城市路网交通流协调控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市路网交通流控制技术是近年来国内外控制领域和交通工程领域研究的热点之一。由于城市车辆的增长和路网密度的增加,交叉口之间的相关性逐渐增强,将城市路网中的多个交叉口作为一个整体进行有效的信号协调控制,以提高整个控制区域内的交通通行效率,已成为城市交通控制新的发展方向。随着自动控制技术、计算机技术、通讯技术和交通工程技术的迅速发展,各种交通流模型和协调控制算法层出不穷,新的理论和技术不断出现,有些已在实际交通工程中得到了成功的应用。
     本文讨论城市路网交通流协调控制技术。考虑到城市交通系统是一个具有严重非线性、随机性、时变性和不确定性的复杂系统,利用一次指数平滑预测方法、神经网络预测方法和模糊逻辑建立了短时交通流组合预测方法,并详细阐述了组合预测方法的结构和参数调整机制。同时,利用神经网络、模糊逻辑、遗传算法和大系统理论,设计了一些城市路网交通流智能控制算法,仿真分析和实际应用表明,这些算法具有较强的鲁棒性、自适应性和自学习性,与传统的交通控制方法相比,能更有效的解决城市交通问题。
     本文的主要内容如下:
     1.介绍了城市道路交通控制的起源和发展历史,详细的分析和阐述了国内外当前的研究成果,指出了理论研究和实际应用中存在的困难和一些亟需解决的问题,同时结合我国城市交通的具体特点和存在的问题提出了我国城市道路交通控制技术今后的研究方向。
     2.提出了一种短时交通流智能组合预测方法。该智能组合预测方法包括三个子模块:历史平均模块、神经网络模块和模糊组合模块。历史平均模块具有良好的静态稳定特性,神经网络模块对动态交通流量的预测具有较高的精度。为了充分利用上述两个单项模块对不同交通状况的适应性,采用模糊逻辑来综合这两个单项模块的输出,并把模糊组合模块的输出作为整个智能组合方法的最终交通流量预测值。
     3.设计了一种交通干线动态双向绿波带智能控制算法。整个控制方案分为两层,协调层根据一段时间内交通流数据计算公共周期时间、上下行相位差和绿信比,控制层实时调整各交叉口的绿信比并实现对信号灯的控制。周期依照关键路口饱和度的大小由模糊控制算法进行优化,而相位差根据上下行速度进行计算,绿信比基于历史和实时的交通数据确定。目标是使干线双向车流尽可能不停车的通过交叉口,明显降低车辆停车率和平均延误时间。
     4.对城市区域交通分布式协调控制进行研究,每个交叉口设置一个模糊信号控制器。控制器包括相位选择模块、绿灯观测模块和决策模块3个模块。相邻交叉口间的控制器相互协调,能够优化相位顺序和相位长。并用遗传算法训练模糊逻辑,提高了系统的鲁棒性。
     5.在分布式交通控制结构以及模糊理论和神经网络的基础上,提出一种具有公交优先的城市路网交通流协调控制算法。把整个路网作为一个大系统,路网中的各个路口作为子系统,每个路口设置一个智能信号控制器,核心控制部分由3个模糊决策模块组成,并用神经网络来实现模糊关系,提高系统的鲁棒性。目标是通过相邻路口控制器的信息交换和协调,实现整个路网交通流的协调和公交优先通行。
     6.详细讨论了绍兴市城区具有公交优先的路网交通流协调控制系统的实际方案。目标是实现绍兴市区相关路口交通信号的协调和公交优先通行,从整体上提高通行能力,减少车辆通行时间和路口停车率。在分析绍兴市交通现状的基础上,给出了具体的系统设计方案。方案中详细的提出了系统结构、控制方案和系统的软硬件需求等。并对绍兴市实施具有公交优先的路网交通流协调控制系统带来的预期效果和评价标准进行了阐述。
     最后对本文工作进行了概括性总结,并对进一步的研究做了展望。
Control of urban traffic networks is a popular topic in control domain and traffic engineering domain at home and abroad in these decades. With the increase of the number of vehicles and the density of traffic networks, mutual influence of traffic flows among adjacent intersections is gradually strong. To increase efficiency of urban transportation, new urban traffic control technique regards the whole traffic networks as a large scale system and coordinatively controls every intersection at the same time. With the fast development of automatic control, computer technique, communication technique and traffic engineering technique, many traffic flow models and coordination control methods have been found. New theory and research achievements have been published in recent years. Some applications in engineering have shown their tremendous powers.
