考虑界面相的单向复合材料力学性能预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强树脂基复合材料(CFRP)由于其诸多卓越的力学性能在工程领域得到广泛应用。复合材料的宏观性能是由其特殊的细观结构决定的,为了更加充分地发挥其力学潜能,需要深入了解其宏观现象的细观本质。随着实验技术的发展,人们对复合材料界面相的认识逐渐深入,从改变界面相性能角度优化复合材料是目前的一个研究热点。在这样的背景下,建立含有界面相的单向复合材料力学性能预报具有重要的工程和学术意义。为了在理论上清晰描述本论文的研究思路,将复合材料整体上等效为一个黑匣子,其细观和宏观参数分别作为黑匣子的输入和输出部分,性能预报研究的主要任务就是揭开黑匣子的秘密,建立该输入输出之间的定量关系,为复合材料的优化设计、性能评价提供理论指导。
     本文针对单向CFRP,在考虑界面相的前提下,从刚度性能、热弹性性能、强度性能三个角度建立一套基于细观力学的性能预报方法,在预报宏观性能的同时揭示细观弹性应力状态直至损伤和破坏过程机理。本文所建立的性能预报模型在考虑纤维和基体等组分的同时,充分考虑了界面相的力学性能,并详细分析了界面相参数的影响规律。综合来讲,本文主要研究内容如下:
     1.刚度性能预报:本文通过解析法和有限元法预报单向CFRP的五个独立弹性常数。解析法是基于Eshelby等效夹杂原理,应用Mori-Tanaka方法进行两步等效,第一步将界面相和碳纤维等效为新的等效纤维,第二步将上一步得到的等效纤维与树脂基体进行等效得出整体刚度性能,从而预报出复合材料宏观刚度矩阵。有限元法将复合材料简化为一个代表性体积元(RVE),附上组分材料属性并施加周期性边界条件,施加各个方向载荷并经过线弹性分析得出刚度矩阵中的五个独立参数。这两种方法的预报结果得到宏观实验数据的对比验证,在此基础上应用Mori-Tanaka方法分析了界面相参数的影响规律。
     2.热弹性性能预报:热弹性性能预报主要包括热残余应力分析和宏观等效热膨胀系数(CTE)预报,后者依赖于前者准确的细观力学分析模型。针对由于细观组分材料的CTE不匹配引起的热残余应力,将复合材料简化为含有纤维、界面相、基体的轴对称圆柱体,建立弹性力学基本方程并结合边界条件得到残余应力场,其结果与有限元数值结果几乎完全一致。在此基础上,提出增量法用以分析树脂性能随温度变化的特点,其分析结果得到了碳纤维单丝电阻法实验验证;针对宏观等效CTE预报,在前面的热残余应力分析模型基础上预报复合材料的宏观等效CTE,并得到宏观实验数据的验证,最后分析了界面相参数对其影响规律。
     3.强度性能预报:本文主要分析复合材料纵向拉伸强度和横向拉压强度。根据碳纤维纵向拉伸强度呈随机分布的特点,本文分别采用不同方法预报纵向拉伸强度和横向拉压强度。针对纵向拉伸载荷,采用基于蒙特卡洛的渐进损伤分析模型,从热残余应力、纤维间应力传递、纤维单丝的逐渐断裂三个层次不断循环计算,直到所有纤维断裂为止,从而预报出复合材料的纵向拉伸强度,结果得到宏观纵向拉伸实验数据验证;针对横向拉压载荷,界面脱粘或树脂开裂是其主要破坏模式,本文采用显式有限元方法分析其渐进损伤过程。通过SEM照片或碰撞模型得到纤维随机分布的几何微结构,在Abaqus中建立该微结构几何模型,通过渐进损伤分析得到横向拉压载荷下的损伤破坏过程,从而预报出横向拉压强度,并通过SEM原位实验和宏观横向拉压实验数据验证,确定模型的合理性以后分析了界面相等细观参数的影响规律。
     本文所建立的一整套性能预报方法同样适用于其它复合材料,通过这些理论可以揭示复合材料细观与宏观之间的关联关系。
Carbon fiber reinforced plastic composites (CFRP) has been widely used in many kinds of structures due to their excellent mechanical performances. These excellent macro performances are mainly controlled by the mechanical properties of micro components. Thus, it is especially important to understand the micro mechanical properties of composite detailly for fully inspiring its macro mechanical properties. With the development of experimental techniques, interphase existing between fiber and matrix has been deeply understood gradually. Recently, it appears a new research area in which composite is optimized by considering the effect of variation of the interphase properties. Based on this background, it has an important significance to establish model to valuate the mechanical properties of composites with interphase for composites optimization.
