城市道路交通数据挖掘研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能交通系统是有效地集成信息技术、数据通讯技术、电子传感技术、电子控制技术以及计算机数据处理技术的地面运输管理体系,是当前研究与应用的热点。其中,大规模交通数据管理、整合和挖掘是一项关键技术。数据挖掘是从大量数据中寻找其规律的技术,是目前最强有力的计算机数据分析技术之一。交通数据挖掘技术的研究是智能交通技术和数据挖掘技术领域最活跃的研究方向之一。交通数据挖掘的主要目的是寻找交通数据中的规律,为智能交通系统的设计提供技术支持,有利于缓解交通拥挤、优化交通路网运行,促进交通健康稳定发展。交通流量、交通拥堵状况和交通流分布预测和分析是目前智能交通数据挖掘研究中的三个重要问题,对于智能交通系统的交通信号管理与控制、交通流诱导、动态交通分配等方面有着重要的意义,在智能交通系统设计和实现中起着重要作用。
     当前智能交通数据挖掘研究的重点在于如何设计有效的挖掘算法,主要有两个方面的难题:一方面,由于交通流数据的特殊性,使得现有的数据挖掘算法无法直接在大规模交通流数据中高效实现;另一方面,由于没有根据领域知识设计专门的挖掘算法,造成挖掘结果无法满足应用需求。本文针对当前智能交通数据挖掘技术研究领域中存在的问题,在交通流量预测、交通拥堵事件挖掘和交通流分布模式挖掘等几个方面开展研究,提出了相应的挖掘算法,并将这些方法应用于智能交通数据挖掘系统中。本文取得的主要研究成果如下:
     1)针对短时十字路口交通流量预测问题设计实现了基于组合模型的挖掘算法
     及时、准确地识别和预测道路交通的状态是智能交通系统实现动态交通管理的重要前提。交通流量是交通流的重要特性之一,智能交通系统的控制和诱导需要对道路网络交通流量进行准确、快速的预测。本文针对路口短时交通流量预测问题,提出了基于交通流量序列分割和神经网络组合模型的交通流量预测算法CITFF (Combined Intersection Traffic flow Forcast), CITFF算法首先采用聚类方法对交通流量在流量大小和时间上进行序列分割,然后再采用神经网络对各个交通流模式进行描述和预测。实验证明基于组合模型的预测方法具有较高的预测精度。
     2)构建了道路交通流模式库并设计了相应的交通流拥堵事件挖掘算法
     如何应对城市现代化带来的交通拥堵问题,是交通管理者迫切需要解决的问题。道路交通的拥堵事件检测是智能交通领域研究的关键技术。本文通过对道路交通流数据的分析,构建了道路交通流模式库,并给出一个结合同向斜率树(Same-Directed Slope Tree, SDS-Tree)逐层分类表示交通流数据的方法。基于构建的交通流模式库,提出了一种高效的道路交通流的拥堵事件挖掘算法Detection-CS (Detection of Continual Stream of Traffic Flow),同时对算法效率和空间复杂度进行了详细分析。Detection-CS算法首先对当前实时交通数据进行特征提取,通过对交通流模式库进行匹配,获取前k个有效反馈,并根据反馈的交通路况信息进行分析,结合路况分层模式信息,给出当前路况的实时检测信息,实现对交通路况检测。为提高挖掘算法的效率,根据交通流模式库的路况分层信息,建立了多层索引结构,减少算法的搜索空间,从而实现算法优化。结合实际需要,算法进一步给出随着时间推移如何更新交通流模式库的方法,通过逐步替换使用频度最少的信息和更新新出现的路况信息,保证交通流模式库的有效性。在真实数据集上的实验表明,与现有算法相比,Detection-CS算法对于当前解决交通路况的实时检测具有很好的效率和较高的准确度。
     3)提出了一个道路交通流分布模式挖掘算法
     道路网络上运行的交通流具有不同的空间分布模式,根据交通流运行的空间分布特性,对道路交通网络进行实时、动态的交通区域划分是当前智能交通系统的研究热点之一。本文对分布在道路网络空间中的环形感应线圈检测器检测的交通流数据进行空间聚类分析,设计了一个高效的交通流空间聚类算法SPANBRE (Efficient Clustering Algorithm for Spatial Data with Neighborhood Relations),自底向上生成道路交通流的空间簇,使具有相似性质且具有空间关联性的交通流数据对象聚成一簇,用以发现道路交通流的空间分布模式。SPANBRE算法无需执行复杂的空间连接和空间合并操作,实验证明具有良好的时间效率。
     4)设计实现了一个基于数据挖掘技术的综合智能交通系统
     道路交通数据挖掘技术的研究对于智能交通系统的交通信号管理与控制、交通流诱导、动态交通分配等方面有着重要的意义。本文将上述挖掘方法应用于智能交通系统中,设计并实现了一个基于数据挖掘技术的综合智能交通系统。该系统已经实际获得应用,为道路交通管理提供了有效的工具。
Intelligent Transportation System (ITS) is an integrated transportation and management system with high accuracy and efficiency, which integrates the advanced information technology, communication technology, electronic sensor technology, electronic control technology and computer data processing technology. In this research area, management, integration and mining of massive traffic data are key technologies. Data mining, one of the most powerful data analysis techniques, is an important technique when exploring the common rule from large volume data. The goal of the data mining in ITS is to mine the potential rule behind the traffic data and provide helpful guidance for the design of the ITS. So systems based on data mining can be used to alleviate traffic jam, optimize the traffic road network, and accelerate the traffic development healthily and steadily. The prediction and analysis of the traffic volume, traffic jam and traffic flow distribution are the three important questions of the traffic data mining research, which are significant to the traffic signal management and control, traffic flow inducement and dynamic traffic flow distribution and also play an important role in ITS design and implementation.
