中短波段船用小型天线的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于扩频体制的海上无线电导航系统工作在中短波段,广泛的应用于军事、民生的各个领域,具有定位精度高、工作范围大、保密性好、安全可靠等特点。然而,随着无线电导航技术的不断向前发展,系统对于接收设备的集成度也提出了更高的要求。由于中短波段信号波长长,系统存在接收天线尺寸大,难于安装及维护的问题。研制出能够与海上无线电导航系统发展相适应的,高性能的中短波段全向小型天线是一个迫切而且具有重要应用价值的课题。
     为此,本文提出了一种新的天线小型化设计方法—基于Hilbert分形的角反射器天线。同时结合海上无线电导航系统接收设备对天线的具体要求,设计了一种能够工作在8.8MHz左右的,物理高度为63cm的全向天线,文章的主要研究内容如下:
     1. Hilbert分形天线系统数学建模。在中短波段,Hilbert分形天线由带角点的细导线构成,由于天线导线过细、导线角点内外电磁环境复杂,导致一般数值方法难以对其进行准确的数学建模。为解决这一问题,本文针对天线特性分析的数值方法展开研究,提出利用渐变的Yee氏网格,基于时域有限差分法对Hilbert分形天线进行数学建模。针对天线导线过细的问题,采用四网格结构对其横截面进行剖分,推导了网格中穿越横截面的电、磁场分量表达式,获得了细导线中电流、磁场的时域形式。针对细导线角点处特殊的电磁环境,给出了角点内外环路电场、磁场间相互作用的关系式,建立了带角点的细导线模型。同时,在忽略高次模影响下,文章进行了同轴线分析,基于同轴线TEM波方程,推导了馈电点与天线场耦合处电流方程的时域表达式。为本文天线电磁特性分析奠定了理论基础。
     2.在建立Hilbert分形天线系统数学模型的基础上,本文针对Hilbert分形天线进行了电磁特性分析,阐述了外围尺寸、分形阶数、精细结构等天线几何参数的变化对增益、谐振频率、驻波特性、方向图等技术指标的影响,并通过仿真验证了文中理论分析的正确性;其次,针对天线系统的设计方法展开研究,全面论述了馈电点位置、介质背板材料和厚度、接地板尺寸等几何因素变化对Hilbert分形天线特性造成的影响,通过仿真总结了其中的规律,为Hilbert分形天线系统的设计提供了理论基础、设计思路和技术手段。
     3.针对Hilbert分形天线增益低,难以工程应用的问题,提出了一种新的天线小型化实施方案—基于Hilbert分形的角反射器天线。其主要思路在于:将Hilbert分形结构应用于角反射器天线的设计中,利用具有一定张角的Hilbert分形结构栅板取代天线原有的金属丝结构的反射板,形成双Hilbert分形结构,并将激励源下移,馈电点选在两挡板固连的角点处。同时,结合同轴线分析、带角点的细导线算法等关键技术,利用时域有限差分法(Finite-Difference Time-Domain,FDTD)建立了天线数学模型,分析了张角、几何参数变化对天线特性产生的影响,提出了基于Hilbert分形的角反射器天线系统的设计方法,论述了天线小型化特点。仿真结果表明:与Hilbert分形天线相比,该天线提高了天线增益,能够满足接收天线增益高于3dB的设计要求,适合于工程应用。
     4.通过对中短波段信号传输特性进行分析,给出了海上无线电导航系统天线设计指标要求,提出将180度张角基于Hilbert分形的角反射器天线作为实施方案,设计并研制了一种物理尺寸为0.633×0.318×0.0015m3的天线样机。仿真与实测数据基本一致,证明了研制的天线能够工作在8.8MHz左右的中短波段,高度仅为系统原天线的16.7%,谐振频点处增益达到了3.65dB,相对带宽高于8%,具有全向性特点。
     理论分析及实验数据表明,本文提出并制作的基于Hilbert分形的角反射器天线能够满足海上无线电导航系统的设计要求,可以作为中短波段船用天线应用于工程实践。
Maritime radio navigation system based on the spread spectrum system is with the characteristics of high positioning accuracy, wide coverage and good security, which works in the MW and SW bands, utilizes ground wave to range position. It can be used in many different fields, for example military affairs and civilian.
     However, because of the development of radio navigation technology, there are higher demands to integration level of the receiving equipment brought by the system. Additionally, as the large signal wavelength of the working band, the bulk of receiver antenna is so large that hard to be installed and maintenance. So, it is a very impending and practical subject to develop the adaptive omni antenna works in the MW and SW bands which meets the request of the maritime radio navigation system.