     For unidirectional CFRP with interphase, this paper establishs a set of performances prediction methods, such as stiffness, CTE and strength etc. Meanwhile, the elastic and damage until failure modes of the composites are given with the increase of external load. The effects of interphase are considered in detail in the micromechanical models. Overall, the main contents of this paper are provided as follows:
     1. Stiffness prediction. Stiffness properties of the composites are predicted by the analytical and finite element methods. Unidirectional fibrous reinforced composites are considered as transverse isotropic materials, which have five independent parameters in the stiffness matrix. The analytical and finite element methods were applied to predict these five independent parameters. In the analytical method, the Mori-Tanaka method based on Eshelby equivalent inclusion theory was used twice to evaluate the stiffness of the composites. In the finite element method, composite was simplified to a representative volume element (RVE). Then, five independent parameters were obtained after linear elastic analysis. The result was verified by experimental results. At last, the Mori-Tanaka method was used to analyze the influence of interphase parameters.
     2. Thermal elastic properties prediction. In this paper, thermal elastic analysis includes thermal residual stress analysis and the prediction of macro equivalent coefficient of thermal expansion. Fiber composite is simplified as an axisymmetric cylinder model containing three phases: fiber, interphase and matrix. Elastic equations with boundary conditions were established to get the residual stresses. The analytical results are well agreement with the finite element results. The sub-increment method was used to overcome the fact that epoxy properties change with temperature, and it was verified by single carbon fiber resistance experiment. Based on the cylinder model, macro equivalent CTEs of the composites were predicted and verified by experiments. Then, the influence of interphase parameters on macro CTEs was analyzed.
     3. Strength prediction. This paper mainly discusses the composite longitudinal tensile strength and transverse strength. According to discrete distribution of carbon fiber tensile strength, different methods were used to predict the longitudinal and transverse strength. In longitudinal direction, the Monte Carlo method was applied to conduct progressive damage analysis. There are three factors, including residual stress, stress transfer and fiber breakage, which are required to be considered in the model. The analysis was conducted iteratively until all fibers were broken, and the longitudinal tensile strength was obtained. The result was verified by macro experiments. In transverse direction, interphase debonding and matrix crack are the main failure modes. The explicit finite element was used to analyze the progressive damage process until ultimate failure. The geometric microstructure obtained by SEM or elastic collision model was imported into Abaqus. The transverse tensile or compressive strength was obtained by the progressive damage analysis. The result was also verified by experiment as well. At last, the influence of the interphase parameters on macro strength was analyzed.
     These mechanical performance prediction methods in this paper can also be applied to analyze for many other composites to establish the relationship between the micro component parameters and macro performances.