     In this dissertation we mainly study and analyze coordination control technique of urban traffic networks. We make use of intelligent hybrid forecasting method to forecast urban short-term traffic flow which is heavily nonlinear, stochastic, time-variant and uncertain. Moreover we describe the structure of intelligent hybrid forecasting method. We also design some advanced intelligent traffic control algorithms by use of neural network, fuzzy logic, genetic algorithm and large scale system theory. Simulation analysis and application results show that these algorithms are more robust, self-adaptive and self-learning, and can solve urban traffic problems more effectively than conventional traffic control methods.
     The main work and contributions of this dissertation are as follows:
     1. We make an overview on the generation, development and last achievements of urban traffic control technique at home and abroad in detail, and make a discussion on difficulties and problems in theory analysis and actual application. Combined with specific characteristics of urban traffic in our country, we present the future research direction on urban traffic control technique.
     2. In order to transcend the limitation of existing single forecasting technique on different traffic condition, a novel intelligent hybrid (IH) method for short-term traffic flow forecasting is presented. The IH method has 3 sub-modules: history mean (HM) module, artificial neural network (ANN) module and fuzzy combination (FC) module. The HM method has good static stabilization character. The ANN method can estimate the dynamic traffic flow in a very precise and satisfactory sense. In order to take advantage of the useful information of the HM module and the ANN module to improve the forecasting effect further, the two individual modules reflecting practical problems from different respects are combined by fuzzy logic. The FC module mixes the two individual forecast results and its output is regarded as the final forecasting of the traffic flow.
     3. A dynamic two-direction green wave intelligent control strategy is presented. The whole control structure is divided into the coordination layer and the control layer. Public cycle time, up-run offset, down-run offset and splits on the arterial are calculated in the coordination layer, and the splits of each intersection on the arterial are adjusted in the control layer at the end of each cycle. Public cycle time is adjusted by fuzzy logic according to the saturation degree of key intersection on the arterial. The offsets are calculated by average speeds. The variable splits of each intersection are adjusted based on historical and real-time traffic information. The target is to decrease vehicle average delay time and make vehicle stop as little as possible.
     4. An intelligent coordination control method of urban region traffic is presented. A fuzzy signal controller, including phase choosing module, green observation module and decision module, is installed at each intersection. Fuzzy signal controllers cooperating with each other can optimize phase sequence and phase length. In order to make the system robust, the fuzzy rules are optimized by genetic algorithm.
     5. On the basis of distributed road traffic control framework, fuzzy theory and artificial neural networks technique, an intelligent coordination control technique of traffic networks with bus priority is proposed. The whole traffic network is regarded as a large scale system and the subsystems are the intersections. Multi-phases intelligent signal controller that controls its own traffic and cooperates with its neighbors is installed at each intersection. The hard core of signal controller is composed by 3 fuzzy modules. In order to improve control system's robusticity, the fuzzy relation of each module is implemented by a neural network respectively. The target of this proposed method is that through exchanging information from its own traffic detectors and its neighbors and cooperating among adjacent signal controller, social vehicle coordination and bus priority in whole traffic network are realized.
     6. We design intelligent coordination control system of traffic network with bus priority in Shaoxing City. The target is realizing social vehicle coordination and bus priority in traffic network of Shaoxing, increasing traffic capability, decreasing vehicle travel time and delay time. On the basis of analyzing the traffic situation of Shaoxing, we present the concrete design plan, which describes system structure, control plan, software and hardware design in detail. Moreover, we introduce the functions of the related modules. Finally, expected effects and evaluation criterion of intelligent coordination control system of traffic network with bus priority in Shaoxing City is discussed.
     Finally, we make a conclusion on current work and propose the future research directions.
引文
[1]Webster F V.Traffic Signal settings.Technical Paper 39,Road Research Laboratory,1958.
    [2]Webster F V,Cobbe B M.Traffic signals.Technical Paper 56,Road research Laboratory,1966.
    [3】 刘智勇.智能交通控制理论及其应用.北京:科学出版社,2003.
