水稻多效性基因Ghd7的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物通过感知复杂的环境信号,从而调整各种生长发育的过程,最终完成物种的存活和延续。而在水稻中,这种因为环境信号而产生的生长发育过程的改变往往导致了重要农艺性状的巨大变化,最终深刻的影响到水稻产量。因此研究水稻如何响应环境变化调节生长发育同时具有理论和应用的意义。该课题对水稻第七染色体着丝粒附近一个同时控制抽穗期、株高和穗粒数的主效QTL基因Ghd7进行克隆和功能研究,首次在水稻中成功克隆到Ghd7这样一个一因多效的重要农艺性状基因。利用遗传学和分子生物学等手段初步阐明Ghd7在水稻中处于信号枢纽的中心地位,通过整合多种环境信号(光质,日长,温度,胁迫等),调节自身转录和蛋白水平,最终达到控制水稻时期转换,株型建成和胁迫反应等过程的目的。本研究主要结果如下:
     1.多效基因Ghd7的克隆
     利用RACE的方法分离到Ghd7的全长cDNA,发现Ghd7为一个新的CCT结构域基因,与拟南芥中已发表的CCT基因不具有显著的同源关系。亚细胞定位结果表明Ghd7定位于细胞核,并且具有转录抑制的活性。表达谱分析显示,Ghd7主要在叶片表达,并且从叶尖向叶基梯度递减。同时该基因又受到光周期和昼夜节律的调控,即特异在长日照条件下的白天表达,表达峰值处于黎明时分。长日照条件下,Ghd7的表达直接导致对水稻抽穗期基因的强烈抑制,从而导致抽穗延迟的表型。Ghd7-Ehd1-Hd3a代表了水稻中独有的开花调控途径,并且Ghd7-Ehd1-Hd3a在表达量上具有一种级联放大的特性。通过对五个品种中Ghd7位点的比较测序,鉴定出四种Ghd7的等位基因型。其中HR5和TQ在Ghd7位点分别具有强等位基因型Ghd7-1和Ghd7-3; ZH11在Ghd7位点包含弱等位基因型Ghd7-2;而MDJ8和HJ19则在Ghd7位点发生终止突变,定义为Ghd7-0a。此外我们还发现不同的Ghd7等位基因在3'UTR区域存在AT重复序列的多态性。以上结果说明Ghd7基因参与了水稻自然变异和选择育种的过程,在增加水稻产量潜力和适应性方面具有重要作用。
     2.Ghd7在水稻中的功能
     遗传结果表明,Ghd7的表达量的高低与抽穗期,株高和穗粒数的表型程度呈正相关,说明Ghd7存在剂量效应。然而在ZH11背景中,超量表达Ghd7虽然能够显著延迟抽穗期,但是对株高和穗粒数的促进作用只在短日照条件下才能显著的表现出来,说明Ghd7对穗型和株高的调控依赖于遗传背景和环境的变化。遗传和分子的结果表明Ghd7介导PHYB-OsTBl的途径调控分蘖,其中GHD7蛋白含量在phyB突变体中显著降低。此外ABA、JA、干旱以及高温均可以抑制Ghd7的表达量,而低温则能够促进Ghd7的表达。同时我们发现超量表达Ghd7和抑制Ghd7分别能够增强和降低水稻幼苗对于旱胁迫的敏感性。说明Ghd7在水稻中处于信号传导的中心枢纽,整合来自环境的各种信号,参与水稻的时期转换,株型调控以及胁迫反应。
     3.Ghd7分子机制的研究
     为了研究Ghd7的下游途径,我们利用RNA-seq的策略,在黎明、正午、黄昏和午夜四个时间点,对phyB突变体、Ghd7超量表达和抑制的材料进行差异表达基因分析,得到PHYB和Ghd7在一天中不同时间点的调控基因。为了研究Ghd7的互作蛋白,我们将GHD7与3×Flag标签融合并在转化,通过gel filtration的方法,发现GHD7在体内存在440-kDa左右的复合体形式。同时,Ghd7可以和HAP家族的多个亚家族成员发生蛋白互作,而和Ghd7互作的部分HAP成员又可以和生物钟基因OsTOCl发生蛋白互作,说明这些HAP成员联接了外源信号和内源生物钟。最后我们发现HAP2亚家族和生物钟基因的表达量均受到PHYB的调控。以上结果初步表明Ghd7, HAP家族和生物钟三者之间可能通过蛋白互作的方式形成一个缓冲系统,调节水稻的鲁棒性(robustness)、而PHYB则通过多种方式对其进行调控,使得水稻能够响应复杂多变的环境。
     4.Ghd7参与激素调控
     我们对Ghd7和激素的关系进行了详细分析:1)超量表达Ghd7增加了内源ABA的含量,增强了植株对ABA的敏感性,同时延迟了种子的萌发;2)Ghd7改变了顶端生长素极性运输基因OsPIN1的表达,超量表达Ghd7抑制了内源IAA的含量;3)Ghd7特异在黄昏时分调节GA2ox基因的表达。而在超量表达Ghd7的背景下抑制内源GA合成酶GA20ox1,植株仍然表现为半矮化表型,抽穗期也不再延迟,说明Ghd7对株高和抽穗期的调控需要GA。以上结果说明Ghd7综合参与多条激素途径,其机制还有待深入研究。
To survival, plants adjust the process of growth and development to adapt complex environmental signals. In rice, this process often leads to great change of important agronomic traits, which affect final yield. So the issue about the interaction between rice plant and environmental signal has the theory and application significance. In this project, we show that the quantitative trait locus (QTL) Ghd7has major effects on an array of traits in rice, including number of grains per panicle, plant height and heading date. And we reveal that Ghd7functions to integrate the dynamic environmental inputs (such as light quality, day length, temperature, stress) with phase transition, architecture regulation, and stress response to maximize the reproductive success of the rice plant. Our results are performed as follow:
     1. Cloning of pleiotropic gene Ghd7
     We obtained the complete transcribed sequence of Ghd7by RACE and found that Ghd7is a new CCT domain gene, which has no significant homology in Arabidopsis. Subcellular localization result confirmed that GHD7is a nuclear protein and represses the transcriptional activity. Using quantitative RT-PCR analysis, we performed that the expression of Ghd7was mainly detected in the emerged leaf blade and displayed a gradient with much higher transcript accumulation in the leaf tip than the leaf base. Moreover, Ghd7was affected by photoperiodic and diurnal rhythm. The Ghd7transcript was much more abundant during the light period than in dark period, especially under long day conditions. And the expression peak performed at dawn under long day conditions. Ghd7suppressed the expression of flowering time genes under long day conditions and delay heading. Ghd7-Ehdl-Hd3a represents a distinct pathway that does not exist in Arabidopsis. We also identified four Ghd7alleles from five varieties by comparative sequencing analysis. Among them, the alleles from HR5and TQ are strong function alleles, ZH11has the weak function allele and the alleles from MDJ8and HJ19has a premature termination and consider as the nonfunctional allele. Meanwhile, we found alleles of Ghd7also associated with the polymorphism of AT-repeat at3'UTR region. We concluded that Ghd7played crucial roles for increasing productivity and adaptability of rice globally.
     2. The role of Ghd7in rice
     The degree of phenotypic effect of Ghd7on heading date and yield traits was quantitatively related to the transcript level, and was also influenced by both environmental conditions and genetic backgrounds. Ghd7regulated plasticity of tiller branching by mediating the PHYB-OsTB1pathway as adaption to shade signal and the protein level of Ghd7was decrease in phyB mutant. Meanwhile, the expression of Ghd7was regulated by various environmental cues and this gene was also involved in regulation of drought stress response. The results suggested that Ghd7serves as a link between the dynamic environmental inputs with phase transition, architecture regulation and stress response to maximize the reproductive success of the rice plant.
