马铃薯(Solanum tuberosum L.)试管块茎形成的QTL定位及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)在地球上的栽培历史超过8000年,广泛种植于158个国家和地区,是世界上最重要的粮食作物和经济作物之一,在保障世界粮食安全中发挥着重要作用。由于无性繁殖,病毒性退化是影响马铃薯产量的重要问题。脱毒种薯的产生解决了这一问题,而试管薯是脱毒种薯生产的首要环节。不同基因型马铃薯的试管薯形成能力差异较大,同时由于受到栽培马铃薯同源四倍体遗传复杂性的限制,关于马铃薯块茎形成的遗传研究多借助于降倍后的二倍体或者近缘二倍体野生种。即便如此,目前有关马铃薯块茎形成的遗传报道也十分有限,而且多是基于田间块茎的形成情况。而栽培马铃薯为同源四倍体,且试管薯的形成与田间块茎形成在环境条件的控制方面还有一定差异,而关于栽培马铃薯试管块茎形成的遗传研究目前还是空白。
     本研究旨在四倍体水平上,构建马铃薯试管薯形成的遗传分离群体,在此基础上绘制遗传连锁图谱,并对试管薯形成相关QTL进行定位,以此分析马铃薯试管薯形成的遗传基础。主要研究结果如下:
     1.基于组织培养条件下的试管薯形成表型,对来自4个杂交组合的119个马铃薯栽培种基因型材料在两种光周期条件下进行鉴定,发现8h/d光照时间处理比16h/d光照时间处理更有利于试管薯的形成;不同组合对光周期的敏感性不同,同一组合中不同基因型间亦存在较大差异。采用经典遗传理论对组合E中96个基因型材料的表型分离进行分析,x~2检测显示,试管薯形成与否可能受一对主效基因控制,其在两种光照条件下表现出不同的遗传效应,在短日照条件下表现为累加效应,长日照条件下则表现为互补效应。
     2.从上述119个基因型材料中筛选得到极端表型材料E108(8h/d和16h/d光周期条件下均能形成试管薯)和E20(8h/d和16h/d光周期条件下均没有试管薯形成),构建了关于试管薯形成能力差异的F1分离群体MTI(237子代)。
     3.对MT I群体237子代进行试管薯形成能力表型鉴定,发现该四倍体群体在两种光周期条件下的表型均呈偏性分布。在8h/d光周期条件下,结薯的基因型个数与不结薯的基因型个数分别为200和37,其比率(200:37)符合5:1(p=0.6629)。而16h/d光周期条件下,不结薯的基因型数与结薯的基因型数分别为163和74。长日照条件下能形成试管薯的这74个基因型在短日照条件下也形成试管薯。
     4.利用来自128对AFLP引物组合、65对SSR引物和3对候选基因引物的711个标记,分别构建了双亲的遗传连锁图谱。父本图谱(E108)包含315个标记,全长948cM,由12个连锁群组成,所有12个连锁群都含有完整的4条同源染色体。依据其包含的64个SSR标记的定位信息,我们成功地将这12个连锁群与马铃薯12条染色体一一对应。母本图谱(E20)包含341个标记,由14个连锁群组成,全长1286cM,其中12个连锁群含有完整的4条同源染色体,其余2个连锁群分别覆盖到3条同源染色体。同样依据其包含的65个SSR标记的定位信息,我们将这14个连锁群与马铃薯染色体一一对应,其中第1和IV号染色体分别含有2个连锁群。
     5.基于单标记分析方法,共检测到10个标记具有显著遗传效应,其中8个标记只在短日照条件下(8h/d光周期)具有显著效应,3个标记只在长日照条件下(16h/d光周期)具有显著效应,1个标记在两种光周期条件下均具有显著效应。这10个标记中的9个分别被定位在父本E108的第V号染色体和母本E20的第V、IX和XII号染色体上
     6.利用双亲图谱进行区间做图(Interval Mapping),共定位到4个与马铃薯试管块茎形成相关的QTL。其中V号染色体上两个,分别为来自父本图谱的MT05和来自母本图谱的mt05;另外两个QTL均来自母本图谱,mt01-1位于I号染色体上,mt09位于IX号染色体。MT05符合加性效应,对表型变异的贡献率达到16.23%。mt01-1表现为双显性互补模型,mt05和mt09均符合单显性模型。mt05表现为正向遗传效应,mt09表现为负向遗传效应,mt01-1、mt05和mt09对表型变异的贡献率分别为6.60%、5.33%和4.81%。基于MT05的加性模型,父本E108产生的6种配子(Q12、Q13、Q14、Q23、Q24和Q34)中,显性基因型(Q-)与隐性基因型(qq)的比例为5:1,与MT I群体在短日照环境中试管薯形成与否的表型分布比例吻合,表明MT05位点中可能含有控制四倍体马铃薯试管薯形成的主效基因。
     7.通过MT05与mt05、mt09之间的互作分析,我们认为MT I群体中试管薯形成表型是受主效QTL效应控制,并存在微效调节位点mt09。主效QTL MT05可,能是控制个体的试管薯形成与否,而mt09则可能影响个体的试管薯形成比例。
     8.对3个块茎形成相关的候选基因(StSP6A, StCO和StCDF1)进行定位,结果显示,其中2个候选基因StSP6A和StCO在MT I群体中均不存在多态性,只有候选基因StCDFl被定位于父本图谱(E108)第V号染色体的短臂(16cM和18cM),且远离试管薯形成相关的主效QTL MT05的one-LOD置信区间(80-95cM)。上述结果表明,在MTI群体中定位到的与试管薯形成相关的QTLs与上述3个候选基因没有关联,即在该四倍体群体中定位的这些QTLs可能包含了新的与块茎形成相关的基因。
     9.将MT05区段锚定到马铃薯DM基因组序列上发现,该区段内包含216个蛋白质编码基因。将这216个基因与本实验室高通量测序结果中可能与光周期调控试管薯形成以及蔗糖浓度影响试管薯形成的基因进行比对,结果显示上述216个基因中有54个在不同蔗糖浓度影响试管薯形成的过程中差异表达,表明本研究定位到的主效QTLMT05可能包含了涉及到蔗糖调节途径影响试管薯形成的基因。
     本研究构建了近乎完整的马铃薯四倍体遗传连锁图谱,并首次定位了影响马铃薯试管块茎形成的QTL。基于表型分布、QTL的遗传效应模型以及QTL之间的互作分析,我们提出了该四倍体群体的试管薯形成是受到一对主效基因的调控,并存在微效基因的辅助修饰。而候选基因的定位结果显示本研究中定位到的QTLs可能包含了新的与块茎形成相关的基因。本研究的结果证实了前人报道的马铃薯块茎形成受到少数主效基因调控的遗传分析,揭示了马铃薯四倍体中可能存在新的块茎形成相关基因,提供了从试管块茎形成的角度寻找新的对于马铃薯块茎形成机理的认识和理解的可能性。
