大型自航绞吸挖泥船的耐波性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自航绞吸挖泥船是一种适于航海的工程船,为了安装施工设备(如绞刀架及钢桩台车),通常在船舶首尾设有大型开槽。首尾开槽的存在将对船舶的耐波性产生影响,而耐波性的优劣直接关系到船舶的适居性、安全性以及经济性,因此研究自航绞吸挖泥船的耐波性具有重要的意义。根据绞刀架和钢装台车安装位置的不同,自航绞吸挖泥船在首尾处通常有两种开槽形式,研究哪一种开槽形式的船舶具有较好的耐波性同样具有重要意义。
     本文选取了三条自航绞吸挖泥船作为计算船型,即绞刀架布置在船首的船型I、首尾无开槽的船型II和绞刀架布置在船尾的船型III,通过对三条船型的耐波性能的计算,对比分析首尾开槽对船舶耐波性的影响和哪种开槽形式的船型具有较好的耐波性能。
     本文只研究自航绞吸挖泥船在航行时的耐波性,不考虑挖泥作业时的耐波性。首先从船舶在波浪上的运动机理出发,在线性化假设下,把船舶的运动看作普通的刚体运动,按照牛顿定律建立了船舶在规则波中的运动响应方程组,求出了三种船型在规则波中的六个自由度的运动幅值响应函数;随后利用平稳随机过程的线性系统理论并选取适当波浪谱,求解出了船舶在随机海浪中的各种耐波性因素的运动响应谱密度函数,并利用数理统计学的知识对船舶发生危险事件(如甲板上浪)的概率做了短期预报;然后结合具体海域的海浪统计资料,按照相关理论对船舶在特定海域下进行了长期性能预报计算;最后介绍了全面反映船舶耐波性品质的综合评价指标(船舶作业时间百分数)的计算方法,并结合具体海域的海浪统计资料,对船舶在特定海况下的作业时间百分数进行了计算。
     通过本文的计算得出以下结论:一是船舶首尾的开槽降低了船舶的耐波性,二是绞刀架布置在船尾的开槽形式具有较好的耐波性。
The large self-propelling cutter-suction dredger is an engineering ship which is entirely ableto navigate in ocean and it’s ship form has marked difference with the ordinary ships because ofthe request of construction arrangement. For example, there are large slot cuts both in the bow andstem to set up cutter frame and steel pile trolley. The slot cuts in the bow and stem will have anaffect on ship’s seakeeping, and how well of the seakeeping concerns the ship’s habitability, safetyand economical efficiency, so it has a significant meaning to study the seakeeping of the largeself-propelling cutter-suction dredger. There usually are two forms of slot cut in the bow and sternof the self-propelling cutter-suction dredger according to the setting position of the cutter frameand steel pile trolley, it also has a significant meaning to study which cut form has a betterseakeeping.
     In this paper we choose three self-propelling cutter-suction dredgers as the calculate model,ship model I with the cutter frame arranged in bow, ship model II without slot cuts in bow andstem and ship model III with the cutter frame arranged in stern. Comparing the calculation resultof seakeeping performance to the three model, we will find the influence of the seakeeping causedby the slot cuts in bow and stern and which slot cut form has a better seakeeping performance.
     This text only research the sailing seakeeping of the large self-propelling cutter-suctiondredger, exclusive of dredging state. First, according to 2nd law of Newton this dissertationdiscusses the motion performance of ship navigating in waves and sets up a series of linearequations of ships response in regular waves in case of linearity based on the three dimensionalpotential theory. Solving the equations obtains the six degree of free amplitude response functionof ship motions in seaway. Utilize the theory of linear system of stationary stochastic processesand choose appropriate wave spectra, obtain various seakeeping factors’motion response spectraldensity function in stochastic waves of ship, then utilizing the knowledge of statistics obtain thechanging curves of various seakeeping factors’significant amplitude with the changing course andspeed, from above we can discover the connection between navigational mode and various ship’s motion performance. Then apply the wave data of ocean environment, according to the relatedtheories, to calculate and analyze the long-term prediction of ship’s seakeeping, moreover obtainssome significant conclusions. Finally, the research introduces a computational method ofcomprehensive evaluation index (the percentage of the task time of ships) which can reflect theentire performance of seakeeping of ships, then apply the method to calculate and analyze thepercentage of the task time of ships based on the wave data of ocean environment, and alsoobtains some significant conclusions.
     The calculation results show that the slot cuts both in the bow and stern will reduceseakeeping performance of a ship, and a ship with the slot cuts like ship model III has betterseakeeping performance.
引文
[1]Denis M.st.Pierson W.J:On the Motions of ship in Confused Seas.TSNAME,1953(61)
    [2]Hess,J.L. and Smith,A.M.O. Calculation of nonlifting potential flow about arbitrarythree-dimensional bodies. Journal of Ship Research,8(2),1964:22一44P.
    [3]Blok, J.J. and Beukelman, W. The high-speed displacement ship systematic series hullforms-seakeeping characteristics[J]. Trans. SNAME, Vol.92, 1984:125-150P.
    [4]Jensen, J.J. and Pedersen, P.T. Wave-induced bending moments in ships a quadratictheory[J].Trans.RINA,Vol.121,1979:151-165P.