     3. The mechanism study of Ghd7
     To detect the downstream network of Ghd7, we used OX-Ghd7ZH11, Ami-Ghd7, phyB mutant and wild type plants to perform the RNA-seq analysis in a diurnal approach (dawn, mid-day, dusk and mid-night). To understand the protein interaction of Ghd7, we fusion the GHD7to3xFlag tag and overexpressed in HJ19. Using this transgenetic plants, we identified that Ghd7formed as a450-kDa protein complex in vivo by gel filtration. Meanwhile, Ghd7can interact with HAP genes in yeast, which also have the ability to interact with OsTOC1. Finally, both HAP genes and clock genes were regulated by PHYB in transcript level. The results indicated that the selective of interaction between HAPs, Ghd7and OsTOCl form a robustness system to mediate the crosstalk between the photoperiod and circadian clock. And PHYB modulate this robustness system in transcript and post-translational levels.
     4. Ghd7affect hormone pathway
     1) Overexpressed of Ghd7increase the endogenous ABA content, have more sensitive to exogenous ABA and inhibit seed germination.2) Ghd7controlled the OsPIN genes in SAM and repress the endogenous IAA content.3) Ghd7repressed GA2ox genes expression and its function about the plant height and heading date dependent on endogenous GA contents. The results suggested that Ghd7involve in multiple hormone pathways.
引文
1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science,2005,309:1052-1056.
    2. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science,2001,293:880-883.
    3. An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development,2004,131:3615-3626.
    4. Andres F, Galbraith DW, Talon M, Domingo C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol,2009,151:681-690.
    5. Arabidopsis Genome I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815.
    6. Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell, 2008,20:2102-2116.
    7. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745.
    8. Basu D, Dehesh K, Schneider-Poetsch HJ, Harrington SE, McCouch SR, Quail PH. Rice PHYC gene:structure, expression, map position and evolution. Plant Mol Biol, 2000,44:27-42.
    9. Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J,2006,46:462-476.
    10. Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2oxl. Plant Cell,2009,21:1647-1658.
    11. Boss PK, Bastow RM, Mylne JS, Dean C. Multiple pathways in the decision to flower:enabling, promoting, and resetting. Plant Cell,2004,16 Suppl:S18-31.
    12. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science,1997,275:80-83.
    13. Cao S, Ye M, Jiang S. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep,2005,24:683-690.
    14. Chen M, Ni M. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering. Plant J, 2006,46:823-833.
    15. Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G. Trithorax Group Protein OsTrxl Controls Flowering Time in Rice via Interaction with Ehd3. Plant Physiol, 2014.
    16. Christie JM. Phototropin blue-light receptors. Annu Rev Plant Biol,2007,58:21-45.
    17. Clack T, Mathews S, Sharrock RA. The phytochrome apoprotein family in Arabidopsis is encoded by five genes:the sequences and expression of PHYD and PHYE. Plant Mol Biol,1994,25:413-427.
    18. Colasanti J, Yuan Z, Sundaresan V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell,1998,93:593-603.
    19. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science,2007,316:1030-1033.
    20. Dalchau N, Baek SJ, Briggs HM, Robertson FC, Dodd AN, Gardner MJ, Stancombe MA, Haydon MJ, Stan GB, Goncalves JM, Webb AA. The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci USA,2011,108:5104-5109.
    21. Dehesh K, Tepperman J, Christensen AH, Quail PH. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet,1991, 225:305-313.
    22. Demarsy E, Fankhauser C. Higher plants use LOV to perceive blue light. Curr Opin Plant Biol,2009,12:69-74.
    23. Devlin PF, Kay SA. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell,2000,12:2499-2510.
    24. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev,2004,18: 926-936.
    25. Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature,2002,419:74-77.
    26. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J,2003,33:751-763.
    27. Edwards J, Martin AP, Andriunas F, Offler CE, Patrick JW, McCurdy DW. GIGANTEA is a component of a regulatory pathway determining wall ingrowth deposition in phloem parenchyma transfer cells of Arabidopsis thaliana. Plant J,2010, 63:651-661.
    28. Eimert K, Wang SM, Lue WI, Chen J. Monogenic Recessive Mutations Causing Both Late Floral Initiation and Excess Starch Accumulation in Arabidopsis. Plant Cell, 1995,7:1703-1712.