Potato originated from the Andes before8000years has become one of the most important food crops and plays a vital role in global food security, feeding more than one billion people with an annual production of over300million tonnes in more than one hundred countries. Due to the vegetative propagation, the degeneration caused by viral diseases of the seed potato is the key factor to cause low yield and benefit of potatoes and it is also the most important constraint of the potato production in China. The production of virus-free seed potatoes based on in vitro tuberization has greatly alleviated this problem. So to understand the genetic basis of in vitro tuberization is not only an important aspect of theoretical research, but also critical to improve potato yield and quality. But as an autotetraploid species, the complexity of tetrasomic inheritance and the lack of pure lines increase the difficulty of genetic analysis of the inherited characteristics of cultivated potatoes (Solanum tuberosum L.) and the genetic analysis of in vitro tuberization is hard and lacking.
     To understand the complex genetic basis of in vitro tuberization of the cultivated potato, we constructed a tetraploid population (F1) of237genotypes segregating on in vitro tuberization, developed linkage maps of this population (F1) and mapped QTLs for the percent of in vitro tuberized plantlets (%IVT). The main results include:
     1. Based on the performance of in vitro tuberization in two different photoperiods, we evaluated the phenotype of119genotypes from4crosses, and we found that the8h/d photoperiod promoted the in vitro tuberization compared with16h/d; different crosses showed different sensitivity to the different photoperiods. The results of the analysis of the segregation ratio between tuberized and nontuberized genotypes suggest that the ability to tuberize in these cresses is controlled by a pair of major genes, and they have different interaction modes in different photoperiods, additive in8h/d photoperiod and complementary in16h/d photoperiod.
     2. From these119genotypes, we selected E108(tuberized well and quickly both in8h/d and16h/d photoperiod) and E20(nontuberize in either photoperiod) to generate the segregation F1population MT I which consisted of237individuals.
     3. Used the same method, we evaluated the phenotype of this tetraploid potato population MT I. The distribution of the phenotypic data in the population MT I was skewed both in8h/d photoperiod and16h/d photoperiod. In8h/d photoperiod, the segregation ratio of the tuberized genotypes to the nontuberized genotypes in the population was200:37which was consistent with a5:1ratio (p=0.6629). The ratio of the well tuberized (%IVT>20%) genotypes to the poorly tuberized (%IVT<20%) genotypes was117:120which was consistent with a1:1ratio (p=0.8415). In16h/d photoperiod, a large part of the population had not tuberized and the segregation ratio of the tuberized genotypes to the nontuberized genotypes was74:163. All of the74genotypes which tuberized in16h/d photoperiod also tuberized in8h/d photoperiod.