     How to design an efficient mining algorithm is now the key issue of the intelligent traffic data mining research, which involves two following aspects. The first difficulty is to apply the existing data mining algorithm directly to the mass of the traffic flow data for its specific characteristic. The second aspect is that the mining results cannot satisfy the application requirements for the lacking of domain knowledge. Aiming at these problems in the filed of ITS data mining, this thesis proposes the corresponding efficient mining algorithms and applies these algorithms to implement ITS to improve the performance of existing ITS by researching on the intersection traffic flow, traffic flow jam mining and traffic flow distribution pattern mining,. The achievements of this thesis are summarized as follows:
     1) Design the corresponding algorithm based on combined models through the analysis of the problem at the intersection traffic flow short-term prediction
     It is an important premise of dynamic traffic management in ITS to identify and predict the status of the traffic flow instantly and accurately. Traffic volume is one of the main features of the traffic flow; therefore, it is necessary to predict the traffic volume in road network. Aiming at the problem, we propose a traffic volume prediction CITFF(Combined Intersection Traffic Flow Forecast) algorithm, which based on traffic volume sequence partition and neural network model, and divides the traffic volume into different patterns along the volume and time dimension by clustering, and then describes and predicts the traffic flow status according to these different patterns. The experiment results on real data sets demonstrate that our algorithm based on the combination model is much accurate.
     2) Construct a road traffic flow pattern database and design a traffic flow jam mining algorithm
     Traffic jam detection is the key technology in ITS research. By the analysis of the traffic flow data, we construct a traffic flow pattern database and propose a traffic flow data description based on the Same-Directed Slope Tree (SDS-Tree). Correspondingly, an efficient traffic flow jam mining algorithm named Detection-CS, which based on the traffic flow pattern database is proposed. Detection-CS(Detection of Continual Stream of Traffic Flow) algorithm extracts the feature of the real-time traffic data and obtains the first k effective feedback through matching the feature with the traffic flow pattern database. Detection-CS then points out the current traffic status According to the feedback. To improve the efficiency, we build a multilayer index structure based on the traffic flow layered information, which can minimize the searching space. This thesis also presents a method to update the traffic flow pattern database to ensure the pattern database efficiently by replacing the seldom-used traffic flow data with the new ones gradually. The experiments on the real data sets show that Detection-CS exhibits higher efficiency and superior accuracy compared with some famous algorithms.