     According to the idiographic requests, this paper proposes a new-designed miniaturization antenna called angle reflect antenna based on the Hilbert fractal curve. And then, this paper based on the theory designs an omni antenna whose working frequency is 8.8MHz, and height is 63cm.
     The main works and conclusions of this paper are shown as following:
     1. Building the Hilbert fractal antenna system mathematics model. In the MW and SW bands, Hilbert fractal antenna is composed by thin lines with the crossing points. Because of the fine structure's micro-diameter and complicated electromagnetic environment of the thin line crossing point, ordinary numerical analysis methods can not build its math model exactly. So, this paper compartmentalizes the antenna structure by gradual Yee cells and builds on the math model of Hilbert fractal antenna based on the FDTD. Pointing to the fine structure's micro-diameter, this paper divides its cross section into four Yee cells, then, infers the component expressions of the electric field and magnetic field which both penetrate the single cell cross section, and gets the time domain description of electric current and magnetic current flowing in the thin line eventually. Pointing to the special electromagnetic environment of the thin line crossing point, this paper provides the interaction relational expression of electric circuit and magnetic circuit which are inside and outside the included angle, and builds on the math model of thin line with the crossing point. Additionally, in condition of neglecting the impact of high-order modes, this paper is also with the coaxial line analysis, provides the electric time domain expression flowing feed point and antenna in the coupling base on coaxial line TEM equation. The above theory research lays the foundation to the antenna character analysis in this paper.
     2. Based on establishing Hilbert fractal antenna mathematical model, this paper analysis the electromagnetic characteristics of Hilbert fractal antenna, and elaborate that the changes of antenna geometry parameter, for example, size, fractal dimension, fine structure etc, have effect on gain, resonance frequency, standing wave character, direction chart, also proving the theory analysis in this paper through the simulation results. Secondly, this paper which researching on the design method of antenna system totally discuss the changess of antenna geometry factors, for example, feed position from the idiographic angle, medium backboard material and thickness, earth-plate size etc, taking effect on Hilbert fractal antenna character. Through the simulation results, this paper sums up the rules which can be used as basic theory, designing ideology and technology method for the designing of Hilbert fractural antenna.
     3. Pointing to low gain of Hilbert fractal antenna is hard to be used in the project, this paper proposes a new antenna miniaturization scheme-angle reflector antenna based on the Hilbert fractal. The main idea is that using Hilbert fractal frame in the design of angle reflector antenna. The antenna uses the mental lead board of Hilbert fractal curve frames instead of the reflecting board of angle reflect antenna, forming double Hilbert fractal frames, and feed point is the crossing point of the reflecting boards. Meanwhile, composing the key technology of coaxial line analysis and model of thin line with crossing point algorithm, this paper builds antenna mathematics model using FDTD, analysis the effect to antenna character when angle and geometry index change, propose design method of angle reflector antenna system based on Hilbert fractal, and discuss the character of antenna miniaturization. The simulation result shows that compared to Hilbert fractal antenna, this antenna enhances antenna gain and fulfill the design acquirement that receiver antenna gain higher than 3dB fitting to project application.
     4. According to the analysis of signal transmission character in the MW and SW bands, the design index of the maritime radio navigation system is given. This paper propose angle reflector antenna whose angle is 180 degree and base on Hilbert fractal antenna as implement scheme, design and develop a physical size as 0.633×0.318×0.0015m3 antenna model machine. Simulation according with actual measurement data prove that developed antenna can work in the MW and SW bands whose center frequency is 8.8MHz, the height is just only 16.7%of original system antenna, the gain reaches 3.65dB at the center frequency, relative bandwidth higher than 8%, and then, it is also with the characteristic of omni.
     Theory analyses and experiment data indicate that this angle reflector antenna based on Hilbert fractal curve meets the designing requirement of the maritime radio navigation system, can be used in project practice as the marine antenna in the MW and SW bands.