     4. Based on the711useful markers resulted from primers of128AFLP、65SSR and3candidate genes, we constructed the genetic linkage maps of two parents. The paternal map for E108(well tuberized) consisted of315markers, covered a total length of948cM and included12linkage groups, all of which contained all four homologous chromosomes. The maternal map for E20(nontuberized) consisted of341markers, covered a total length of1286cM and included14linkage groups,12of which contained all four homologous chromosomes. All12chromosomes of potato were tagged using the104SSR markers.
     5. The results of the marker-trait association analysis showed that8and3markers were significantly (P<0.01) associated with the phenotypic data in8h/d and16h/d photoperiod and one of them was the identical marker. There were both positive and negative alleles affecting in vitro tuberization under each photoperiod and the same positive allele was detected both in8h/d and16h/d photoperiod. The total10markers associated with the phenotypic data in8h/d or16h/d photoperiod were located on chromosome V of E108and chromosome V, IX and XII of E20.
     6. We utilized the IM routine of TetraploidMap for almost all linkage groups identified. Four QTLs were identified using the phenotypic data in8h/d photoperiod, but none was detected in16h/d photoperiod. A major QTL (MT05) with additive effect was detected on chromosome V of E108which explained16.23%of the variation for%IVT, and three minor QTLs (mt01-1, mt05and mt09) displaying duplex dominant and simplex dominant effects were located on chromosome I, V and IX of E20which explained6.60%,5.33%and4.81%of the variation for%IVT, respectively. Based on the additive model of MT05, the segregation ratio of the gametic genotypes (Q-:qq=5:1) matched the ratio of the tuberized genotypes to the nontuberized genotypes in the population suggesting that the segregation of in vitro tuberization in this population is controlled by a major-effect gene or genes.
     7. Based on the interaction analysis of the alleles between the major QTL (MT05) and minor QTLs (mt05and mt09), we found that there was interaction (may be epistasis) between mt09and allele3in MT05, but the effect of mt05was not significant and could be ignored. Although, the present study could not elucidate the minor QTL effect as to whether it is additive, dominant, or interactive, the major QTL effect with minor modifiers of in vitro tuberization were clearly confirmed in this population. Furthermore, we could conclude that the major QTL may control individuals of the progeny to tuberize or not, and the minor modifiers could influence individuals to tuberize well or poorly.
     8. We also tested the segregation of three candidate genes (StSP6A, StCO and StCDFl) in our population. There was no polymorphism in the candidate gene loci StSP6A and StCO. Only candidate gene StCDFl was mapped on the north arm of chromosome V of E108and the location of StCDFl in our population was near the position reported in the potato genome sequence superscaffold and pseudomolecule information, but out of the one-LOD support interval of MT05. The mapping results of these important candidate genes indicated that the QTL causal genes detected in our study are new.
     9. The QTL support interval of MT05was matched the segment on potato (DM) genome through e-PCR, which harbored216genes. Compared these216genes with genes that were differentially regulated by day length or sucrose content identified in E26, we found that54genes of them were identical to the genes which differentially regulated by sucrose content. The result suggests that MT05causal genes may be involed in the sucrose controlled in vitro tuberization.
     In this study, we developed the almost complete linkage maps of a tetraploid population, identified a major QTL on chromosome V affecting in vitro tuberization, suggested a major-effect gene with minor modifiers model controlling this trait and found that the QTLs identified here correspond to new tuberization genes. Our work provides additional confirmation of previous researches which suggested that few-gene models are responsible for the tuberization process of cultivated potatoes, and we also provide the possibility that there are new genes involved in the tuberization process in tetraploid populations.
引文
1 刘玲玲.光照和培养基类型对马铃薯微型薯诱导结薯的影响.黑龙江农业科学,2004,6:21-23.
    2 柳俊.马铃薯试管块茎的形成机理及块茎形成调控.[博士学位论文].武汉:华中农业大学图书馆,2001.
    3 柳俊,谢从华,黄大恩.马铃薯块茎形成机制的研究——暗处理和光照对试管块茎形成的影响[J].马铃薯杂志,1994,8(3):138-140.
    4 冉毅东,王蒂,王清.光温及培养基类型对马铃薯试管微型薯诱导的影响[A].中国马铃薯学术研讨文集[C],陈伊里编.哈尔滨:黑龙江科学技术出版社,1996,244-249.