    [5]Borresen,R. and Tellsgard,F. Time history simulation of vertical motions and loads on shipsin regular head waves of large amplitude,Norwegian Maritime Research,No.2,1980.
    [6]Fuj1no,M. and Yoon,B.S. A study on wave loads acting on a ship in large amplitude.(3rdReport),J. of Society of Naval Architecture of Japan,Vol.158,1985.
    [7]陈超核,沈进威,徐秉汉.规则波中船舶非线性波浪弯矩的时域计算.中国造船,1989(3):67一79页.
    [8]Adeegest, L. Third-order volterra modeling of ship responses based on regular waveresults[J]. 21st Symposium on Naval Hydrodynamics, Trondheim, 1996:189-203P.
    [9]Maruo,H., An improvement of the slender body theory for oscillating ships with zero forwardspeed, Bull. Fac. Eng. Yokohama Nat’l. Univ., 1970,19,45-56.
    [10]Newman,J.N. The theory of ship motions, Advance in Applied Mechanics, 1978,18,221-283
    [11]Selavounos,P.D. Ship motions by a three-dimensional rankine panel method. Proc.18 Symp.Naval Hydro., AnnArbor,MI,1990,pp.21-40.
    [12]Chapman,R.B. Numerical solution for hydrodynamic forces on a surce- piercing plateoscillating in yaw and sway. Proc.I Int. symp. Numer. Hydrodyn.,1975:333-350P.
    [13]Faltinsen,0. and Zhao R.a. Numerical prediction of ship motions at high forward speed.Philosophical Transactions of the Royal Society of London, Series A 334,1991,pp.241-252.
    [14]Faltinsen,0. and Zhao R., Flow predictions around high-speed ships in waves. MathematicalApproaches in Hydrodynamics,1991.
    [15]益其乐.船舶耐波性的综合评价.第二届全国船舶耐波性学术讨论会论文,1981
    [16]戴仁元,金辅华,秦鑫泉.船舶耐波性评估方法与衡准.《船舶耐波性专辑》《中国造船增刊》,1991
    [17]林焰,纪卓尚.船舶在波浪中的横摇运动及其稳性.中国造船,1993(7)
    [18]贺五洲,戴遗山.船舶上浪预报中甲板上浪的统计分析.中国造船,1995.8
    [19]杨宝璋,石爱国.大风浪中多因素优化航向航速选择.中国航海,1991
    [20]徐德嘉,周庆根.船舶非线性横摇的精确模型.中国造船,1990(10)
    [21]沈华,邹开其,黄鼎良.尾斜浪中操船危险性综合评估.大连海事大学学报,1997(4)
    [22]何炎平,谭家华.大型自航绞吸挖泥船的发展和有关问题的思考.中外船舶科技,2008.2
    [23]刘应中,缪国平.船舶在波浪上的运动理论.上海交通大学出版社,1987
    [24]李积德.船舶耐波性.哈尔滨船舶工程学院出版社,1992
    [25]戴遗山.船舶在波浪中运动的频域与时域势流理论.国防工业出版社,1998
    [26]Mcichacel Athans.real Time Estimation of the Heaving and Pitching Motion of a Ship.Usinga kalman Filter,IEEE,1981
    [27]陶尧森.船舶耐波性.上海交通大学出版社,1985
    [28]周正全,缪国平,刘应中.船舶在波浪中极短周期运动预报.中国造船增刊——船舶耐波性专辑,1991
    [29]刘次华.随机过程.华中科技大学出版社,2001
    [30]彭英生.舰船耐波性基础.国防工业出版社,1989
    [31]沈华.船舶耐波性理论在航海中应用的探讨.大连海事大学学报.1999(4)
    [32]王献孚,周树信,刘应中.计算船舶流体力学.上海交通大学出版社,1992
    [33]冯铁成.船舶操纵与摇摆.国防工业出版社,1980
    [34]于家鹏,苏本如,淤滋红.船舶运动及短期预报研究.船舶科学技术,1995
    [35]彭英生.舰船耐波性基础.国防工业出版社,1989
    [36]郭禹.船海学.大连海事大学出版社,1999
    [37]Tuomo Karppinen,H.Helasharin & Timo Aitta.seakeeping performance prediction programSKP:Program manual,1988
    [38]Karppinen,T. Criteria for seakeeping performance perdictions.Technical Research Center ofFinland.Technical Report ESPOO,1987
    [39]Roberts J B:effect of parametric excitation on ship rolling motion in random waves,Journalof Ship Research,1982.26(4)
    [40]Roberts J B:effect of parametric excitation on ship rolling motion in random waves,Journalof Ship Research,1982.26(4)
    [41]M.A.Kuteynikov, V.B.Lipis: On Indices of Ships’operational Seaworthiness, 7thInternational Conference on Stability of Ships and Ocean Vehicles, 2000
    [42]Mansour A.E, Jensen J.J: slightly nonlinear extreme loads and load combinations, Journalof Ship Research, 1995.39(2)
    [43]Smith.T.C. & Thomas W.L: A survey and comparison of criteria for naval mission.DTRC/SND-1312-01.1989
    [44]Karppinen, T. & Aitta, T. Seakeeping Performance Assessment of Ships. Meet of the NordicNaval Architects, Stockholm, Technical Research Center of Finland, 1986
    [45]吴秀恒.船舶操纵性与耐波性.人民交通出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700