    [4]Roess R P,Prassas E S,McShane W R.Traffic engineering.Upper Saddle River,N J:Prentice Hall,2004.
    [5]Slinn M,Matthews P,Guest P.Traffic engineering design:principles and practice.Amsterdam:Elsevier,2005.
    [6]Papageorgiou M.Applications of automatic control concepts to traffic flow modeling and control.New York:Springer-Verlag,1983.
    [7]Miller A.A computer control system for traffic networks.Proceedings of 2~(nd) International Symposium on Theory of Traffic Flow,London,1963,200-220.
    [8]沈国江.城市道路交通智能控制技术研究.浙江大学博士学位论文,2004.
    [9]Papageorgiou M,Diakaki C,Dinopoulou V,Kotsialos A,Wang Y.Review of road traffic control strategies.Proceedings of the IEEE,2003,91(12):2043-2067.
    [10]Little J D C.The synchronization of traffic signals by mixed integer-linear-programming.Operations Research,1966,14(4):568-594.
    [11]Little J D C,Kelson M D,Gartner N H.MAXBAND:a program for setting signals on arteries and triangular networks.Washington,DC,Transportation Research Record 795,1981.
    [12]Chaudhary N A,Pinnoi A,Messer C.Proposed enhancements to MAXBAND-86 program.Washington,DC,Transportation Research Record 1324,1991.
    [13]Stamatiadis C,Gartner N H.MULTIBAND-96:a program for variable bandwidth progression optimization of multiarterial traffic networks.Washington,DC,Transportation Research Record 1554,1996.
    [14]Robertson D I.TRANSYT method for area traffic control.Traffic Engineering Control,1969,11,276-281.
    [15]Wallace C.TRANSYT-7F user's manual(Release 6).Prepared for FHWA by the Transportation Research Center,University of Florida,Gainesville,FL,1988.
    [16]Li M T,Gan A C.Signal timing optimization for oversaturated networks using TRANSYT-7F.Washington,DC,Transportation Research Record 1683,1999.
    [17]Wong S C,Wong W T,Leung C M,Tong C O.Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control,Transportation Research Part B,36(4):291-312,2002.
    [18]Hunt P B,Robertson D I,Bretherton R D.The SCOOT on-line traffic signal optimization technique.Traffic Engineering Control,1982,23:190-192.
    [19]Robertson D I,Bretherton R D.Optimizing networks of traffic signals in real time - the SCOOT Method.IEEE Transanctions On Vehicular Technology,1995,40(1):11-15.
    [20]Ash A.Incident detection in urban areas controlled by SCOOT.IEE Colloquium on Incident Detection and Management,1997,8:1-5.
    [21]Luk J Y K.Two traffic-responsive area traffic control methods:SCAT and SCOOT.Traffic Engineering Control,1984,25:14-22.
    [22]Lowrie P R.The Sydney coordinated adaptive traffic system-principles,methodology,algorithms.International Conference on Road Traffic Signaling,London,1982,67-70.
    [23]Lowrie P R.SCATS,Sydney coordinated adaptive traffic system,a traffic responsive method of controlling urban traffic.Roads and Traffic Authority Sydney,NSW,Australia,1990.
    [24]Head L J,Mirchandani P B.RHODES-integrated traffic management system(Report No.AZ-SP-9701).AZ:Arizona Department of Transportation,1997.
    [25]Gartner N H.OPAC:a demand-responsive strategy for traffic signal control.Washington,DC,Transportation Research Record 906,1983.
    [26]Garner N H,Pooran F J,Andrews C M.Implementation of the OPAC adaptive control strategy in a traffic signal network.Proceedings of 4~(th) IEEE Conference on Intelligent Transportation Systems,2001,197-202.
    [27]Farges J L,Henry J J,Tufal J.The PRODYN real-time traffic algorithm.Proceedings of 4~(th) IFAC Symposium on Transportation Systems,1983,307-312.
    [28]蔡自兴.智能控制原理与应用.北京:清华大学出版社,2007.
    [29]Fu K S.A heuristic approach to reinforcement learning control system.IEEE Transactions on Automatic Control,1965,10(4):390-398.
    [30]Leodes C T,Mendel J M.Artificial intelligent control.Technique Report,4336,McDonnel-Douglas Astronautics CO,1967.