    5 司怀军,谢从华,柳俊.农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义class Ⅰ patatin基因的导入(英文).作物学报,2003,29:801-805.
    6 孙慧生.马铃薯试管薯的诱导与利用研究[J].山东农业科学,1993,2:10-12.
    7 王春林,程天庆.利用试管薯快速繁殖马铃薯[J].马铃薯杂志,1992,6(2):10-12.
    8 王亚馥,戴灼华.遗传学.北京:高等教育出版社,1996.6(2003重印).
    9 谢从华.马铃薯产业的现状与发展.华中农业大学学报(社会科学版),2012,97:1-4.
    10张勇,陈廷芳.马铃薯试管薯诱导因子最佳组配的研究[J].马铃薯杂志,1990,4(4):206-209.
    11 Aksenova NP, Konstantinova TN, Lozhnikova VN, Golyanovskaya SA, Sergeeva LI. Interaction between day length and phytohormones in the control of potato tuberization in the in vitro culture. Russian Journal Plant Physiology, 2009, 56: 454-461.
    12 Alsadon AA, Knutson KW, Wilkinson JC. Relationships between microtuber and minituber production and yield characteristics of six potato cultivars. American Potato Journal, 1988,65:468.
    13 Alsadon AA. Micropropagation techniques as a tool for studying plant growth, tuberization and sprouting of potatoes. Dissertation Abstracts International B Sciences and Engineering, 1989, 50:810B-811B.
    14 Apuya NR, Frazier BL, Keim P, Roth EJ, Lark KG Restriction fragment length polymorphisms as genetic markers in soybean. Glycine max (L) Merrill. Theoretical and Applied Genetics, 1988, 75:889-901.
    15 Bacheml CW., Horvath B, Trindade L, Claassens M, Davelaar E, Jordi W and Visser RG. A potato tuber-expressed mRNA with homology to steroid dehydrogenases affects gibberellin levels and plant development. The Plant Journal, 2001,25: 595-604.
    16 Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant Journal,2002,30:361-371.
    17 Batutis E J, Ewing E E. Far-red reversal of red light effect during long-night induction of potato tuberization. Plant Physiology, 1982, 69:672-74.
    18 Batutis EJ, Ewing EE. Far-red reversal of red light effect during long-night induction of potato(Solanum tuberosum L.) tuberization. Plant Physiol,1982, 69:672-674.
    19 Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S, Henriques R, Pruneda-Paz JL, Chua N-H, Tobin EM. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell, 2010, 22: 606-622.
    20 Bever JD and F Felber. The theoretical population genetics of autopolyploidy. Oxford Surveys in Evolutionary Biology, 1992, 8:185-217.
    21 Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120:1095-1103.
    22 Bormann CA, Rickert AM, Castillo Ruiz RA, Paal J, Lubeck J, Strahwald J, Buhr K, Gebhardt C. Tagging quantitative trait loci for maturity-corrected late blight resistance in tetraploid potato with PCR-based candidate gene markers. Molecular Plant-Microbe Interactions,2004,17(10):1126-1138
    23 Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature, 1995,376:762-765.
    24 Bradshaw JE, Bryan GJ, Hackett CA, McLean K, Pande B, Stewart HE, Waugh R. Dissection and analysis of quantitative disease resistance in tetraploid potato. Euphytica, 2004, 137(1):13-18.
    25 Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solarium tuberosum subsp. tuberosum). Theoretical and Applied Genetics,2008,116:193-211
    26 Bradshaw JE, Mackay GR. Potato Genetics. CAB International, Wallingford, 1994.
    27 Cerdan PD, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423:881-885.
    28 Chapman H. Tuberization in the potato plant. Physiol plantarum, 1958,11:215-224.
    29 Charles G, Rossignol L, Rossignol M. A synchronous model of development and tuberization in potato plants cultured in vitro without adding any growth regulators. Acta Botanica Gallica,1995,142:289-300.
    30 Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B and Kiihn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiology, 2008,146:515-528.
    31 Chitenden LM, Schertz KF, Lin Y, Wing RA, Paterson AH. RFLP mapping of a cross between Sorghum bicolor and S. Propinquum, suitable for high density mapping, suggests ancestral duplication of Sorghum chromosomes. Theoretical and Applied Genetics,1994,87:925-930.
    32 Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971.
    33 Coleman WK, Donnelly DJ, Coleman SE. Potato microtubers as research tools. A review. American Journal of Potato Research, 2001,78:47-55.
    34 Collins, A, Molbourne D, Ramsay L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigor. Molecular Breeding, 1999,5:387-398
    35 Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al.:FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007,316:1030-1033.