     3) Analyze the time and space characteristics of the traffic flow data and propose a traffic flow distribution pattern mining algorithm
     The traffic flow in the road network has different time and space distribution pattern, so now it is one of the hot topics in ITS to partition real-time and dynastically the traffic area in the road network. We design an Efficient Clustering Algorithm for Spatial Data with Neighborhood Relations (SPANBRE) through clustering the traffic flow data from the loop inductor coils distributing over the road network. SPANBER builds the traffic flow space cluster from bottom up to make the traffic flow data with similar characteristics and space relationship into one cluster. SPANBER can find out the space distribution pattern of the traffic flow. It needs no complex space connecting and combining operation, and the experiment shows SPANBER has high efficiency.
     4) Design an integrative Intelligent Transportation System based on the data mining technique
     The study of the traffic flow data mining technology is meaningful to the traffic management and control, traffic flow induction, dynamic traffic allocation. In this thesis, we apply above mining algorithms to implement a comprehensive Intelligent Transportation System based on the data mining technique. It has been put into successful practice in a few projects in several cities from medium to large scale, and also provides an efficient tool for the traffic management.
引文
[Luo08]Luo Qi, Research on Intelligent Transportation System Technologies and Applications.2008 Workshop on Power Electronics and Intelligent Transportation System. IEEE p529-531
    [RZL+01]任江涛,张毅,李志恒,胡东成.智能交通信息特征及亟待解决的相关问题.信息与控制,2001
    [Mas99]Ichiro Masaki. A brief History of ITS. USA:Massachusetts Institute of Technology,1999.
    [Cai03]蔡文沁.我国智能交通系统发展的战略构想.交通运输系统工程与信息,vol3.1,2003.2 p16-p22
    [DLMJ83]D. L.鸠洛夫,M.J.休伯,交通流理论,蒋璜等译.北京:人民变通出版社,1983
    [JDL06]Ying Jin, Jing Dai, Chang-Tien Lu, Spatial-Temporal Data Mining in Traffic Incident Detection. In Proc. SIAMDM 2006 Workshop on Spatial Data Mining, Apr 2006.5 pages; Bethesda, MD
    [LCC08]Hyunjo Lee, Nihad Karim Chowdhury, Jaewoo Chang. A New Travel Time Prediction Method for Intelligent Transportation Systems. Knowledge-Based Intelligent Information and Engineering Systems.2008,Volume 5177. p473-p483
    [KRS+08]H.P. Kriegel, M. Renz, M. Schubert, A. Zuefle. Statistical Density Prediction in Traffic Networks. In Proc. SIAM Intl.Conf. Data Mining, p692-703,2008
    [GHL+07]H. Gonzalez, J. Han, X. Li, M. Myslinska, J. P.Sondag. Adaptive fastest path computation on a roadnetwork:A traffic mining approach. In Proc.2007 Int.Conf. on Very Large Data Bases (VLDB'07), Vienna,Austria, Sept.2007
    [XYX+08]Xiao Juan, Ye Feng, Xie Yafen, Zhang Zhiyong. Association Rule Mining and Application in Intelligent Transportation System. Proceedings of the 27th Chinese Control Conference, 2008,p538-p540
    [JY99]蒋金勇,杨晓光.美国国家智能运输系统体系结构概述.公路交通科技,voll6.3,1999 p49-p52
    [MCW07]J.C.Miles,陈干,王笑京智能交通系统手册[M].北京:人民交通出版社,2007
    [Liu03]刘智勇.智能交通控制理论和应用[M].北京:科学出版社,2003
    [ZCW03]张静,蔡伯根,吴建平.移动检测技术的研究.北方交通大学学报.2003,27(3)80-83