    [31]Fu K S.Learning control systems and intelligent control systems:an intersection of artificial intelligence and automatic control.IEEE Transactions on Automatic Control,1971,16(1):70-72.
    [32]Zadeh L A.Fuzzy algorithm.Information and Control,1965,8:94-102.
    [33]Zadeh LA.Fuzzy sets.Information and Control,1965,8:338-353.
    [34]Braae M,Rutherford D A.Theoretical and linguistic aspects of the fuzzy logic controller.Automatica,1979,15(1):553-577.
    [35]Burdzy k.The reproducibility property of fuzzy control systems.Fuzzy Sets and Systems,1983,9:161-177.
    [36]Lee C.Fuzzy logic in control systems:Fuzzy logic controller,Part Ⅰ and Ⅱ.IEEE Transactions on Systems,Man,and Cybernetics,1990,20(2):404-435.
    [37]Saridis G N.Self-organizing control of Stochastic Systems.New York:Marcel Dekker,1977.
    [38]Saridis G N.Toward the realization of intelligent control.Proceedings of the IEEE,1979,67(8):1115-1133.
    [39]Saridis G N.Intelligent robotic control.IEEE Transactions on Automatic Control,1983,28(5):547-557.
    [40]KasHani H R,Saridis G N.Intelligent control for urban traffic systems.Automatica,1983,19(2):191-197.
    [41]Astrom K J,Anton J J,Arzen K E.Expert control.Automatica,1986,22(3):227-286.
    [42]Grossberg S.Neural networks and neural intelligence.Cambridge,Mass:MIT Press,1988.
    [43]Dean T,Allen J,Aloimonos Y.Artificial intelligence:theory and practice.Pearson Education North Asia and Publishing House of Electronics Industry,2003.
    [44]李祖枢,徐鸣,周其鉴.一种新型的仿人智能控制器.自动化学报,1990,16(6):503-509.
    [45]Cai Z X,Jiang Z M.A multirobotic pathfinding based on expert system.High Technology Letters,1995,1(1):76-81.
    [46]Rao B S Y,Varaiya P.Roadside Intelligence for Flow Control in an Intelligent Vehicle and Highway System.Transportation Research Part C,1994,2(1):49-72.
    [47]Vernazza G,Zunino R.A distributed intelligent methodology for railway traffic control.IEEE Transactions on Vehicular Technology,1993,39(3):263-270.
    [48]Guan W.A qualitative model for inhomogeneity in traffic flow.IEEE Transactions on Intelligent Transportation Systems,2004,5(3):188-199.
    [49]Wang F Y.Agent-based control for networked traffic management systems.IEEE Intelligent Systems,2005,20(5):92-96.
    [50]Heung T H,Ho T K,Fung Y F.Coordinated road-junction traffic control by dynamic programming.IEEE Transactions on Intelligent Transportation Systems,2005,6(3):341-350.
    [51]Hegyi A,Schutter B D,Hellendoorn J.Optimal coordination of variable speed limits to suppress shock waves.IEEE Transactions on Intelligent Transportation Systems,2005,6(1):102-112.
    [52]Li W,Li R M,He D Z,Wang F Y.Intelligent traffic signal system based on networked control.Proceedings of IEEE Sensing and Control,2005,587-591.
    [53]Breton P,Hegyi A,De Schutter B,Hellendoom H.Shock wave elimination / reduction by optimal coordination of variable speed limits.Proceeding of the IEEE 5~(th) International Conference on Intelligent Transportation Systems,Singapore,2002,225-230.
    [54]Kotsialos A,Papageorgiou M,Diakaki C,Pavlis Y,Middelham F.traffic flow modeling of large-scale motorway networks using the macroscopic modeling tool METANET.IEEE Transactions on Intelligent Transportation Systems,2002,3(4):282-292.
    [55]承向军,杜鹏,杨肇夏.基于多智能体的分布式交通信号协调控制方法.系统工程理论与实践,2005,25(8):130-135.
    [56]臧利林,贾磊.城市交通智能控制优化算法.中国公路学报,2006,19(6):97-101.
    [57]沈国江.城市区域交通流智能分散控制.浙江大学学报(工学版),2006,40(4):585-589.
    [58]Pappis C P,Mamdani E H.A fuzzy logic controller for a traffic junction.IEEE Transactions on Systems,Man and Cybernetics,1977,7(10):707-717.