引文
[1]Warren. L, Stutzman, Gary A. Thiele著,朱守正,安同一译.天线理论与设计(第二版)[M].人民邮电出版社,2006
    [2]John D. Draus, Ronald J, Marhefka著,章文勋译.天线[M],电子工业出版社,2005
    [3]刘英,龚书喜,傅德民.分形天线的研究进展[J].电波科学学报.2002,17(2):257-259页
    [4]Takiguchi M., Yamada Y. Input impedance increase of a very small meader line antenna [C]. IEEE Antenna and Propagation Society International Symposium. June 2003:856-859P
    [5]Takiguchi M., Amada O. Improvement of radiation efficiencies by applying folded configurations to very small meander line antennas [C]. IEEE Wireless Communication technology Topical Conference on 15-17 Oct.2003:342-343P
    [6]Rotman R., Oz Y., Samson C., Design of a meander-line antenna scannable from broadside to near endfire [C]. Antennas and Propagation society International Symposium,1991,1:326-329P
    [7]Noguchi K., Mizusawa M., Yamaguchi T.. Increasing the bandwidth of a meander line antenna consisting of two strips [C]. IEEE Antennas and Propagation Society International Symposium,1997,4:2198-2201P
    [8]Noguchi K., Mizusawa M., Yamaguchi T., Numerical analysisi of the radiation characteristics of the meander line antennas consisiting of two strips [C]. IEEE Antennas and Propagation Society International Symposium,1996,3:1598-1601P
    [9]刘文虎,刘其中,尹应增.短波加载天线的研究[J].西安电子科技大学学报.Oct.1999.26(5):663-666页
    [10]郭玉春,史小卫.高效电阻加载天线理论研究[J].电波科学学报.April,2007,22(2):276-280页
    [11]Samuel Angel Jaramillo Florez. Communication System Using Ferrite Antennas in Electrical Transmission Lines [C].2007 SBMO/IEEE MTT-S International Microwave& Optoelectronics Conference,2007:82-85P
    [12]Wen-Shyang Chen, Chun-Kun Wu, Kin-Lu Wong. Compact Circularly Polarized Microstrip Antenna with Bent Slots [J]. Electronics letters,1998.34:1278-1279P
    [13]M. F. Abedin, M. Ali. Modifying the Ground Plane and Its Effect on Planar Inverted-F Antennas (PIFAS) for Mobile Phone Handsets [J]. IEEE Antenna and Wireless Propagation Letters,2003.2:226-229P
    [14]P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in Negative index media: Always posive and very inhomogeneous [J]. Phys. Rev. Lett.,2002,88(18): 187401(1-4)P
    [15]CHENG Jian, Xu Shan-Jia, WU Ke, Theoretical Analysis of a New Grating Leaky Wave Antwnna Based on Left-handed Materials [J]. J Infrared M illin. Waves, Oct. 2007.26(5):321-325P
    [16]B. B. Mandelbrot. The Fractal Geometry of Nature [M]. New York:Freeman.1982
    [17]H. N. Kritikos, D. L. Jaggard, On Fractal Electrodynamics in Recent Advances in Electromagnetic Theory [J]. New York, Springer-Verlag,1990:183-224P
    [18]Werner D.H., Ganguly S., An overview of fractal antenna engineering research [J]. IEEE Antennas and Propagation Magazine, Feb.2003,45(1):38-57P
    [19]Werner D. H., Werner P. L., Ferraro A. J., Frequency independent features of self-similar fractal antennas [C]. Antennas and Propagation Society International Symposium, AP-S Digest, July 1996,3:2050-2053P
    [20]N. Cohen, R. G. Hohlfeld, Fractal Loops and the Small Loop Approximation [J]. Communications Quarterly, winter,1996:77-81P
    [21]N. Cohen, R. G. Hohlfeld. Fractal and Shaped Dipoles [J]. Communications Quarterly, spring,1996:25-36P
    [22]C. Puente, J. Romeu, R. Pous, J. Ramis. Small but Long Koch Fractal Monopole [J]. IEEE Electronics Letter, January 1998,34(1):9-10P
    [23]C. Puente, Fractal multiband antenna based on the sierpinski gasket [J]. Electronics Letters,4th, January 1996,31(1):1-2P
    [24]C. T. P. Song, Peter S. Hall, H. Ghafouri-Shiraz. Perturbed Sierpinski Multiband Fractal Antenna with Improved Feeding Technique [J]. IEEE Transactions on Antennas and Propagation, May 2003,51(5):1011-1017P
    [25]Carles Puente Baliarda, et al.. An iterative model for fractal antenna:application on the Sieinski gasket antenna [J]. IEEE AP-48(5),2000:713-719P