    [LSQ+06]陆明伟,尚宁,覃明贵,朱扬勇.一种基于曲线拟合异常检测的交通数据预处理方法.计算机研究与发展,卷43(增刊),第11期:631-635,第二十三届中国数据库学术会议,2006
    [KJP33]Kinzer.J.P. Application of the theory of probability to problem of highway traffic. B.C.E. thesis,Politech. Inst. Brooklyn.1933
    [AWF36]Adams.W.F. J. Inst. Civil Engr.,1936; 4:121-130
    [PLA53]Pipes.L.A. J. Appl. Phys.,1953;24:274-281
    [GHP59]Gazis.D.C,Herman.R.,Potts, R.B. Operations Res.,1959;7:499-510
    [GHR61]Gazis.D.C, Herman.R.,Rothery,R. Operations. Res.,1961;9:545-567
    [WR71]Wicdemann.R. Simulation des Strossenverkehrstrusses Schtriftreihe des Instituts fur Verkehrswesen der Universitat Karlsruhe, Karhruhe,1971
    [LW55]Lighthill.M.J. Whitham. G.B. Proc. Roy. Soc. Ser. A, 1955,22:317-345
    [RPI56]Richards.I.Operations Res.1956;4:42-51
    [PHJ71]Payne.H.J. Mathematical models of public systems. In:Bekey, A.G. (ed.) Simulation Council Proc.,La Jola,1971,1:51-61
    [PH71]Prigogine I. Herman, R. Kinetic Theory of vechicular Traffic. New York Elsevier,1971
    [BML92]Biham.O., Middleton, A.A.,Levine, nPhys. Rev. A.,1992,46:6124-6127
    [NT93]Nagatani.T. Phys. Rev. E.,1993;48:3290-3294
    [GCH95]Gu.G..Q.(顾国庆),Chung.K.H.(钟家雄),Hui,P.M.(许伯铭).Pkysica A..1995;217:339-347
    [CHG95]Chung.K.H., Hui.P.M., Gu.G..Q. Phys.Rev.E,1995;51:772-774
    [HKM+08]Jiawei Han, Micheline Kamber.数据挖掘概念与技术,范明,孟小峰译.北京:机械工业出版社,2008
    [WS05]王进,史其信.短时交通流预测模型综述,ITS通讯.2005,7(1).-10-13
    [WBM99]Williams, B.M.,1999. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process. Doctoral dissertation. Department of Civil Engineering, University of Virginia, Charlottesville.
    [YZ04]G.Q Yu, C.S Zhang. Switching ARIMA Model based Forecasting for Traffic Flow, International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 17-21,2004, Canada.
    [HSW04]韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测系统仿真学报,vol16,No.7,2004,p1530-1533
    [KK02]E. Keogh, S. Kasetty. On the Need for Time Series Data Mining Benchmarks:A Survey and Empirical Demonstration. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. July 23-26,2002. Edmonton, Alberta, Canada. pp 102-111.
    [WSB98]R. Weber, H.J Schek, S. Blott. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In Proc. Of 24th VLDB Conference, pp194-205, New York, USA,1998.
    [BGR+99]K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft. When is Nearest Neighbors Meaningful? In ICDT Conference Preceedings, Jerusalem Israel, pp.217-235,1999.
    [AFS93]R. Agrawal, C. Faloutsos, A. Swami. Efficient similarity search in sequence databases. In Procs. Of the Fourth International Conference on Foundations of Data Organization and Algorithms, 1993.
    [CF99]Kin-pong Chan, Ada Wai-Chee Fu:Efficient Time Series Matching by Wavelets. ICDE 1999:126-133.
    [ZHS04]X.T Zhuang, X.Y Huang, Y.L Sun. Research on the Fractal Structure in the Chinese Stock Market. Physica a-Statistical Mechanics and Its Applications 333:293-305,2004.
    [KCH01]E. Keogh, S. Chu, D. Hart D, M. Pazzani. An Online Algorithm for Segmenting Time Series. Proc of the IEEE International Conference on Data Mining.2001,289-296
    [Gut84]A. Guttman. R-tree:A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD, pp.47-57, June 1984.