    [59]Nakatsuyama M,Nagahashi H,Nishizuka N.Fuzzy logic phase controller for traffic junctions in the one -way arterial road.Proceedings of IFAC 9~(th) World Congress,1990,2865-2870.
    [60]Nakatsuyama M,Nagahashi H,Nishizuka N,Watanabe K.Matrix representation for fuzzy program and its application to traffic control.Proceedings of IFAC 11~(th) World Congress,1990,69-74.
    [61]Chiu S,Chand S.Self-organizing traffic control via fuzzy logic.Proceedings of the 32~(nd) IEEE Conference on Decision and Control,1993,2:1897-1902.
    [62]Chiu S,Chand S.Adaptive traffic signal control using fuzzy logic.Proceedings of 2~(nd) IEEE International Conference on Fuzzy Systems,1993,2:1371-1376.
    [63]Lee J H and Lee-Kwang H.Distributed and cooperative fuzzy controllers for traffic intersections group.IEEE transanctions On Systems,Man,and Cybernetics,Part C:Applications and Reviews,1999,29(2):263-271.
    [64]陈森发,毛岚.城市交通信号灯模糊线控制及其仿真.系统仿真学报,2000,12(6):35-40.
    [65]Kosonet I.Multi-agent fuzzy signal control based on real-time simulation.Transportation Research part C,2003,11(5):389-403.
    [66]沈国江,王智,刘翔,孙优贤.城市区域交通智能控制研究.信息与控制,2004,33(1):1-5.
    [67]Murat Y S,Gedizlioglu E.A fuzzy logic multi-phased signal control model for isolated junctions.Transportation Research Part C,2005,13(1):19-36.
    [68]Nakamiti G,Comide F.Fuzzy sets in distributed traffic control.Proceedings of 5~(th) IEEE International Conference on Fuzzy Systems,1996,1617-1623
    [69]Nakamiti G,Freitas R,Prado J,Gomide F.Fuzzy distributed artificial intelligence systems.Proceedings of 3~(rd) IEEE International Conference on Fuzzy systems,1994,1:462-467.
    [70]Bisset K R,Kelsey R L.Simulation of traffic flow and control of traffic using conventional,fuzzy,and adaptive methods.Presented at European Simulation Multi-conference,1992.
    [71]Bisset K R,Kelsey R L,Jamshidi R M.A simulation environment for fuzzy control of traffic systems.Proceedings of IFAC 12~(th) World Congress,1993,5:553-556.
    [72]Chang C J,Cheng R G.Traffic control in an ATM network using fuzzy set theory.Proceedings of 13~(th)IEEE Conference on Networking for Global Communications,1994,3:1200-1207.
    [73]Shen G J,Liu X,Sun Y X.Fuzzy traffic control based phase sequencer.Proceedings of the 13~(th) Chinese Process Control Conference,Macau and Zhuhai,2002,195-199.
    [74]Shen G J,Ma T F,Sun Y X.Application of fuzzy control theory in multi-phase traffic control of single intersection.Proceedings of the 4~(th) World Congress on Intelligent Control and Automation,Shanghai,2002,1017-1022.
    [75]沈国江,孙优贤.基于相序优化的多相位模糊交通控制.控制与决策,2002,17(suppl.):654-658.
    [76]许伦辉,习利安,衷路生.孤立交叉口多相位自适应模糊控制及其神经网络实现.中国公路学报,2005,18(3):90-93.
    [77]沈国江,孙优贤.城市交通干线递阶模糊控制及其神经网络实现.系统工程理论与实践,2004,24(4):99-105.
    [78]刘智勇,吴今培,李秀平,万百五(?)城市交通大系统递阶模糊神经网络控制.信息与控制,1997,26(6):441-447.
    [79]Zang L L,Jia L,Luo Y G.An intelligent control method for urban traffic signal based on fuzzy neural network.Proceedings of the 6~(th) World Congress on Intelligent Control and Automation,Dalian,China,2006,3430-3434.
    [80]Ho F,Ioannou P.Traffic flow modeling and control using artificial neural networks.IEEE Control Systems Magazine,1996,16(5):16-27.
    [81]Dougherty M S,Cobbett M R.Short-term inter-urban traffic forecasts using neural networks.International Journal of Forecasting,1997,13(1):21-31.