    [26]Shackelford A.K, Kai-Fong Lee, Luk K.M. Design of small-size wide-band width microstrip-patch antennas [J]. IEEE Antennas and Propagation Magazine, Feb 2003, 45(1):75-83P
    [27]Steven R. Best, Low Q Electrically Small Linear and Elliptical Polarized Spherical Dipole Antennas [J]. IEEE Transactions on Antennas and Propagation, March 2005, 53(3):1047-1053P
    [28]Gianvittorio G J. Fractal antenna:design characterization and applications [D]. Ph.D. dissertation, Dep. Elec.Eng., University of California, Los Angeles 2000
    [29]Cales Puente-Baliarda. On the Behavior of the Sierpinski Multiband Fractal Antenna [J]. IEEE Transactions on Antennas and Propagation,1998,46(4):517-524P
    [30]Anagnostou D. E., Zheng G, Feldner L., Silicon-etched re-configurable self-similar antenna with RF-MEMS switches [C]. AP-S International Symposium (Digest), IEEE Antennas and Propagation Socity Symposium Digest 2004:1804-1807P
    [31]K. J. Vinoy, K. A. Jose. Hilbert curve fractal antenna:A small resont antenna for VHF/UHF applications [J]. Microwave and Optical Technology Letters,2001,29(4): 215-219P
    [32]K. J. Vinoy, K. A. Jose, V. K. Varadan, V. V. Varadan. Resonant Frequency of Hilbert Curve Fractal Antennas [C]. IEEE Antennas and Propagation Society International Symposium,2001(6),3:648-651P
    [33]Jaue Anguera, Carles Puente, Jordi Soler. Miniature Monopole Antenna Based on the Fractal Hilbert Curve [C].2002 IEEE Antennas and Propagation Society International Symposium, June 2002:546-549P
    [34]WANG Hong-jian, Gao Benqing. The FDTD Full Wave Analysis of Fractal Antenna [J]. Journal of Beijing Institute of Technology,2002,11(4):355-359P
    [35]Zhu J, Hoorfar A, Engheta N. Feed point effect in hilbert curve antennas [C]. IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting:373-376P
    [36]Hassan Elkamchouchi, Mustafa Abu Nasr.3D-Fractal Rectangular Koch Dipole and Hilbert Dipole Antennas [C]. IEEE Antennas and Propagation International Symposium.2007(6):4148-4148P
    [37]M. Z. Azad, M. Ali. A Compact Hilbert Planar Inverted-F Antenna (PIFA) for Dual-Band Mobile Phone Applications [C]. IEEE Antennas and Propagation Society, AP-S International Symposium, June 2004:3127-3130P
    [38]A. T. M. Sayem, M. Ali. A Dual-Band Hilbert Slot Antenna for GPS and Bluetooth Application [C]. IEEE Antennas and Propagation Society, AP-S International Symposium,2005:44-47P
    [39]Noor Asniza Murad, Mazlina Esa, Mohd Fairus Mohd Yusoff. Hilbert Curve Fractal Antenna for RFID Application [C]. International RF AND Microwave Conference Proceedings,2006:182-186P
    [40]Hassan Elkamchouchi, Mustafa Abu Nasr.3D-Fractal Hilbert Antennas Made of Conducting Plates [C]. Microwave and Milimeter Wave Technology International Conference 2007:1-4P
    [41]王科平,王志功,冯军,赵海涛.一种有限空间内中短波段宽带接收天线设计[J].电波科学学报,2008,23(4):616-619页
    [42]K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media [J]. IEEE Trans. on Antennas and Propagation,1966, 14(4):302-306P
    [43]K. R. Umashankar, A. Taflove. A novel method to analyze electromagnetic scattering of complex objects [J]. IEEE Trans. Electromagnetic Compatibility,1982,24: 397-405P
    [44]Raymond J. Luebbers, Karl S. Kunz, Michael Schneider. A finite-difference Time-domain near zone to far zone transformation [J]. IEEE Trans. Antenna spropagat,1991, 39(4):429-433P
    [45]J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics,1994,114(2):185-200P
    [46]Gilian C. J., Fusco V., Optimizing FDTD electromagnetic field computation on distributed networks [J]. International Jouranl of Numerical Modeling:Electronic Networks, Devices and Field,1998,11(6):277-287P
    [47]马积福.目标瞬态散射及雷达横截面的FDTD法研究及应用[D].北京:北京理工大学硕士学位论,1995