    [BKS+90]N. Beckman, H. P. Kriegel, R. Schneider, B. Seeger. The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In Proc. ACM SIGMOD Conf., pp.322-331, Atlantic City, NJ, May 1990.
    [CPZ97]P. Ciaccia, M. Patella, P. Zezula. M-tree:An Efficient Access Method for Similarity Search in Metric Spaces. In Proc. Of the 23th International Conference on Very large Data Bases (VLDB), Athens, August 1997.
    [SYU+00]Y. Sakurai, M. Yoshikawa, S. Uemura, H. Kojima. The A-tree:An Index Structure for High-Dimensional Spaces Using Relative Approximation. In Proc. Of the 26th International Conference on Very large Data Bases (VLDB), pp.516-526, Cairo, Egypt,2000.
    [WW04]Z.J Wang, P. Willett Joint Segmentation and Classification of Time Series Using Class-Specific Features. IEEE Transactions on Systems, Man and Cybernetics.2004,1056-1067
    [DH73]Richard O. Duda, Peter E. Hart. Pattern classification and scene analysis. New York:Wiley,1973
    [PLC99]S. Park, D. Lee, W. W. Chu. Fast Retrieval of Similar Subsequences in Long Sequence Databases. Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange. Washington:IEEE Computer Society.1999:60-67.
    [LSL+00]V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allen. 2000. Mining of concurrent text and time series. Proc. Knowledge Discovery Data Mining,2000 Conf. Text Mining Workshop, 37-44.
    [AS95]R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engineering (ICDE'95), Taipei, Taiwan, Mar, 1995, pp.3-14.
    [SA96]R.Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In Proc.5th Int. Conf. Extending Database Technology (EDBT'96), Avignon, France, Mar.1996, pp.3-17.
    [PHM+01]J. Pei, J.W. Han, B. Mortazavi-Asl, H. Pinto, Q.M. Chen, U. Dayal, M.C. Hsu. PrefixSpan:Mining Sequential Patterns by Prefix-Projected Growth, Proceedings of the 17th International Conference on Data Engineering, pages 215-224,2001.
    [DLM+98]G. Das, K. Lin, H. Mannila, G. Renganathan, P. Smyth. Rule Discovery from Time Series.KDD 1998, pp:16-22.
    [OC96]T. Oates, P.R Cohen. Searching for Structure in Multiple Streams of Data. In:Proceedings of the 13th International Conference on Machine Learning. Morgan Kaufmann Publishers, Inc.,1996
    [LTX02]李斌,谭立湘,解光军,李海鹰,庄镇泉.非同步多时间序列中频繁模式的发现算法,软件学报,2002,13(03)410-416,
    [KR90]L. Kaufman, P. J. Rousseeuw, Finding Groups in Data:an Introduction to Cluster Analysis, John Wiley and Sons,1990.
    [DE84]William H. Day, Herbert Edelsbrunner. Efficient Algorithms for Agglomerative Hierarchical Clustering Methods. Journal of Classification. Volume 1, p1-24.1984
    [SS99]Z. Struzik, A. Sibes. Measuring Time Series Similarity Through Large Singular Features Revealed with Wavelet Transformation.In Proc. Of the 10th Intl. Workshop on Database and Expert Systems Application, pp:162-166,1999.
    [GAI00]M. Gavrilov, D. Anguelov, P. Indyk, R. Motwani. Mining the Stock Market:Which Measure is Best? In Proc. Of the KDD, pp.487-496,2000.
    [Smy97]P. Smyth. Clustering Sequences with Hidden Markov Models. In M. Mozer, M. Jordan, and T.Petsche, editors, Advances in Neural Information Processing Systems, volume 9, pages 648-654. MIT Press,1997.
    [ASK+03]J.Alon, S. Sclaro, G. Kollios, V. Pavlovic. Discovering Clusters in Motion Time-series Data. In IEEE Computer Vision and Pattern Recognition Conference (CVPR),2003.