    36 Da Silva J, Honeycutt R J, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS. Saccharum spontaneum L.'SES 208'genetic linkage map combining RFLP- and PCR-based markers. Molecular Breeding,1995,1:165-179.
    37 Da Silva J. A methodology for genome mapping of autopolyploids and its application to sugarcane (Saccharum spp.) PhD dissertation, Cornell University, Ithaca, NY, 1993.
    38 Danan S, Chauvin J-E, Caromel B, Moal JD, Pelle R, Lefebvre V. Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theoretical and Applied Genetics, 2009, 119:705-719.
    39 Danan S, Veyrieras JB, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 2011,11:16
    40 Darlington CD. Chromosome behaviour and structural hybridity in the Tradescantiae. Journal of Genetics,1929,1:207-286.
    41 Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant Molecular Biology Reports,1983,1:19-21.
    42 Deryabin AN, Yur'eva NO. Synchronization of Tuber Formation in Potato Grown In Vitro by Cell Division Synchronization in Axillary Meristems of Stem Explants. Russian Journal Plant Physiology, 2008, 55:829-833.
    43 Dinesen IG. Technical Guideline on Seed Potato Micro-Propagation and Multiplication. Food & Agriculture Organization, 1986.
    44 Donnelly DJ, Coleman WK, Coleman SE. Potato microtuber production and performance. A review. American Journal of Potato Research, 2003,80:103-115.
    45 Durham RE, Liou PC, Gmitter FG, Moore GA. Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theoretical and Applied Genetics, 1992,84:39-48.
    46 Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ. Linkage Mapping in Diploid Alfalfa (Medicago Sativa). Genome, 1994, 37:61-71.
    47 Ewing EE, Struik PC. Tuber formation in potato:induction, initiation, and growth. Horticultyral Reviews, 1992, 14:89-197
    48 Ewing EE, Wareing PF. Shoot, stolon, and tuber formation on potato (Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiology, 1978, 61:348-353.
    49 Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2005, 111:456-466.
    50 Fernie AR, Willmitzer L. Molecular and Biochemical Triggers of Potato Tuber Development. Plant physiology, 2001,127:1459-1465.
    51 Fischer L, Lipavskal H, Hausman JF and Opatrny Z. Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction. BMC Plant Biology, 2008, 8:117.
    52 Garner N, Blake J. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Annals of Botany, 1989, 63:663-674.
    53 Gebhardt C, Li L, Pajerowska-Mukthar K, Achenbach U, Sattarzadeh A, Bormann C, Ilarionova E, Ballvora A. Candidate gene approach to identify genes underlying quantitative traits and develop diagnostic markers in potato. Crop Science, 2007, 47: S106-S111.
    54 Ghislain M, Nunez J, Del Rosario Herrera M, Pignataro J, Guzman F, Bonierbale M, Spooner DM. Robust and highly informative microsatellite-based genetic identity kit for potato. Molecular Breeding, 2009, 23:377-388.
    55 Gonzalez - Schain ND, Diaz - Mendoza M, Zurczak M, Suarez - Lopez P. Potato CONSTANS is involved in photoperiodic tuberization in a graft - transmissible manner. Plant Journal, 2012.
    56 Gopal J, Minocha JL. Effectiveness of in vitro selection for agronomic characters in potato. Euphytica, 1998,103:67-74.
    57 Gopal J, Minocha L, Dhaliwal HS. Microtuberization in potato (Solarium tuberosum L.). Plant Cell Reports, 1998, 17:794-798.
    58 Gopal J. In vitro and in vivo genetic parameters and character associations in potato. Euphytica, 2001,118:145-151.
    59 Gopal J. In vitro selection, genetic divergence and cross prediction in potato. Ph D Thesis. Punjab Agricultural University, Ludhiana, Punjab, 1996.
    60 Grant V. Plant Speciation, Ed. 2. Columbia University Press, New York, 1981.
    61 Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers. Genetics,1994,137:1121-1137.
    62 Gregory LE. Some factors for tuberization in the potato plant. American Journal Botany, 1956: 281-288.
    63 Groth J, Song Y, Kellermann A, Schwarzfischer A. Molecular characterisation of resistance against potato wart races 1,2, 6 and 18 in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Journal of Applied Genetics, 2013, 54:169-178.
    64 Hackett CA, Bradshaw JE, McNicol JW. Interval mapping of quantitative trait loci in autotetraploid species. Genetics, 2001,159:1819-1832.
    65 Hackett CA, Bradshaw JE, Meyer RC, McNicol JW, Milbourne D and Waugh R. Linkage analysis in tetraploid potatoes:a simulation study. Genetical Research, 1998, 71:143-154.