    [48]Gilian C. J., Fuco V., Enhanced distributed computing messege passing strategies for FDTD [J]. International Jouranl of Numerical Modeling:Electronic Networks, Devices and Field,1999,12(6):483-488P
    [49]Guiffaut C., Mahdjoubi K., A parallel FDTD algorithm using the MPI library [J]. IEEE AP Magazine,2001,43(2):94-102P
    [50]J. G. Maloney, G. S. Smith, W. R. Scott. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method [J]. IEEE Trans. Antennas Propagat, July 1990,38:1059-1068P
    [51]J. J. Boonzaaier, C. W. I. Pistorius. Thin wire dipples-A finite-difference time-domain approach [J]. Electron Lett.,1990,26(22):1891-1892P
    [52]J. J. Boonzaaier, C. W. I. Pistorius, Thin-wire Yagi antenna radiation patterns using the finite-difference time-domain method [J]. Microwave Opt. Technol. Lett.,1991, 4(8):311-313P
    [53]P. A. Tirkas, C. A. Balanis. Finite-difference time-domain method for antenna mutual coupling [J]. IEEE Trans. Antennas Propagat, Mar 1992,40:334-340P
    [54]R. J. Luebbers, K. Kunz. Finite difference time domain calculations of antenna mutual coupling [J]. IEEE Trans. Electro Magn. Compat,1992,34(3):357-359P
    [55]R. J. Luebbers, J. Beggs. FDTD calculation of wide-band antenna gain and efficiency [J]. IEEE Trans. Antennas Propagat, Nov.1992,40:1403-1407P
    [56]J. G. Maloney, K. L. Shlager, G. S. Smith. A simple FDTD model for transient excitation of antenna by transmission lines [J]. IEEE Trans. Antennas Propagat, Feb. 1994,42:289-292P
    [57]A. Reineix, B. Jecko. Analysis of microstrip patches antennas using finite difference time domain method [J]. IEEE Trans. Antennas Propagat, Nov.1989,37:1361-1369P
    [58]D. M. Sheen, S. M. Ali, M. D. Abouzahra. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuites [J]. IEEE Trans. Microwave Theory Tech., July 1990,38:849-857P
    [59]P. Leveque, A. Reineix, B. Jecko. Modelling dielectric losses in microstrip patch antennas:Application of FDTD method [J]. Electron. Lett.,1992,28(6):539-540P
    [60]C. Wu, K. L. Wu, Z. - Q. Bi, Accurate characterization of planar printed antennas using finite-difference time-domain method [J]. IEEE Trans. Antennas Propagat, May 1992,40:526-533P
    [61]K. Uehara, K. Kagoshima. FDTD method analysis of mutual coupling between microstrip antennas [J]. IEICE Trans. Commun.,1993, E 76-B(7):762-764P
    [62]Y. Qian, S. Iwata, E. Yamashita. Optimal desigh of an offset-fed, twin-slot antenna element for millimeter - wave imaging arrays [J]. IEEE Microwave Guided Wave Lett., July 1994,4:232-234P
    [63]A. Reineix, B. Jecko. A time domain theoretical method for the analysis of microstrip antennas composed by slots [J]. Annales des Telecommunications,1993,48(1/2): 29-34P
    [64]A. Reineix, J. Paillol, B. Jecko. FDTD method applied to the study of radar cross section of microstrip patch antennas [J]. Annales des Telecommunications,1993, 48(11/12):589-593P
    [65]A. Reineix, C. Melon, T. Monediere. The FDTD method applied to the study of microstrip patch antennas with a biased ferrite substrate [J]. Annales des Telecommunications,1994,49(314):137-142P
    [66]P. A. Tirkas, C. A. Balanis. Finite-difference time-domain method for antenna radiation [J]. IEEE Trans. Antennas Propagat., Mar.1992,40:334-340P
    [67]P. A. Tirkas, C. A. Balanis. Contour path FDTD methods for analysis of pyramidal horns with composite inner E-plane walls [J]. IEEE Trans. Antennas Propagat., Nov. 1994,42:1476-1483P
    [68]C. Reig, E. A. Navarro, V. Such. FDTD analysis of E-sectoral horn antennas for broad-band applications [J]. IEEE Trans. Antennas Propagat., Oct.1997,45: 1484-1487P
    [69]J. G. Maloney, G. S. Smith. Optimization of pulse radiation from a simple antenna using resistive loading [J]. Microwave Opt. Technol. Lett.,1992,5(7):299-303P