    [BJZ03]A. J. Bagnall, G. Janakec, M. Zhang. Clustering Time Series from Mixture Polynomial Models with Discretised Data. Technical Report CMP-C03-17, School of Computing Sciences, University of East Anglia,2003
    [BBD+02]Babcock B., Babu S., Datar M., Motwani R. and Widom J. Models and Issues in Data Stream Systems. In:Proc. of the ACM PODS. 2002,pagesl-16.
    [JLL05]Jiang S.Y., Li Q.H., and Li X. Survey on Data Stream Mining. Computer Engineering and Design.2005,26(5):1130-1133.
    [COP03]M. Charikar, L. O'Callaghan, R. Panigrahy. Better streaming algorithms for clustering problems. Proc. of 35th ACM Symposium on Theory of Computing,2003.
    [GMM00]S. Guha, N. Mishra, R. Motwani, L. O'Callaghan. Clustering data streams. Proceedings of the Annual Symposium on Foundations of Computer Science. IEEE, November 2000.
    [HXD02]He Z.Y., Xu X.F., Deng S.C., Squeezer:An Efficient Algorithm for Clustering Categorical Data. Journal of Computer Science and Technology,2002,17(5):611-624.
    [ZR96]Zhang T., Ramakrishnann R. BIRCH:An Efficient Data Clustering Method for Very Large Databases. In:Proc. of the ACM SIGMOD.1996, pages 103-114.
    [GMM03]Guha S., Meyerson A., and Mishra N. et al. Clustering Data Streams:Theory and Practice. IEEE Transactions on Knowledge and Data Engineering,2003,15(3):515-528.
    [AHW03]Aggarwal C., Han J., Wang J., and Yu P.S. A Framework for Clustering Evolveing Data Streams. In:Proc. of VLDB.2003, pages 81-92.
    [WFY+03]Wang H., Fan W., Yu P.S. and Han J. Mining Concept Drifting Data Streams Using Ensemble Classifiers. In:Proc. of KDD.2003, pages 226-235.
    [DH00]P Domingos, G Hulten. Mining high2speed data streams. The Assoiciation for Computing Machinery 6th Int Conf on Knowledge Discovery and Data Minings, Boston,2000.
    [HSD01]Hulten G, Spencer L, Domingos P. Mining Time Changing Data Streams. In:Proc of the 7th ACM SIGKDD Intl Conf on Knowledge Discovery and Data Mining,2001.97-106.
    [CCC04]Charikar M., Chen K., and Colton M.F. Finding Frequent Items in Data Streams.In:Proc. of the 29th International Colloquium on Automata, Languages and Programming.2002, pages 639-703.
    [MM02]Manku GS, Motwani R. Approximate frequency counts over data streams. In:Bernstein P, Ioannidis Y, Ramakrishnan R, eds. Proc. of the 28th Int'l Conf. on Very Large Data Bases. Hong Kong: Morgan Kaufmann Publishers,2002.346-357.
    [YCL+04]Yu X J., Chong Z.H., Lu H.G., and Zhou A. False Positive or False Negative:Mining Frequent Itemsets From High Speed Transactional Data Streams. In:Proc. of VLDB.2004, pages 204-215.
    [AM04]Arasu A., Manku G.S. Approximate Counts and Quantiles over Sliding Windows. In:Proc. of the ACM PODS.2004, pages 286-296.
    [CG07]Cormode G. and Garofalakis M. Sketching Probabilistic Data Streams. In:Proc. of the ACM SIGMOD.2007,281-292
    [JMM+07]Jayram T.S., McGregor A, Muthukrishan S., Vee E. Estimating Statistical Aggregates on Probabilistic Data Streams. In:Proc. of the ACM PODS.2007, pages 243-252.
    [RLB+08 Re C., Letchner J., Balazinska M., and Suciu D. Event Queries on Correlated Probabilistic Streams. In:Proc. of the ACM SIGMOD 2008.