引文
1杜善义,王彪.复合材料细观力学.科学出版社. 1998:1~3
    2 W. Voigt.über die Beziehung Zwischen den Beiden Elastizit?tskonstanten Isotroper K?rper. Wiedemanns Annalen. 1889, 38:573~587
    3 A. Reuss. Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift fur Angewandte Mathematik und Mechanik. 1929, 9:49~58
    4 R. Hill. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society Section A. 1952, 65(5):349~354
    5 E. H. Mansfield. On the Elastic Moduli of Unidirectional Fibre Reinforced Composites. Technical Report, Reports and Memoranda No. 3782*. 1974
    6 Z. Hashin, S. Shtrikman. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. Journal of the Mechanics and Physics of Solids. 1963, 11(2):127~140
    7 R. Hill. Theory of Mechanical Properties of Fiber-Strengthened Materials. I: Elastic Behavior. Journal of the Mechanics and Physics of Solids. 1964, 12(4):199~212
    8 R. Hill. A Self-consistent Mechanics of Composite Materials. Journal of the Mechanics and Physics of Solids. 1965, 13(4):213~222
    9 Z. Hashin, B. W. Rosen. The Elastic Moduli of Fiber-Reinforced Materials. Journal of Applied Mechanics. 1964, 31:223~232
    10 R. M. Christensen, K. H. Lo. Solutions for Effective Shear Properties in the Phase Sphere and Cylinder Models. Journal of the Mechanics and Physics of Solids. 1979, 27(4):315~330
    11 J. D. Eshelby. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems. Proceedings of the Royal Society London Series A. 1957, 241(1226):367~396
    12 J. D. Eshelby. The Elastic Field Outside an Ellipsoidal Inclusion. Proceedings of the Royal Society. 1959, 252(1271):561~569
    13 T. Mori, K. Tanaka. Average Stress in Matrix and Average Energy of Materials with Misfitting Inclusion. Acta Metallurgica. 1973, 21(5):571~574
    14 A. Dasgupta, S. M. Bhandarkar. A Generalized Self-Consistent Mori-Tanaka Scheme for Fiber-Composites with Multiple Interphases. Mechanics of Materials. 1992, 14(1):67~82
    15 Y. Benveniste, G. J. Dvorak, T. Chen. Stress Fields in Composites with CoatedInclusions. Mechanics of Materials. 1989, 7(4):305~317
    16 Y. Benveniste, G. J. Dvorak, T. Chen. On Effective Properties of Composites with Coated Cylindrically Orthotropic Fibers. Mechanics of Materials. 1991, 12(3-4):289~297
    17 H. A. Luo, G. J. Weng. On Eshelby's Tensor in a Three-Phase Cylindrically Concentric Solid and the Elastic Moduli of Fiber Reinforced Composites. Mechanics of Materials. 1989, 8(2-3):77~88
    18梁军,杜善义.一种含夹杂和微裂纹分布复合材料的弹性常数预报方法.复合材料学报. 1997, 14:102~108
    19 J. Aboudi. Micromechanical Analysis of Composites by the Method of Cells. Applied Mechanics Reviews. 1989, 42(7):193~221
    20 M. Paley, J. Aboudi. Micromechanical Analysis of Composites by the Generalized Cells Model. Mechanics of Materials. 1992, 14(2):127~139
    21 G. T. Munger. In Situ Characterization of Metal Matrix Composites Processing. PHD. UNIVERSITY OF VIRGINIA. 1999:34~36
    22 B. A. Bednarcyk, S. M. Arnold. A New Local Debonding Model with Application to the Transverse Tensile and Creep Behavior of Continuously Reinforced Titanium Composites. NASA-TM-2000-210029. 2000
    23孙志刚.复合材料高精度宏-细观统一本构模型及其应用研究.南京航空航天大学博士论文. 2005:15~19
    24 M. Ryvkin, J. Aboudi. The Effect of a Fiber Loss in Periodic Composites. International Journal of Solids and Structures. 2007, 44(10):3497~3513
    25 M. Ryvkin, J. Aboudi. A Continuum Approach to the Analysis of the Stress Field in a Fiber Reinforced Composite with a Transverse Crack. International Journal of Solids and Structures. 2007, 44(21):6826~6841
    26黄争鸣.复合材料细观力学引论.科学出版社. 2003:23~28
    27 C. T. Sun, R. S. Vaidya. Prediction of Composite Properties from a Representative Volume Element. Composites Science and Technology. 1996, 56(2):171~179
    28 L. Leon, L. Mishnaevsky, S. Schmauder. Continuum Mesomechanical Finite Element Odeling in Materials Development: A State-of-the-Art Review. Applied Mechanics Reviews. 2001, 54(1):49~68