    29. Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol,2011,52: 1083-1094.
    30. Endo M, Mochizuki N, Suzuki T, Nagatani A. CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell,2007,19:84-93.
    31. Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A. PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci USA,2013,110:18017-18022.
    32. Fankhauser C, Chen M. Transposing phytochrome into the nucleus. Trends Plant Sci, 2008,13:596-601.
    33. Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol,2005,15: 47-54.
    34. Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell,2009, 17:75-86.
    35. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J. GIGANTEA:a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J,1999,18:4679-4688.
    36. Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. JExp Bot,2010,61:11-24.
    37. Galvao VC, Horrer D, Kuttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development,2012,139:4072-4082.
    38. Gao H, Zheng XM, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang JL, Cheng Z, Wu C, Wang H, Wan JM. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet,2013,9:e1003281.
    39. Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci USA,2012,109:3167-3172.
    40. Giakountis A, Coupland G. Phloem transport of flowering signals. Curr Opin Plant Biol,2008,11:687-694.
    41. Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content Plant Physiol,2005,137:199-208.
    42. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92-100.
    43. Gonzalez-Grandio E, Poza-Carrion C, Sorzano CO, Cubas P. BRANCHED 1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell, 2013,25:834-850.
    44. Hackenberg D, Keetman U, Grimm B. Homologous NF-YC2 Subunit from Arabidopsis and Tobacco Is Activated by Photooxidative Stress and Induces Flowering. Int J Mol Sci, 2012,13:3458-3477.
    45. Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell, 2011,23:3172-3184.
    46. Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA,2005,102:7748-7753.
    47. Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol,2009,60: 357-377.
    48. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science,2000,290:2110-2113.
    49. Hayama R, Coupland G. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol,2004,135:677-684.
    50. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature,2003,422:719-722.
    51. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA,2005,102:10387-10392.
    52. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271-282.
    53. Hiraoka K, Yamaguchi A, Abe M, Araki T. The florigen genes FT and TSF modulate lateral shoot outgrowth in Arabidopsis thaliana. Plant Cell Physiol, 2013,54: 352-368.
    54. Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J,2013,76:36-46.
    55. Hu S, Dong G, Xu J, Su Y, Shi Z, Ye W, Li Y, Li G, Zhang B, Hu J, Qian Q, Zeng D, Guo L. A point mutation in the zinc finger motif of RID 1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Rice (N Y), 2013,6:24.
    56. Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Li M, Wang X, Yu H, Gu M, Cheng Z. Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics,2010,37:23-36.
    57. Hwang I, Chen HC, Sheen J. Two-component signal transduction pathways in Arabidopsis. Plant Physiol,2002,129:500-515.
    58. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science,2005,309: 293-297.
    59. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature,2003,426:302-306.
    60. Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J,2012,69:601-612.
    61. Ishikawa R, Aoki M, Kurotani K, Yokoi S, Shinomura T, Takano M, Shimamoto K. Phytochrome B regulates Heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genomics,2011,285:461-470.
    62. Ito S, Song YH, Josephson-Day AR, Miller RJ, Breton G, Olmstead RG, Imaizumi T. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis. Proc Natl Acad Sci U SA,2012,109:3582-3587.
    63. Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet,2010,42:635-638.
    64. Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M. ACO1, a gene for aminocyclopropane-1-carboxylate oxidase:effects on internode elongation at the heading stage in rice. Plant Cell Environ,2010,33:805-815.
    65. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev,2002,16:2006-2020.
    66. Jacobsen SE, Olszewski NE. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell,1993,5:887-896.
    67. Jaeger KE, Wigge PA. FT protein acts as a long-range signal in Arabidopsis. Curr Biol,2007,17:1050-1054.
    68. Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBOJ,2008,27:1277-1288.
    69. Kardailsky I, Shukla VK, Ann JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science,1999, 286:1962-1965.
    70. Kay SA, Keith B, Shinozaki K, Chua NH. The sequence of the rice phytochrome gene. Nucleic Acids Res,1989,17:2865-2866.