    [CM08]Cormode G., and McGregor A. Approximation Algorithms for Clustering Uncertain Data. In:Proc. of the ACM PODS.2008.
    [DS04]Dalvi N. and Suciu D. Efficient Query Evaluation on Probabilistic Databases. In:Proc. of VLDB.2004, pages 864-875.
    [BDJ+05]Burdick D., Deshpande P.M., Jayram T.S., Ramakrishnan R., and Vaithyanathan S. OLAP Over Uncertain and Imprecise Data. In: Proc. of VLDB.2005, pages 970-981.
    [SBH+06]Sarma A.D., Benjelloum O., Halevy A., and Widom J. Working Models for Uncertain Data. In:Proc. of ICDE.2006.
    [CKP04]Cheng R., Kalashnikov D., and Prabhakar S.. Querying Imprecise Data in Moving Object Environments. IEEE Trans. on Knowledge and Data Engineering,2004,16(9):1112-1127.
    [NKC+06]Ngai W.K., Kao B., Chui C.K., Cheng R, Chau M, and Yip K.Y. Efficient Clustering of Uncertain Data. In:Proc. of ICDM.2006, pages 436-445.
    [JKV07]Jayram T.S., Kale S, Vee E. Efficient Aggregation Algorithms for Probabilistic Data. In:Proc. of the ACM-SIAM SODA.2007, pages 346-355.
    [SMP81]Stephanedes, Y.J., Michalopoulos, P.G., Plum, R.A. Improved estimation of traffic flow for real-time control. Transportation Research Record 795, Transportation Research Board, Washington, D.C.,28-29,1981.
    [1084]IWAO OKUTAKI. Dynamic Prediction of Traffic Volume Through Kaiman Filtering Theory. Transp Research Journal.1984, 8(2),1-11.
    [VPC93]VYTHOULKAS P.C. Alternative Approaches to Short Term Trafic Forecasting for Use in Driver Information Systems. Transportation and Traffic. Theory Elsevier Science Publishers. 1993.
    [Davis91]Gary A. Davis, Nonparametric Regression and Short-Term Freeway Traffic Forecast. Transportation Engineering,178-187, Vol.117, No.2,1991.
    [SWK02]Brian L. Smith, Billy M. Williams, R. Keith Oswald. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C 10 (2002) 303-321.
    [APR02]AbdIllllai B, Porwal H, Recker. Short-term Trafic Flow Prediction Using Neural-Genetic Algorithms. ITS Journal, 2002,7(1):3-41.
    [YWX02]YiI1 H, Wong S C, XuJ, et al. Urban Traffic Flow Prediction Using a Fuzzy Neural Approach. Transportation Research(Part C),2002,10(2):85-98
    [BSD99]Bhargab Maitra,P.K.Sikdar,S.L.Dhingra, Modeling Congrestion on Urban Roads and Assessing Level of Service. Transportation Engineering,1999
    [LC03]Jia Lu, Li Cao. Congestion evaluation from traffic flow information based on fuzzy logic. IEEE,2003
    [YQ98]Hai Yang, Fengxiang Qiao. Neural network approach to classification of traffic flow states. Jorunal of Transportation Engineering,1998
    [GWY04]Guozhen Tan, Wenjiang Yuan, Hao Ding. Traffic Flow Prediction Based on Generalized Neural Network,2004 IEEE lnlelllgenl Transpollation Systems Conference. Washington, D.C., USA, October 3-6,2004.
    [BBK98]Stefan Berchtold, Christian Bohm, Hans-Peter Kriegel. The Pyramid-Technique:Towards Breaking the Curse of Dimensionality. Sigmod'98
    [FRM94]C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In Proceedings of ACM SIGMOD, pages 419-429, May 1994
    [MWL01]Yang-Sae Moon, Kyu-Young Whang, Woong-Kee Loh: Duality-Based Subsequence Matching in Time-Series Databases. ICDE 2001:263-272
    [DM02]Mayur Datar, S. Muthukrishnan, estimating rarity and similarity over data stream windows, DIMACS Technical Report 2002-21
    [GH05]S. Guha, Boulos Harb. Wavelet synopsis for data streams: Minimizing Non-Euclidean Error. Kdd conference 2005.