    [70]J. G. Maloney, G. S. Smith. Optimization of a conical antenna for pulse radiation:An efficient desigh using resistive loading [J]. IEEE Trans. Antennas Propagat., July 1993, 41:940-947P
    [71]J. G. Maloney, G. S. Smith. A study of transient radiation from the Wu-King resisitive monopole-FDTD analysis and experimental measurements [J]. IEEE Trans. Antennas Propagat., May 1993,41:668-676P
    [72]K. L. Shlager, G. S. Smith, J. G. Maloney. Optimizaiton of bow-tie antennas for pulse radiation [J]. IEEE Trans. Antennas Propagat., July 1994,42:975-982P
    [73]K. L. Shlager, G. S. Smith, J. G. Maloney. TEM horn antenna for pulse radiation:An improved design [J]. Microwave Opt. Technol. Lett., June 1996,12:86-90P
    [74]K. L. Shlager, G. S. Smith, J. G. Maloney. Accurate analysis of TEM horn antennas for pulse radiation [J]. IEEE Trans. Electromagn. Compat.,1996,38(3):414-423P
    [75]S. C. Hagness, A. Taflove, J. E. Bridges. Wideband ultralow reverberation antenna for biological sensing [J]. Electronics Lett.,1997,33:1594-1595P
    [76]S. C. Hagness, A. Taflove, J. E. Bridges. FDTD analysis of a pulsed microwave confacal system for breast cancer detection [C]. Proc. Int. Conf. IEEE Engineering in Medicine and Biology Soc., Chicago, IL,1997:2506-2508P
    [77]T. P. Montoya, G. S. Smith. A study of pulse radiation from several broad-band loaded monopoles [J]. IEEE Trans. Antennas Propagat. Aug.1996,44:1172-1182P
    [78]P. C. Cherry, M. F. Iskander. FDTD analysis of power deposition patterns of an an array of interstitial antennas for use in microwave hyperthermia [J]. IEEE Trans. Microwave Theory Tech., Aug.1992,40:1692-1700P
    [79]P. C. Cherry, M. F. Iskander. Calculations of heating patterns of an array of microwave interstitial antennas [J]. IEEE Trans. Biomed. Eng.,1993,40(8):771-779P
    [80]J. R. Ren, O. P. Gandhi, L. R. Walker, J. Fraschilla, C. R. Boerman. Floquet-based FDTD analysis of two-dimensional phased array antennas [J]. IEEE Microwave Guided Wave Lett., Apr.1994,4:109-111P
    [81]E. Thiele, A. Taflove. FDTD analysis of Vivaldi flared horn antennas and arrays [J]. IEEE Trans. Antennas Propagat, May 1994,42:633-641P
    [82]K. Uehara, K. Kagoshima. Rigorous analysis of microstrip phased array antennas using a new FDTD method [J]. Electron. Lett.,1994,30(2):100-101P
    [83]D. Crouch. On the use of symmetry to reduce the computational requirements for FDTD analysis of finite phased arrays [J]. Microwave Opt. Technol. Lett., Oct.1996, 13:123-128P
    [84]邓维波,刘永坦.用FDTD法计算架设在有损地面上高频段单极天线辐射特性[J].电子学报,2002,30(3):425-427页
    [85]邓维波,刘永坦.FDTD法计算高频单极天线特性[J].电波科学学报,2000,15(4):491-495页
    [86]王生水,柴舜连,田立松.印刷对数周期天线的FDTD分析与实验[J].国防科技大学学报,2004,26(1):77-80页
    [87]梁超,丁亮,程芝峰.基于FDTD方法的等离子体天线参数的数值计算[J].中国科学院研究生院学报,2009,26(2):269-272页
    [88]Yunxiang Zhang, Jian Wang, Zhiqin Zhao. Numerical Analysis of Dielectric Lens Antennas Using a Ray-Tracing Method and HSFF Software [J]. IEEE Trans. Antennas and Propagation, Aug.2008:94-101P
    [89]高本庆.时域有限差分法[M],北京:国防工业出版社,1995
    [90]王长青,祝西里.电磁场中的时域有限差分法[M],北京:北京大学出版社,1994
    [91]葛德彪,闫玉波.电磁场时域有限差分方法[M],西安:西安电子科技大学出版社,2002
    [92]林德云,全泽松,赵玉树.电磁场理论[M],北京:电子工业出版社,1990
    [93]K. S. Kunz, R. J. Luebbers. The finite difference time domain method for electromagnetics [J]. CRC Press,1993
    [94]Taflove A., Brodwin M. E., Numerical solutions of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations [J]. IEEE Trans. on MTT,1975,23(8):623-630P
    [95]K. S. Kunz, R. J. Luebbers. The Finite Differnece Time Domain Method for Electromagnetics [J]. Chapt 3, Boca Raton, FL:CRC Press,1993