    71. Kebrom TH, Burson BL, Finlayson SA. Phytochrome B represses Teosinte Branched 1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol,2006,140:1109-1117.
    72. Kevei E, Schafer E, Nagy F. Light-regulated nucleo-cytoplasmic partitioning of phytochromes. JExp Bot,2007,58:3113-3124.
    73. Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta,2008,228:355-365.
    74. Kim SL, Lee S, Kim HJ, Nam HG, An G. OsMADS51 is a short-day flowering promoter that functions upstream of Ehdl, OsMADS14, and Hd3a. Plant Physiol, 2007,145:1484-1494.
    75. Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee S Y, Bressan RA, Pardo JM, Bohnert HJ, Yun DJ. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun,2013,4:1352.
    76. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science,1999,286:1960-1962.
    77. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002,43: 1096-1105.
    78. Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development,2009,136: 3443.3450.
    79. Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant,2013,6:1877-1888.
    80. Koornneef M, Alonso-Blanco C, Peeters AJ, Soppe W. Genetic Control of Flowering Time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol,1998,49:345-370.
    81. Koornneef M, Hanhart CJ, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet,1991,229:57-66.
    82. Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ. The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta,2008,228:709-723.
    83. Kumimoto RW, Zhang Y, Siefers N, Holt BF,3rd. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J,2010.
    84. Kurepa J, Smalle J, Van Montagu M, Inze D. Oxidative stress tolerance and longevity in Arabidopsis:the late-flowering mutant gigantea is tolerant to paraquat. Plant J, 1998,14:759-764.
    85. Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development,2006,133:3213-3222.
    86. Lazaro A, Valverde F, Pineiro M, Jarillo JA. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell,2012,24:982-999.
    87. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ann JH. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev,2007,21: 397-402.
    88. Lee S, Kim J, Han JJ, Han MJ, An G Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J,2004,38:754-764.
    89. Lee YS, Jeong DH, Lee DY, Yi J, Ryu CH, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho LH, Choi H, An G. OsCOL4 is a constitutive flowering repressor upstream of Ehdl and downstream of OsphyB. Plant J,2010,63:18-30.
    90. Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. Arabidopsis Book,2011a,9:e0148.
    91. Li Y, Chen Y, Wu J, He C. [Expression and functional analysis of OsRboh gene family in rice immune response]. Sheng Wu Gong Cheng Xue Bao,2011b,27: 1574-1585.
    92. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA, 2006,103:6398-6403.
    93. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell,2007,19:1488-1506.
    94. Liu B, Zuo Z, Liu H, Liu X, Lin C. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev,2011a,25: 1029-1034.
    95. Liu H, Liu B, Zhao C, Pepper M, Lin C. The action mechanisms of plant cryptochromes. Trends Plant Sci,2011b,16:684-691.
    96. Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 2008a,322:1535-1539.
    97. Liu J, Zhang F, Zhou J, Chen F, Wang B, Xie X. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice. Plant Mol Biol,2012a,78: 289-300.
    98. Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H. FTIP1 is an essential regulator required for florigen transport. PLoS Biol,2012b,10:e1001313.
    99. Liu L, Zhu Y, Shen L, Yu H. Emerging insights into florigen transport. Curr Opin Plant Biol,2013a,16:607-613.
    100. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ. COP 1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell,2008b,20:292-306.
    101. Liu T, Liu H, Zhang H, Xing Y. Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.). J Integr Plant Biol,2013b,55: 917-927.
    102. Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell,2001,13:1293-1304.
    103. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell,2008,20:2603-2618.
    104. Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol,2005,1:2005 0013.
    105. Lu L, Yan W, Xue W, Shao D, Xing Y. Evolution and association analysis of Ghd7 in rice. PLoS One,2012,7:e34021.
    106. Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:I. Characterization with APRR1-overexpressing plants. Plant Cell Physiol,2002,43: 58-69.
    107. Mao J, Zhang YC, Sang Y, Li QH, Yang HQ. From The Cover:A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A,2005,102:12270-12275.