    29 L. Leon, L. Mishnaevsky. Numerical Experiments in the Mesomechanics of Materials. Technical Report,“Numerical Experiments in Mesomechanics”, Stuttgart University. 2005
    30 Z. H. Xia, Y. F. Zhang, F. Ellyin. A Unified Periodical Boundary Condition for Representative Volume Element of Composites and Applications. InternationalJournal of Solids and Structures. 2003, 40(8):1907~1921
    31 Z. H. Xia, C. W. Zhou, Q. L. Yong, X. W. Wang. On Selection of Repeated Unit Cell Model and Application of Unified Periodic Boundary Condition in Micro-Mechanical Analysis of Composites. International Journal of Solids and Structures. 2006, 43(2):266~278
    32 Y. F. Zhang, Z. H. Xia, F. Ellyin. Nonlinear Viscoelastic Micromechanical Analysis of Fiber-Reinforced Polymer Laminates with Damage Evolution. International Journal of Solids and Structures. 2005, 42(2):591~604
    33 M. M. Aghdam, D. J. Smith, M. J. Pavier. Finite Element Micromechanical Modeling of Yield and Collapse Behaviour of Metal Matrix Composites. Journal of the Mechanics and Physics of Solids. 2000, 48(3):499~528
    34吕毅,吕国志,吕胜利.细观力学方法预测单向复合材料的宏观弹性模量.西北工业大学学报. 2006, 24(6):787~790
    35李维特,黄保海,毕仲波.热应力理论分析及应用.中国电力出版社. 2004:51~53
    36 J. F. Fromentin, K. Debray, Y. L. Petitcorps, etc. Interfacial Zone Design in Titanium Matrix Composites Reinforced by SiC Filaments. Composite Science and Technology. 1996, 56(7):767~775
    37 N. J. Rendler, I. Vigness. Hole-Drilling Strain-Gage Method of Measuring Residual Stresses. Experimental Mechanics. 1966, 6(12):577~586
    38 R. Y. Kim, H. T. Hahn. Effect of Curing Stress on the First Ply-Failure in Composite Laminates. Journal of Composite Materials. 1979, 13(1):2~16
    39 H. E. Gascoigne. Residual Surface Stresses in Laminated Cross-Ply Fiber-Epoxy Composite Materials. Experimental Mechanics. 1994, 34(1):27~36
    40 C. Galiotis, N. Melanitis, D. N. Batchelder, I. M. Robinson, J. A. Peacock. Residual Strain Mapping in Carbon Fiber/PEEK Composites. Composites. 1988, 19(4):321~324
    41 B. Benedikt, M. Kumosa. An Analysis of Residual Thermal Stresses in a Unisirectional Graphite/PMR-15 Composite Based on X-ray Diffraction Measurements. Composites Science and Technology. 2001, 61(14):1977~1994
    42 F. Colpo, L. Humbert, P. Giaccari, J. Botsis. Characterization of Residual Strains in an Epoxy Block by Embedded FBG Sensor and OLCR Technique. Composites Part A. 2006, 37(4):652~661
    43 F. Colpo, L. Humbert, J. Botsis. Characterisation of Residual Stresses in a Single Fiber Composite with FBG Sensor. Composites Science and Technology. 2007, 67(9):1830~1841
    44 W. L. Morris, R. V. Inman, B. N. Cox. Microscopic Deformation in a HeatedUnidirectional Graphite-Epoxy Composite. Journal of Materials Science. 1989, 24(1):199~204
    45 T. Koufopoulos, P. S. Theocaris. Shrinkage Stresses in Two-Phase Materials Journal of Composite Materials. 1969, 3(2):308~320
    46 Y. Saado, J. R. Wood, G. Marom. Thermal Shrinkage Induced Compressive Fragmentation in Composite Materials. Composite Intefaces. 1997, 5(2):177~124
    47 M. Kupke, K. Schulte, R. Schuler. Non-Destructive Testing of FRP by d.c. and a.c. Electrical Methods. Composites Science and Technology. 2001, 61(6):837~847
    48 B. Harris. Shrinkage Stresses in Glass/Resin Composites. Journal of Materials Science. 1978, 13(1):173~177
    49 J. A. Nairn. Thermoelastic Analysis of Residual Stresses in Unidirectional, High-Performance Composites. Polymer Composites. 1985, 6(2):123~130
    50 K. Jayaraman, K. L. Reifsnider. Residual Stresses in a Composite with Continuously Varying Young’s Modulus in the Fiber/Matrix Interphase. Journal of composite materials. 1992, 26(6):771~791
    51 K. Jayaraman, K. L. Reifsnider. The Interphase in Unidirectional Fiber Reinforced Epoxies: Effect on Residual Thermal Stresses. Composites Science and Technology. 1993, 47(2):119~129