    [96]A. C. Cangellaris, D. B. Wright. Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena [J]. IEEE Trans. on Antennas and Propagation,1991, 39(10):1518-1525P
    [97]刘鹏程.工程电磁场简明手册[M].北京:高等教育出版社,1991
    [98]D. E. Merewether. Transient currents on a body of revolution by an electromagnetic pulse [J]. IEEE Trans, on Electromagnetic Compatibility,1971,13(2):41-44P
    [99]R. Holland. THREDS:a finite-differnece time-domain EMP code in 3D spherical coordinates [J]. IEEE Trans, on Nucear Science,1983,30(6):4592-4595P
    [100]A. Taflove, S. C. Hagness. Computational Electrodynamics:The Finite-Difference Time-Domain Method [J]. Norwood, MA:Artech House,2005,3nd edn
    [101]胡来平,刘占军.FDTD方法中的吸收边界条件[J].现代电子技术,2003,9:30-32页
    [102]张清河.时域有限差分法(FDTD)中的吸收边界条件[J].三峡大学学报(自然科学版),2004,26(5):464-466页
    [103]马双武,高攸纲.时域有限差分法中几种吸收边界条件的比较与数值验证[J].长沙大学学报.1999,13(4):1-4页
    [104]B. Engquist, A. Majda. Absorbing boundary conditions for the numerical simulation of waves [J]. Math. Comput.,1977,31(139):629-651P
    [105]G. Mur. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations [J]. IEEE Trans. Electomagn. Compat, 1981, EMC-23(4):377-382P
    [106]Z. P. Liao, H. L. Wong, B. P. Yang, Y. F. Yuan. A transmitting boundary for the transient wave analysis [J]. Scientia Sinica(series A),1984,27(10):1063-1076P
    [107]J. Y. Fang, K. K. Mei. A super-absorbing boundary algorithm for numerical solving electromagnetic problems by time-domain finite-difference method [C].1988 IEEE AP-S International Symposium, Syrscus, NY, USA,1988:427-475P
    [108]J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics,1994,114(2):185-200P
    [109]J. P. Berenger. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics,1996,127(2): 363-379P
    [110]W. C. Chew, W. H. Weedon. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates [J]. Microwave and Optical Technology Letters,1994,7(13):599-604P
    [111]Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee. A perfectly matched anisotropic absorber for use as an absorbing boundary condition [J]. IEEE Trans. Antennas and Propagation,1995,43(12):1460-1463P
    [112]S. D. Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. IEEE Trans. Antennas and Propagation,1996,44(12): 1630-1639P
    [113]J. D. Moerloose, M. A. Stuchly. Behavior of Berenger's ABC for evanescent waves [J]. IEEE Microwave and Guided Wave Letters,1995,5(10):344-346P
    [114]J. D. Moerloose, M. A. Stuchly, Reflection analysis of PML ABC's for low-frequency applications [J]. IEEE Microwave and Guided Wave Letters,1996,6(4):177-179P
    [115]J. P. Berenger. Evanescent waves in PML's:origin of the numerical reflection in wave-structure interaction problems [J]. IEEE Trans. Antennas and Propagation,1999, 47(10):1497-1503P
    [116]M. Kuzuoglu, R. Mittra. Frequency dependence of the constitiutive parameters of causal perfectly matched anisotropic absorbers [J]. IEEE Microwave and Guided Wave Letters,1996,6(12):447-449P
    [117]An-ping Zhao, Antti V. Raisanen, Srba R. Cvertkovic. A Fast and Efficient FDTD Algorithm for the Analysis of Planar Discontinuities by Using a Simple Source Excitation Scheme [J]. IEEE Microwave and Guided Wave Letter, October 1995, 5(10):341-343P
    [118]XiaoLei Zhang, Jiayuan Fang, K. K. Mei, Yaowu Liu. Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method [J]. IEEE Trans. Microwave theory and techniques,1988,36(2):263-267P
    [119]Christopher L. Wagner, John B. Schneider. Divergent fields, charge, and capacitance in FDTD simulations [J]. IEEE Trans. Microwave theory and techniques,1988,46(12): 2131-2136P
    [120]R. J. Luebbers, H. S. Langdon. A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations [J]. IEEE Trans. Antennas and Propagation, 1996,44(7):1000-1005P