    108. Mas P, Kim WY, Somers DE, Kay SA. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature,2003,426:567-570.
    109. Mathieu J, Warthmann N, Kuttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol, 2007,17:1055-1060.
    110. Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol,2012,53:709-716.
    111. Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J,2011,66:603-612.
    112. Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M. Ehd2, a rice ortholog of the maize INDETERMINATE 1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol, 2008, 148:1425-1435.
    113. McClung CR. Plant circadian rhythms. Plant Cell,2006,18:792-803.
    114. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre I A, Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell,2002,2:629-641.
    115. Mockler TC, Guo H, Yang H, Duong H, Lin C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development,1999,126:2073-2082.
    116. Nagatani A. Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol,2004,7:708-711.
    117. Nagel DH, Kay S A. Complexity in the wiring and regulation of plant circadian networks. Curr Biol,2012,22:R648-657.
    118. Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell,2008,20:2265-2279.
    119. Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell,2013a,25:1228-1242.
    120. Niwa M, Endo M, Araki T. Florigen is involved in axillary bud development at multiple stages in Arabidopsis. Plant Signal Behav,2013b,8.
    121. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN. Rhythmic growth explained by coincidence between internal and external cues. Nature,2007,448:358-361.
    122. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature,2011,475:398-402.
    123. Oka H-I. Origin of cultivated rice:Elsevier.1988.
    124. Onouchi H, Igeno MI, Perilleux C, Graves K, Coupland G. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell,2000,12:885-900.
    125. Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T. Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol,2011, 157:1128-1137.
    126. Park HJ, Kim WY, Yun DJ. A role for GIGANTEA:keeping the balance between flowering and salinity stress tolerance. Plant Signal Behav,2013,8:e24820.
    127. Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han CD. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehdl (Early heading date 1) regardless of photoperiod. Plant J, 2008,56:1018-1029.
    128. Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL. Ectopic expression of OsLFLl in rice represses Ehdl by binding on its promoter. Biochem Biophys Res Commun,2007, 360:251-256.
    129. Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF,3rd, Mantovani R. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell,2012,24:4777-4792.
    130. Porri A, Torti S, Romera-Branchat M, Coupland G. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development,2012,139:2198-2209.
    131. Pruneda-Paz JL, Breton Q Para A, Kay S A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science,2009,323: 1481-1485.
    132. Pruneda-Paz JL, Kay S A. An expanding universe of circadian networks in higher plants. Trends Plant Sci,2010,15:259-265.
    133. Putterill J, Laurie R, Macknight R. It's time to flower:the genetic control of flowering time. Bioessays,2004,26:363-373.
    134. Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell,1995,80:847-857.
    135. Redei GP. Supervital Mutants of Arabidopsis. Genetics,1962,47:443-460.
    136. Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell,1993,5:147-157.
    137. Riboni M, Galbiati M, Tonelli C, Conti L. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol,2013,162:1706-1719.
    138. Rubio V, Deng XW. Plant science. Standing on the shoulders of GIGANTEA. Science,2007,318:206-207.
    139. Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ,2009,32:1412-1427.
    140. Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T. Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short-and long-day conditions. Plant Cell Physiol,2012,53: 717-728.
    141. Salome PA, McClung CR. The Arabidopsis thaliana clock. JBiol Rhythms,2004, 19:425-435.
    142. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science,2000,288:1613-1616.
    143. Saunders DS. Erwin Bunning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect photoperiodism. J Insect Physiol,2005, 51:599-608.
    144. Sawa M, Kay SA. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A,2011,108:11698-11703.
    145. Sawa M, Kay SA, Imaizumi T. Photoperiodic flowering occurs under internal and external coincidence. Plant Signal Behav,2008,3:269-271.
    146. Sawa M, Nusinow DA, Kay SA, Imaizumi T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science,2007,318: 261-265.
    147. Scarpella E, Boot KJ, Rueb S, Meijer AH. The procambium specification gene Oshoxl promotes polar auxin transport capacity and reduces its sensitivity toward inhibition. Plant Physiol,2002,130:1349-1360.
    148. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell,1998,93:1219-1229.
    149. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev, 2006,20:898-912.