    [82]Ledoux C.An urban traffic flow model integration neural networks.Transportation Research Part C,1997,5(2):287-300.
    [83]Yin H,Wong S C,Xu J,Wong C K.Urban traffic flow prediction using a fuzzy-neural approach.Transportation Research Part C,2002,10(2):85-98.
    [84]Srinivasan,D,Choy M C,Cheu R L.Neural networks for real-time traffic signal control.IEEE Transactions on Intelligent Transportation Systems,2006,7(3):261-271.
    [85]Ritchie G.Simulation of freeway incident detection using artificial neural network.Transportation Research Part C,1993,1(3):203-217.
    [86]Ledous C.An urban traffic flow model integrating neural networks.Transportation Research Part C,1997,5(5):287-300.
    [87]Hornik K.Multilayer feedforward networks are universal approximators.Neural Networks,1989,2(5):359-366.
    [88]Nguyen D H.Neural network for self-learning control systems.IEEE Control System Magazine,1990,10(1):18-23.
    [89]Parisini R,Zoppoli T.Neural network for feedback feedforward nonlinear control system.IEEE Transactions on Neural Networks,1994,5(3):436-499.
    [90]Narendra K S,Parthasarathy K.Identification and control of dynamical systems using neural networks.Proceedings of the 28~(th) IEEE Conference on Decision and Control,1989,2:1737-1738.
    [91]Foy M D,Benekohal R F,Goldberg D E.Signal timing determination using genetic algorithms.Washington,DC,Transportation Research Record 1365,1992.
    [92]Mikami S,Kakazu Y.Genetic reinforcement learning for cooperative traffic signal control.Proceedings of the 1~(st) IEEE conference on Evolutionary Computation,1994,1:223-228.
    [93]杨兆升.城市智能公共交通系统理论与方法.北京,中国铁道出版社,2002.
    [94]赵杰,胡子祥,刘丽亚.国外发展快速公交的经验及对我国城市交通发展的启示.城市交通,2004,2(3):56-59.
    [95]沈国江.城市道路交通建模和控制技术研究.浙江大学博士后研究工作报告,2006.
    [96]杨晓光,马林.有关城市公交专用道(路)之设计要点及优先控制管理系统.城市规划,1997,3:36-37.
    [97]Murray A T,Davis R D,Stimson R J,Ferreira L.Public transportation access.Transportation Research Part D,1998,3(5):319-328.
    [98]Furth P G,Muller H J.Conditional bus priority at signalized intersections:better service with less traffic disruption.Washington,DC,Transportation Research Record 1731,2000.
    [99]Shalaby A,Farhan A.Prediction model of bus arrival and departure times using AVL and APC data.Journal of Public Transportation,2004,7(1):41-61
    [100]Hounsell N B,McLeod F N,Shrestha B P.Bus priority at traffic signals:investigating the options.Proceedings of 12~(th) IEE International Conference on Road Transport Information and Control,2004,287-294.
    [101]张卫华,陆化普,石琴,刘强.公交优先的信号交叉口配时优化方法.交通运输工程学报,2004,4(3):49-53.
    [102]常玉林,胡启洲.城市公交线网优化的线性模型.中国公路学报,2005,18(1):95-98.
    [103]Hounsell N B,Mcleod F N,Gardner K.Headway-base bus priority in London using AVL:first results.Proceedings of 10~(th) International Conference on Road Transport Information and Control,2000,218-222.
    [104]He S Y,Li Z H,Xiao D Y.A research on strategy of bus priority.IEEE Transactions on Intelligent Transportation Systems,2003,2(2):1324-1328.
    [105]Mirchandani P,Knyazyan A,Head L,Wu W.An approach towards the integration of bus priority,traffic adaptive signal control,and bus information/scheduling systems.Computer-Aided Scheduling of Public Transport,New York:Springer-Verlag,2001.
    [106]Wu J P,Hounsell N.Bus priority using pre signals.Transportation Research Part A,1998,32(8):563-583.
    [107]柳祖鹏,丁卫东,朱晓宏.交叉口公交优先信号控制系统研究.武汉科技大学学报(自然科学版),2005,28(1):65-68.
    [108]杨晓光,周光伟,航明升,公交优先技术方法.城市交通.2002,2:3-5.