    [121]David M. Sheen, Sami M. Ali, Mohamed D. Abouzahra, Jin Au Kong. Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits [J]. IEEE Trans. Microwave theory and techniques,1990,38(7): 849-857P
    [122]An-Ping Zhao, Anti V. Raisanen, Srba R. Cvetkovic. A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme [J]. IEEE Microwave and Guided Wave Letters,1995,5(10): 341-343P
    [123]An-Ping Zhao, Anti V. Raisanen. Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits [J]. IEEE Trans. Microwave Theory and Techniques,1996,44(9):1535-1538P
    [124]Mikko K. Karkkanen. Efficient excitation of microstrip lines by a virtual transmission line in FDTD [J]. IEEE Trans. Microwave Theory and Techniques,2005,53(6): 1899-1903P
    [125]李蓉,张林昌.FDTD法模拟建模中激励源的选择与设置[J].铁道学报,2001,23(4):44-47页
    [126]尹家贤,谭怀英,刘克成,毛钧杰.FDTD中微带线激励源分析[J].国防科技大学学报,2000,22(5):60-63页
    [127]尹家贤.时域有限差分法在天线计算中的理论和应用研究[D].长沙:国防科技大学博士学位论文,2003
    [128]J. Fang, Z. Wu. Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media [J]. IEEE Trans. on MTT.,1996,44: 2216-2222P
    [129]K. R. Umashankar, A. T. aflover, B. Beker. Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity [J]. IEEE Trans. Antennas Propagate.1987, AP-35(11):1248-1257P
    [130]J. J. Boonzaarier, C. W. I. Pistonius. Finite-difference time domain field approximations for thin wires with a lossy coating [J]. IEEE Proc. Micro Antennas Propagate.1994,141(2):107-113P
    [131]闫玉波,李清亮.复杂载体短波天线特性的FDTD模拟与分析[J].电波科学学报.2004,4(2):135-142页
    [132]齐东旭.分形及其计算机生成[M].北京:北京科学出版社.1994
    [133]K. Falconer. Fractal Geometry:Mathematical Foundation and Applications [M]. Wiley, New York,1990
    [134]吴敏金.关于分形的定义与分维的计算[J].华东师范大学学报(自然科学版),1992,3(2):4-5页
    [135]李厚强.分形研究的若干问题及动向[J].全国第三届分形理论及应用学术会议,中国科技大学,1993:65-68页
    [136]Tsutomu Endo, Yonehiko Sunahara, Shinichi Satoh, et al. Resonant Frequency and Radiation Effciency of Meander Line Antenna [J]. Electronics and Communications in Japan,2000,83(1):52-58P
    [137]金卓睿.变压器局部放电超高频监测分形天线与最小波去噪及信号识别研究[D].重庆:重庆大学博士学位论文,2008
    [138]左智成,李兴华.电波与天线[M].合肥:合肥工业大学出版社,2006
    [139]王朴中,石长生.天线原理[M].北京:清华大学出版社,1993
    [140]李新硕.并行FDTD算法和并行遗传算法及其在复杂天线设计中的应用研究[D].重庆:四川大学硕士学位论文,2004
    [141]Yee K. S., Ingham D., Shlager K., Time-domain extrapolation to the far field based on FDTD calculations [J]. IEEE Trans. Antennas Propagat, Mar.1991,39(3):410-413P
    [142]Barth M. J., Mcleod R. R., Ziolkowski R. W., A near-and far-field projection algorithm for finite-difference time-domain codes [J]. Electromagn. Waves Appl., 1992,6(1):5-18P
    [143]Demarest K., Huang Z., Plumb R., An FDTD near-to for-zone transformation for scatterers buried in stratified grounds [J]. IEEE Trans. Antennas Propagat., Aug.1996, 44(8):1150-1157P
    [144]Shum S. M., Luk K. M., An effective FDTD near-to-far field transformation for radiation pattern calculation [J]. Micro. Opt. Tech. Lett., Jan.1999,20(2):129-131P
    [145]闫玉波,石守元,葛德彪.用时域有限差分法分析轴对称天线辐射特性[J].西安电子科技大学学报,1998,25(4):442-444页
    [146]Xuan Chen, Safieddin Safavi Naeini, Yaxin Liu. A down-sized printed hilbert antenna for UHF band. [C]. IEEE Antennas and Propagation Society International Symposium, June 2003,2:581-584.
    [147]童贞理,郑建宏.角反射器天线的分析与改进[J].无线电通信技术,2004(2):43-46页
    [148]T. Fukasawa, H. Ohimine, K. Miyashita. Triple-bands broad bandwidth dipole antenna with multiple parasitic elements [J]. IEICE Trans. Commun., Sep.2001, E84-B: 2476-2481P
    [149]Y. Rikuta, H. Arai, Y. Ebine. Enhancement of FB ratio for cellular base station antenna by optimizing reflector shape [J]. IEEE AP-S Digest [C]. Boston MA:IEEE,2001: 456-459P
    [150]A. D. Olver, U. O. Sterr. Design of corner reflector antennas using FDTD [J]. IEE Proceedings of Microwave, Antennas and Propagation,1998:481-485P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700