    150. Sharrock RA, Quail PH. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev,1989,3:1745-1757.
    151. Simon R, Igeno MI, Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature,1996,384:59-62.
    152. Song YH, Lee I, Lee S Y, Imaizumi T, Hong JC. CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. Plant J,2012,69:332-342.
    153. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science,2000,289:768-771.
    154. Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. Flower development under drought stress:morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell,2013,25: 3785-3807.
    155. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature,2001,410:1116-1120.
    156. Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell,2005,17:3311-3325.
    157. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science,2007,316:1033-1036.
    158. Thornton TM, Swain SM, Olszewski NE. Gibberellin signal transduction presents ellipsisthe SPY who O-G1cNAc'd me. Trends Plant Sci,1999,4:424-428.
    159. Tilbrook K, Arongaus AB, Binkert M, Heijde M, Yin R, Ulm R. The UVR8 UV-B Photoreceptor:Perception, Signaling and Response. Arabidopsis Book, 2013, 11:e0164.
    160. Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ. The flowering time regulator CONSTANTS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol,2010,187:57-66.
    161. Trapnell C, Pachter L, Salzberg SL. TopHat:discovering splice junctions with RNA-Seq. Bioinformatics,2009,25:1105-1111.
    162. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol,2010,28:511-515.
    163. Tseng TS, Salome PA, McClung CR, Olszewski NE. SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell,2004,16:1550-1563.
    164. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004,303:1003-1006.
    165. Wang N, Xiao B, Xiong L. Identification of a cluster of PR4-like genes involved in stress responses in rice. J Plant Physiol,2011,168:2212-2224.
    166. Wang Q, Zhu Z, Ozkardesh K, Lin C. Phytochromes and phytohormones:the shrinking degree of separation. Mol Plant,2013,6:5-7.
    167. Wang Y, Li J. Molecular basis of plant architecture. Annu Rev Plant Biol,2008, 59:253-279.
    168. Wang ZY, Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell,1998,93:1207-1217.
    169. Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol,2010,153:1747-1758.
    170. Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol,2014,164:735-747.
    171. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell,2006,18: 2971-2984.
    172. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science,2005,309:1056-1059.
    173. Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol,2004,135:1447-1456.
    174. Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q. RID 1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA,2008,105: 12915-12920.
    175. Wu L, Yang HQ. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant, 2010,3:539-548.
    176. Wu W, Zheng XM, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang HJ, Wang Q, Zhou K, Wang JL, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci U S A,2013,110: 2775-2780.
    177. Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell,2002,14 Suppl:S165-183.
    178. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767.
    179. Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res,2013,23:969-971.
    180. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant,2011, 4:319-330.
    181. Yang Y, Peng Q, Chen GX, Li XH, Wu C Y. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant,2013,6:202-215.
    182. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet,1997,95:1025-1032.
    183. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2484.
    184. Yanovsky MJ, Kay S A. Molecular basis of seasonal time measurement in Arabidopsis. Nature,2002,419:308-312.
    185. Yanovsky MJ, Kay SA. Living by the calendar:how plants know when to flower. Nat Rev Mol Cell Biol,2003,4:265-275.
    186. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296: 79-92.
    187. Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS, Liu L, Zhang Y, Irigoyen ML, Sullivan JA, Zhang Y, Lee I, Xie Q, Paek NC, Deng XW. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell, 2008,32:617-630.
    188. Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, Lee J, Liu X, Lopez J, Lin C. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell,2007,19:3146-3156.
    189. Zeilinger MN, Farre EM, Taylor SR, Kay S A, Doyle FJ,3rd. A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol,2006,2:58.
    190. Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007,104:16402-16409.
    191. Zhang ZH, Wang K, Guo L, Zhu YJ, Fan YY, Cheng SH, Zhuang JY. Pleiotropism of the photoperiod-insensitive allele of Hdl on heading date, plant height and yield traits in rice. PLoS One,2012,7:e52538.
    192. Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One,2012,7:e43705.
    193. Zuo Z, Liu H, Liu B, Liu X, Lin C. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol, 2011,21:841-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700