    [109]陆建,王炜,陈学武.公交专用道设置条件与效益分析.东南大学学报(自然科学版),1998,28(3):103-107.
    [110]欧海涛,张文渊,张卫东,许晓鸣.城市交通控制研究的新发展.信息与控制,2000,29(5):441-453.
    [111]韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测系统.系统仿真学报,2004,16(7):1530-1535.
    [112]四兵锋,孙壮志,赵小梅.基于随机用户平衡的混合交通网络流量分离模型.中国公路学报,2006,19(1):93-98.
    [113]熊烈强,王富,李杰.路段交通流的动力学模型及其仿真.中国公路学报,2006,19(2):91-94.
    [114]贺国光,李宇,马寿峰.基于数学模型的短时交通流预测方法探讨.系统工程理论与实践,2000,20(12):51-56.
    [115]徐今强,刘智勇.交通流的时间序列建模及预测.五邑大学学报(自然科学版),2004,18(3):16-20.
    [116]杨立才,贾磊,孔庆杰.粗正交小波网络及其在交通流预测中的应用.系统工程理论与实践,2005,25(81:124-129.
    [117]Kim Y W,Kato T,Okuma S,Narikiyo T.Traffic network control based on hybrid dynamical system modeling and mixed integer nonlinear programming with convexity analysis.IEEE Transactions on Systems,Man,and Cybernetics,Part A,2008,38(2):346-357.
    [118]Tan M C.Study and implementation of a decision support system for urban transit planning.Dynamics of Continuous Discrete and Impulsive Systems Series A,2005,13(S1):1737-1742.
    [119]Guan W,Hua X.A combination forecasting model of urban ring road traffic flow.Proceedings of the IEEE Intelligent Transportation Systems Conference,Toronto,Canada,2006,671-676.
    [120]Bates J M,Granger C W J.The combination of forecasts.Operational Research Quarterly,1969,20(1):451-468.
    [121]Gartner N H,Assmann S F,Lasaga F,Hom D L.A multi-band approach to arterial traffic signal optimization.Transportations Research Part B,1991,25(1):55-74.
    [122]Lo H K,Chang E,Chan Y C.Dynamic network traffic control.Transportation Research Part A,2001,35(8):721-744.
    [123]Ying J Q,Lu H P,Shi J.An algorithm for local continuous optimization of traffic signals.European Journal of Operational Research,2007,181(3):1189-1197.
    [124]Weng.Y L,Wu T J.Car-following models of vehicular traffic.Journal of Zhejiang University SCIENCE,2002,3(4):412-417.
    [125]Wei J H,Wang A L,Du N C.Study of self-organizing control of traffic signals in an urban network based on cellular automata.IEEE Transactions on Vehicular Technology,2005,54(2):744-748.
    [126]Choy M C,Srinivasan D,Cheu R L.Cooperative,hybrid agent architecture for real-time traffic control.IEEE Transactions on Systems,Man,Cybernetics,Part A,2003(5):597-607.
    [127]沈国江,许卫明.交通干线动态双向绿波带控制技术研究.浙江大学学报(工学版),2008,42(9):1625-1630.
    [128]Michaels R.The effect of speed change information on spacing between vehicles.Public Roads,1962,31(12):229-235.
    [129]Looze D.On decentralized control with application to freeway ramp metering.IEEE Transactions on Automatic control,1978,23(2):268-275.
    [130]May A.Traffic flow fundamentals.New Jersey,Prentice Hall Inc,1990.
    [131]Newell G F.Comments on traffic dynamic.Transportation Research Part B,1989,23(5):386-389.
    [132]Akcelik R.Opposed turns of signalized intersections:the Australian method.ITE Journal,1989:21-26.
    [133]Al-Khalili A J.Urban traffic control - a general approach.IEEE Transactions on Systems,Man,Cybernetics,1985,15(2):260-271.
    [134]Mase K,Yamamoto H.Advanced traffic control methods for network management,IEEE Communications Magazine,1990,28(10):82-88.
    [135]Mammar S.Automatic control of variable message signs in Aalborg.Transportation Research Part C,1996,4(3):131-150.
    [136]李英.基于Agent的预测与交通控制研究.天津大学博士学位论文,2001.