    66 Hackett CA, Milne I, Bradshaw JE, Luo Z. TetraploidMap for Windows:linkage map construction and QTL mapping in autotetraploid species. Journal of Heredity, 2007, 98:727-729.
    67 Hackett CA, Pande B, Bryan GJ. Constructing linkage maps in autotetraploid species using simulated annealing. Theoretical and Applied Genetics, 2003,106:1107-1115.
    68 Han YC, Teng CZ, Hu ZL, Song YC. An optimal method of DNA silver staining in polyacrylamide gels. Electrophoresis, 2008,29:1355-1358.
    69 Hannapel DJ. A model system of development regulated by the long-distance transport of mRNA. Journal of Integrative Plant Biology, 2010,52:40-52
    70 Hauber DP, Reeves A, Stack SM. Synapsis in natural autotretraploid. Genome, 1999, 42:936-949.
    71 Hemmat M, Weeden NF, Manganaris AG, Lawson DM. Molecular marker linkage map for apple. Journal of Heredity,1994,85:4-11.
    72 Henry Y, Vain P, De Buyser J. Genetic analysis of in vitro plant tissue culture response and regeneration capacities. Euphytica, 1994,79:45-48.
    73 Hussey G, Stacey NJ. Factors affecting the formation of in vitro tubers of potato (Solanum tuberosum L.). Annals of Botany, 1984, 53:565-578.
    74 Inui H, Ogura Y, Kiyosue T. Overexpression of Arabidopsis thaliana LOV KELCH REPEAT PROTEIN 2 promotes tuberization in potato (Solanum tuberosum cv. May Queen). FEBS Letters, 2010,584:2393-2396.
    75 Ishida BK, Snyder Jr GW, Belknap WR. The use of in vitro-grown microtuber discs in Agrobacterium-mediated transformation of Russet Burbank and Lemhi Russet potatoes. Plant Cell Reports, 1989, 8:325-328.
    76 Jackson RC, Jackson JW. Gene segregation in autotetraploids:prediction from meiotic configurations. American Journal of Botany, 1996,83:673-678.
    77 Jackson SD, Heyer A, Dietze J, Prat S. Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant Journal, 1996, 9:159-166.
    78 Jackson SD, James P, Prat S, Thomas B. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant physiology, 1998,117:29.
    79 Jackson SD. Plant responses to photoperiod. New Phytologist, 2009, 181:517-531.
    80 Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. Embo Journal, 2008, 27:1277-1288.
    81 Jansky SH, Davis GL, Peloquin SJ. A genetic model for tuberization in potato haploid-wild species hybrids grown under long-day conditions. American Journal of Potato Research, 2004,81:335-339
    82 Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286:1962-1965.
    83 Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D:Activation tagging of the floral inducer FT. Science, 1999, 286:1962-1965.
    84 Kasahara M, Torii M, Fujita A, Tainaka K. FMN Binding and Photochemical Properties of Plant Putative Photoreceptors Containing Two LOV Domains, LOV/LOV Proteins. Journal of Biological Chemistry, 2010, 285:34765-34772.
    85 Khu D, Lorenzen J, Hackett CA, Love SL. Interval mapping of quantitative trait loci for corky ringspot disease resistance in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). American Journal of Potato Research, 2008, 85:129-139.
    86 Khuri S and Moorby J. Investigations into the role of sucrose in potato cv. Estima microtuber production in vitro. Annals of Botany, 1995, 75:295-303.
    87 Kittipadukal P, Bethke PC, Jansky SH. The effect of photoperiod on tuberisation in cultivated X wild potato species hybrids. Potato Research, 2012, 55:27-40
    88 Kloosterman B, Abelenda JA, Gomez Mdel M, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, Van Eck HJ, Smaczniak C, Prat S, Visser RG, Bachem CW. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature,2013,495:246-250
    89 Kloosterman B, Anithakumari AM, Chibon P-Y, Oortwijn M, Van der Linden GC, Visser RGF, Bachem CWB. Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source-sink tissues in a segregating potato population. BMC Plant Biology, 2012,12:17.
    90 Koornneef M, Hanhart CJ, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular and General Genetics, 1991,229:57-66.
    91 Kostyushina ZS, Chudinova LA. Induced tuber formation in different potato varieties in in vitro culture. Plant Cell, Tissue and Organ Culture, 1985,7(1):3-10
    92 Leclerc Y, Donnelly D J and Seabrook J E A. Microtuberization of layered shoots and nodal cuttings of potato:The influence of growth regulators and incubation periods. Plant Cell, Tissue and Organ Culture, 1994,37:113-120
    93 Lentini Z, Plaisted RL, Earle ED. Use of in vitro tuberization as a screening system for potato earliness. American Potato Journal,1988,65(8):488.