    52 Y. Mikata. Stress Fields in a Continuous Fiber Composite With a Variable Interphase Under Thermo-Mechanical Loadings. Journal of Engineering Materials and Technology. 1994, 116(3):367~377
    53 J. K. Kim, Y. W. Mai. Micromechanics of Fiber-Matrix Interface and Fracture of Advanced Composites with Engineered Interfaces. ASTM special technical publication. 1995, no1220:125~139
    54 L. E. Asp, L. A. Berglund, R. Talreja. Prediction of Matrix-Initiated Transverse Failure in Polymer Composites. Composites Science and Technology. 1996, 56(9):1089~1097
    55 B. Fiedler, M. Hojo, S. Ochiai. The Influence of Thermal Residual Stresses on the Transverse Strength of CFRP Using FEM. Composites Part A. 2002, 33(10):1323~1326
    56 B. Huang, Y. Q. Yang, H. J. Luo, M. N. Yuan, Y. Chen. Effect of the Interfacial Reaction Layer Thickness on the Thermal Residual Stresses in SiCf/Ti–6Al–4V Composites. Materials Science and Engineering A. 2008, 489(1-2):178~186
    57 P. S. Turner. Thermal Expansion Stresses in Reinforced Plastics. Journal of Research of the National Institute of Standards and Technology articles. 1946, 37:239~250
    58 R. A. Schapery. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. Journal of Composite Materials. 1968, 2(3):380~404
    59 B. W. Rosen, Z. Hashin. Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials. International Journal Engineering Science. 1970, 8(2):157~173
    60 V. M. Levin. Thermal Expansion Coefficients of Heterogeneous Materials. Mechanics of Solids. 1967, 2:58~61
    61 Z. Hashin. Analysis of Properties of Fiber Composites with Anisotropic Constitutents. Journal Applied Mechanics. 1979, 46:542~550
    62 C. C. Chamis. Simplified Composite Micromechanics Equations for Hygral, Thermal and Mechanical Properties. Sampe Quarterly. 1984, 15(3):14~23
    63 D. E. Bowles, S. S. Tompkins. Prediction of Coefficients of Thermal Expansion for Unidirectional Composites. Journal of Composite Materials. 1989, 23(4):270~388
    64 J. J. Hermans. The Elastic Properties of Fiber Reinforced Materials When the Fibers are Aligned. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen - Series B. 1967, 70:1~9
    65 J. M. Whitney. Elastic Moduli of Unidirectional Composites with Anisotropic Filaments. Journal of Composite Materials. 1967, 1(2):188~193
    66 Y. Takao, M. Taya. Thermal Expansion Coefficients and Thermal Stresses in an Aligned Short Fiber Composite with Application to a Short Carbon Fiber/Aluminum, Journal of Applied Mechanics. 1985, 52(4):806~810
    67梁军,杜善义,许兴利.含缺陷单向纤维增强复合材料的热膨胀系数预报,哈工大学报. 1997, 29(3):236~238
    68范赋群,王震鸣,嵇醒,黄小清.关于复合材料力学几个基本问题的研究.力学与实践. 1995, 17(1):4~9
    69 P. K. Gotsis, C. C. Chamis, L. Minnetyan. Prediction of Composite Laminate Fracture: Micromechanics and Progressive Frature. Composites Science and Technology. 1998, 58(7):1137~1149
    70 S. J. Mayes, A. C. Hansen. Multicontinuum Failure Analysis of Composite Structural Laminates. Mechanics of Advanced Materials and Structures. 2001, 8(4):249~262
    71 S. J. Mayes, A. C. Hansen. Composite Laminate Failure Analysis Using Multicontinuum Theory. Composites Science and Technology. 2004, 64(3-4):379~394
    72 Z. M. Huang. A Bridging Model Prediction of the Ultimate Strength of Composite Laminates Subjected to Biaxial Loads. Composites Science andTechnology. 2004, 64(3-4):395~448
    73 R. Hill. A Theory of the Yielding and Plastic Flow of Anisotropic Metals. Proceedings of the Royal Society of London. Series A. 1948, 193(1033):281~297
    74 S. W. Tsai. Strength Characteristics of Composite Materials. Technical Report, NASA CR-224. 1965
    75 O. Hoffman. The Brittle Strength of Orthotropic Materials. Journal of Composite Materials. 1967, 1(2):200~206
    76 S. W. Tsai, E. M. Wu. A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials. 1971, 5(1):58~80