    [137]高海军,俞国军,李振龙.基于agent的城市交通信号控制.控制与决策,2004,19(7):737-740.
    [138]Vrancken J L M.A coordination algorithm for road traffic control measures.Proceedings of IEEE Networking,Sensing and Control,2005,34-43.
    [139]Pipes L A.An operational analysis of traffic dynamics.Journal of Applied Physics,1953,24(3):274-281.
    [140]Prigogine I,Herman R.Kinetic Theory of vehicular traffic.Amsterdam:Elsevier,1971.
    [141]Weymann J,Farges J L,Henry J J.Optimization of traffic dynamic route guidance with drivers'reactions in a queue-based model.IEEE Transactions on Systems,Man,Cybernetics,1995,25(7):1161-1165.
    [142]Wong S C,Wong W T,Leung C M,Tong C O.Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control,Transportation Research Part B,36(4):291-312,2002.
    [143]沈国江,孙优贤.面向控制的城市动态交通网络模型.浙江大学学报(工学版),2005,39(10):1045-1049.
    [144]王炜.公路交通流车速-流量实用关系模型.东南大学学报(自然科学版),2003,33(4):487-491.
    [145]高海军,陈德望,陈龙.混合交通流环境下信号配时研究.公路交通科技,2003,20(4):80-83.
    [146]Al-khalili A J.Urban traffic control-a general approach.IEEE Transactions on System,Man,and Cybernetics,1985,15(2):260-271.
    [147]Bell M C,Martin P T.Use of detector data for traffic control strategies.Proceeding of the 3~(rd)International Conference on Road Traffic Control,1990,86-89.
    [148]Bielefeldt C,Busch F.MOTION-a new on-line traffic signal network control system.Proceeding of the 7~(th) International Conference on Road Traffic Monitoring and Control,1994,55-59.
    [149]Ceder A.Advanced coordination between a traffic control center and its supporting units.Proceedings of Vehicle Navigation and Information Systems Conference,1994,209-215.
    [150] Chien C C, Zhang Y P, Ioannou P A. Traffic density control for automated highway systems. Automatica, 1997, 33(7): 1273-1285.
    [151] Cremer M, Papageorgiou M. Parameter identification for a traffic flow model. Automatic, 1981,17(6): 837-843.
    [152] Feton R E. IVHS/AHS: Driving into the future. IEEE Transactions on Control Systems, 1994, 14(6): 13-20.
    [153] Grewal M S, Pane H J. Identification of parameters in a freeway traffic model. IEEE Transactions on Systems, Man, Cybernetics, 1976, 6(3): 176-185.
    [154] Isasken L, Payne H J. Suboptimal control of linear system by augmentation with application to freeway traffic regulation. IEEE Transactions on automatic control, 1973, 18(3): 210-219.
    [155] Messmer A, Papageorgiou M. Route diversion control in motorway networks via nonlinear optimization. IEEE Control System Technology, 1995, 3(1): 144-154.
    [156] Ross P. Traffic Dynamic. Transportations Research Part B, 1988,22(6): 421-435.
    [157] Singh M G, Titli A. Systems: decomposition, optimization and control, Peramon Press, 1978.
    [158] Varaiya P. Smart cars on smart roads: problems of control. IEEE Transactions on Automatic Control, 1993,38(2): 195-207.
    [159] Huang G Q. An agent-based framework for cooperating expert system in concurrent engineering. Engineering Application of Artificial Intelligence, 1994,7(6): 685-693.
    [160] Kara M K. Changes in the flow-density relationship due to environmental vehicle and driver characteristics. Washington, DC, Transportation Research Record 1644,1988.
    [161] Kara M K. Modeling traffic's flow-density relation: accommodation of multiple flow regimes and traveler types, Transprotation. 2001,28(4): 363-374.
    
    [162] Khysty C J. Transportation engineering an introduction. Englewood Cliffs, N J, Prentice-Hall, 1990.
    [163] Kim J L, Liu J C S, Swarnam P I, Urbanik T. The areawide real-time traffic control (ARTC) system: a new traffic control concept. IEEE Transactions on Vehicular Technology, 1993,42(2): 212-224.
    [164] Lam W H K, Huang H J. Dynamic user optimal traffic assignment model for many to one travel demand. Transportation Research Part B, 1995, 29(2): 243-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700