexander. " Channel Equalization Using Adaptive Lattice Algorithms". IEEE Transactions on Communications. 1979, 27 (6): 899-905
    [7] S. H. Leung and B. L. Chan." Fast Converging LMS Equaliser". Electronics Letters. 1993, 29 (10): 829-830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700