    94 Leonards-Schippers C, Gieffers W, Schafer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C. Quantitative resistance to Phytophthora infestans in potato:a case study for QTL mapping in an allogamous plant species. Genetics, 1994,137:67-77.
    95 Li JC, Lindqvist-Kreuze H, Tian ZD, Liu J, Song BT, Landeo J, Portal L, Gastelo M, Frisancho J, Sanchez L, Meijer D, Xie CH, Bonierbale M. Conditional QTL underlying resistance to late blight in a diploid potato population. Theoretical and Applied Genetics, 2012,124:1339-1350.
    96 Luo ZW, Hackett CA, Bradshaw JE, Mcnicol JW, Milbourne D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157(3):1369-1385.
    97 Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne DM. Predicting parental genotypes and gene segregation for tetrasomic inheritance. Theoretical and Applied Genetics, 2000, 100:1067-1073.
    98 Malosetti M, Visser RGF, Celis-Gamboa C, van Eeuwijk FA. QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theoretical and Applied Genetics, 2006, 113:288-300
    99 Martinez-Garci JF, Virgos-Soler A and Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA, 2002,99:15211-15216.
    100 Martinez-Garcia JF, Virgos-Soler A, Prat S. Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natio Acad Sci,2002,99:15211-15216.
    101 Martins R. New Arachaelogical Techniques for the Study of Ancient Root Crops in Peru. Ph.D. Thesis, University of Birmingham, 1976.
    102 Masterson J. Stomatal size in fossil plants-evidence for polyploidy in majority of angiosperms. Science, 1994,264:421-424.
    103 Mather K. Segregation and linkage in autotetraploids. Journal of Genetics, 1936, 32: 287-314.
    104 McCord PH, Sosinski BR, Haynes KG, Clough ME, Yencho GC. QTL mapping of internal heat necrosis in tetraploid potato. Theoretical and Applied Genetics, 2011, 122:129-142.
    105 McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD. Molecular mapping of rice chromosome. Theoretical and Applied Genetics, 1988, 26: 815-829.
    106 Mendoza HA, Haynes FL. Inheritance of tuber initiation in tuber bearing Solanum as influenced by photoperiod. American Potato Journal, 1977, 54:243-253
    107 Meyer RC, Milbourne D, Hackett CA, Bradshaw JE, McNichol JW and Waugh R. Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Molecular and General Genetics, 1998, 259: 150-160.
    108 Milbourne D, Meyer RC, Collins AJ, Ramsay LD, Gebhardt C, Waugh R. Isolation, characterisation and mapping of simple sequence repeat loci in potato. Molecular and General Genetics,1998,259:233-245.
    109 Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobaco tissue cultures. Physiol Plant, 1962, 15,473-497.
    110 Naik PS, Sarkar D, Gaur PC. Yield components of potato microtubers: in vitro production and field performance. Annals of Applied Biology, 1998, 133:91-99.
    111 Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature,2011478:119-122
    112 Ortiz-Montiel G, Lozoya-Saldana H. Potato minitubers:technology validation in Mexico. American Potato Journal,1987,64:535-544.
    113 Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999, 285:1579-1582.
    114 Perl A, Aviv D, Willmitzer L, Galun E. In vitro tuberization in transgenic potatoes harboring β-glucoronidase linked to a patatin promoter: effects of sucrose levels and photoperiods. Plant Science, 1991,73:87-95.
    115 Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 1998,29:467-501.
    116 Ritter E, Debener T, Barone A, Salamini F, Gebhardt C. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991,227, 81 85.
    117 Roden LC, Song HR, Jackson S, Morris K, Carre IA. Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci USA, 2002, 99:13313-13318.
    118 Rodriguez-Falcon M, Bou J, Prat S. Seasonal control of tuberization in potato: conserved elements with the flowering response. Annual Review of Plant Biology, 2006,57:151-180.
    119 Ronfort J, Jenczewski E, Bataillon T and Rousset F. Analysis of population structure in autotetraploid species. Genetics, 1998,150:921-930.
    120 Ronning CM, Stegalkina SS, Ascenzi RA, Bougri O, Hart AL, Utterbach TR, Vanaken SE, Riedmuller SB, White JA, Cho J, Pertea GM, Lee Y, Karamycheva S, Sultana R, Tsai J, Quackenbush J, Griffiths HM, Restrepo S, Smart CD, Fry WE, van der Hoeven R, Tanksley S, Zhang P, Jin H, Yamamoto ML, Baker BJ, Buell CR. Comparative analyses of potato expressed sequence tag libraries. Plant Physiology, 2003,131:419-429
    121 Rosin FM, Hart JK, Horner HT, Davies PJ and Hannapel DJ. Overexpression of a Knotted-Like Homeobox Gene Potato Alters Vegetative Development by Decreasi Gibberellin Accumulation. Plant Physiology, 2003,132:106-1172003.