    [SFY07]Yasushi Sakurai, Christos Faloutsos, Masashi Yamamuro. Stream Monitoring under the TimeWarping Distance. ICDE'07
    [LCY+07]Xiang Lian, Lei Chen, Jeffrey Xu Yu, Guoren Wang, Ge Yu. Similarity Match Over High Speed Time-Series Streams. ICDE'07
    [SPP+06]Sharmila Subramaniam, T.Palpanas, D.Papadopoulos, V.Kalogeraki, D.Gunopulos. Online Outlier Detection in Sensor Data Using Non-Parametric Models. VLDB conference 2006.
    [ACF+00]Julia Allen, Alan Christie, William Fithen, John McHugh, Jed Pickel, Ed Stoner. State of the practice of intrusion detection technologies. CMU/SEI-99-TR-028,2000.
    [ZWS06]Zhu Liyun, Wen Huimin, Sun Jianping, "Application Oriented Spatio-temporal Data Model Design for Transportation Planning", Proceedings of the IEEE ITSC 2006,2006 IEEE Intelligent Transportation Systems Conference, Toronto, Canada, September 17-20,2006.
    [K96]Joseph K, et al. The association between Financial Ratios and stock prices for firms on the stock exchange. Asian journal of business information systems, vol.1, Num.1, summer 1996.
    [KJF97]Flip Korn, H. V. Jagadish, Christos Faloutsos. Efficiently supporting an hoc queries in large datasets of time sequences. Sigmod,1997.
    [YF00]B-K Yi, C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. Vldb,2000.
    [KL07]Yong-Kul Ki, Dong-Young Lee, "A Traffic Accident Recording and Reporting Model at Intersections", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.8, NO.2, JUNE 2007.
    [AP06]Mohamed Abdel-Aty and Anurag Pande, "ATMS Implementation System for Identifying Traffic Conditions Leading to Potential Crash", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.7, NO.1, MARCH 2006.
    [KEO02]E. Keogh. Exact indexing of dynamic time warping. Vldb,2002.
    [CN04]Y. Cai, R. Ng. Indexing spatio-temporal trajectories with chebyshev polynomials. Sigmod,2004.
    [RXY05]任江涛,谢琼琼,印鉴.交通流时间序列分离方法.计算机应用,2005
    [TW01]Trisha A.Hauser, William T.Scherer. Data mining tools for real-time traffic signal decision support & maintenance. IEEE, 2001
    [AA06]Anand Meka, Ambuj K. Singh. Distributed Spatial Clustering in Sensor Networks. Y. Ioannidis et al. (Eds.):EDBT 2006, LNCS 3896, pp.980-100,2006.
    [DHP01]D.Hand, H.mallina, ald P.Smyth. Principles of Data Mining. The MIT Press,2001
    [CMY94]C.Fanoutsos, M.Ranganathan, and Y.Manolopounos. Fast subsequence matching in time-series databases. In Proc.ACM SIGMOD Int.Conf. on Management of Data, pages 419-429,1994
    [DJ94]D. Berndt & J. Clifford. Using dynamic time warping to find patterns in time series. AAAI-94 Workshop on Knowledge Discovery in databases(KDD-94), Seattle, Washington,1994
    [DJ96]D.J.Berndt and J.Clifford. Finding patterns in time series:A dynamic programming approach. In advances in Knowledge Discovery and Data Mining, pages 229-248,1996.
    [PNMD03]P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:Accurate and Scalable Simulation of Entire TinyOS Applications.In SenSys, 2003.
    [HK98]Hinnebur g A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. Discovery and Data Mining(KDD),1998
    [YHR01]K. Y. Yeung, D. R. Haynor, W. L. Ruzzo. Validating clustering for gene expression data. Bioinformatics Volume.17 NO.4, Pages 309-318,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700