    122 Sandbrink JM, Colon LT, Wolters P, Stiekema WJ. Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Molecular Breeding, 2000, 6:215-225.
    123 Schuler GD. Sequence mapping by electronic PCR. Genome Research, 1997, 7:541-550.
    124 Simko I, Costanzo S, Ramanjulu V, Christ BJ, Haynes KG Mapping polygenes for tuber resistance to late blight in a diploid Solanum phureja × S. stenotomum hybrid population. Plant Breeding, 2006, 125:385-389.
    125 Slimmon T, V Souza Machado, R Coffin. The effect of light on in vitro microtuberization of potato cultivars [J]. American Potato Journal, 1989, 66: 843-847.
    126 Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E. Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum) background. Theoretical and Applied Genetics, 2007, 115(1):101-112.
    127 Solits DE, Solits PS. Polyploidy:recurrent formation and genome evolution. Trends in Ecology & Evolution, 1999, 14: 348-352.
    128 Sorensen K, Kirk H, Olsson K, Labouriau R, Christiansen J. A major QTL and an SSR marker associated with glycoalkaloid content in potato tubers from Solanum tuberosum X S. sparsipilum located on chromosome I. Theoretical and Applied Genetics,2008,117:1-9.
    129 Stebbins GL. Chromosomal Evolution in Higher Plants. Addison-Wesley, Reading, MA,1971.
    130 Stebbins GL. Variation and Evolution in Plants. Columbia University Press, New York,1950.
    131 Stift M, Berenos C, Kuperus P and van Tienderen PH. Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids:A general procedure applied to rorippa (Yellow Cress) microsatellite data. Genetics, 2008, 179: 2113-2123.
    132 Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001,410:1116-1120.
    133 Suetsugu N, Wada M: Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles:phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiology, 2013, 54:8-23.
    134 Sybenga A. Chromosome pairing affinity and quadrivalent formation in polyploids: Do segmental allopolyploids exist? Genome, 1996, 39: 1176-1184.
    135 Takahashi K, Fujino K, Kikuta Y and Koda Y. Expansion of potato cells in response to jasmonic acid. Plant Science, 1994, 100:3-8.
    136 Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin G B. High density molecular linkage maps of the tomato and potato genomes. Genetics, 1992, 132(4):1141-1160.
    137 The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475:189-195.
    138 Turck F, Fornara F, Coupland G. Regulation and identity of florigen. FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology, 2008, 59:573-594.
    139 Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004,303:1003-1006.
    140 van den Berg JH, Ewing EE, Plaisted RL, McMurry S, Bonierbale MW. QTL analysis of potato tuberization. Theoretical and Applied Genetics, 1996, 93:307-316.
    141 van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, Jeroen NA, van der Voort R, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RG, Bakker Jand van Eck HJ. Construction of a 10,000-marker ultra dense genetic recombination map of potato:providing a framework for accelerated gene isolation and a genome wide Physical map. Genetics, 2006, 173:1075-1087.
    142 Visker M, Keizer LCP, Van Eck HJ, Jacobsen ELT, Colon LT, Struik PC. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type?. Theoretical and Applied Genetics, 2003,106:317-325
    143 Visker MHPW, Heilersig HJB, Kodde LP, van de Weg WE, Voorrips RE, Struik PC, Colon LT. Genetic linkage of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphytica, 2005, 143:189-199
    144 Voorrips RE. MapChart:software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93:77-78.
    145 Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23:4407-4414.
    146 Wang PJ, Hu CY. In vitro mass tuberization and virus-free seed-potato production in Taiwan. American Journal of Potato Research, 1982,59.33-37.
    147 Wu KK, Burnquist W, Sorrells ME., Tew TL, Moore PH, Tanksley SD. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theoretical and Applied Genetics, 1992,83,294-300.
    148 Wu RL, Gallo-Meagher M, Littell RC, Zeng ZB. A General polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics, 2001,159: 869-882.
    149 Wu SS, Wu RL, Ma CX, Zeng ZB, Yang MC and Casella G A Multivalent pairing model of linkage analysis in autotetraploids. Genetics,2001,159:1339-1350.
    150 Yanovsky MJ, Izaguirre M, Wagmaister JA, Gatz C, Jackson SD, Thomas B, Casal JJ. Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant Journal, 2000, 23:223-232.
    151 Yu KF, Pauls KP. Segregation of random amplified polymorphic DNA markers and strategies for molecular mapping in tetraploid alfalfa. Genome, 1993,36,844-851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700