    77 C. F. Jenkins. Report on Materials of Construction Used in Aircraft and Aircraft Engines. Great Britain Aeronautical Reaearch Committee. 1920
    78 Z. Hashin. Failure Criteria for Unidirectional Composites. Journal of Applied Mechanics. 1980, 47(2):329~334
    79 Z. Hashin, A. Rotem. A Fatigue Failure Criterion for Fiber Reinforced Materials. Journal of Composite Materials. 1973, 7(4):448~464
    80 F. K. Chang, K. Y. Chang. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. Journal of Composite Materials. 1987, 21(9):834~855
    81 F. K. Chang, L. B. Lessard. Damage Tolerance of Laminated Composites Containing an Open Hole and Subject to Compressive Loadings: part I-Analysis. Journal of Composite Materials. 1991, 25(1):2~43
    82 A. Puck, H. Schurmann. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. Composites Science and Technology. 1998, 58(7):1045~1067
    83 E. C. Edge. Stress-Based Grant-Sanders Method for Predicting Failure of Composite Laminates. Composites Science and Technology. 1998, 58(7):1033~1041
    84 C. R. Schultheisz, A. M. Waas. Compressive Failure of Composites, Part I: Testing and Micromechanical Theories. HProgress in Aerospace SciencesH. 1996, 32(1):1~42
    85 A. M. Waas, C. R. Schultheisz. Compressive Failure of Composites, Part II: Experimental Studies. Progress in Aerospace Sciences. 1996, 32(1):43~78
    86 S. Kyriakides, R. Arseculeratne, E. J. Perry, K. M. Liechti. On The Compressive Failure of Fiber Reinforced Composites. International Journal of Solids and Structures. 1995, 32(6):689~738
    87 S. Goutianos, C. Galiotis, T. Peijs. Compressive Failure Mechanisms in Multi-Fibre Microcomposites. Composites Part A. 2004, 35(4):461~475
    88 S. Basu, A. M. Waas, D. R. Ambur. Compressive Failure of Fiber Composites under Multi-Axial Loading. Journal of the Mechanics and Physics of Solids. 2006, 54(3):611~634
    89 A. B. Morais. Prediction of the Longitudinal Tensile Strength of Polymer Matrix Composites. Composites Science and Technology. 2006, 66(15):2990~2996
    90 H. L. Cox. The Elasticity and Strength of Paper and Other Fibrous Materials. British Journal of Applied Physics. 1952, 3(1):72~79
    91 J. M. Hedgepeth, Stress Concentrations in Filamentary Structures. Technical Report, NASA TN D-882.1961
    92 J. Aveston, A. Kelly. Theory of Multiple Fracture of Fibrous Composites. Journal of Materials Science. 1973, 8(3):352~362
    93 B. Budiansky, J. W. Hutchinson, A. G. Evans. Matrix Fracture in Fiber-Reinforced Ceramics. Journal of the Mechanics and Physics of Solids. 1986, 34 (2):167~189
    94 C. H. Hsueh. Interfacial Debonding and Fiber Pull-Out Stresses of Fiber-Reinforced Composites. Materials Science and Engineering A. 1990, 123(1):1~11
    95 C. H. Hsueh. Interfacial Debonding and Fiber Pull-Out Stresses of Fiber-Reinforced Composites, X: with an Elastic Interfacial Coating. Materials Science and Engineering A. 1992, 154(2):125~132
    96 C. H. Hsueh, R. J. Young, X. Yang, P. F. Becher. Stress Transfer in a Model Composite Containing a Single Embedded Fiber. Acta Materialia. 1997, 45(4):1469~1476
    97 C. M. Landis, R. M. McMeeking. A Shear-lag Model for a Broken Fiber Embedded in a Composite with a Ductile Matrix. Composites Science and Technology. 1999, 59(3): 447~457
    98 I. J. Beyerlein, C. M. Landis. Shear-lag Model for Failure Simulations of Unidirectional Fiber Composites Including Matrix Stiffness. Mechanics of Materials. 1999, 31(5):331~350
    99 D. C. Lagoudas, C. Y. Hui, S. L. Phoenix. Time Evolution of Over-Stress Profiles near Broken Fibers in a Composite with a Viscoelastic Matrix. International Journal of Solids and Structures. 1989, 25(1):45~66
    100 I. J. Beyerlein, S. L. Phoenix. Time Evolution of Stress Redistribution Around Multiple Fiber Breaks in a Composite with Viscousband Viscoelastic Matrices. International Journal of Solids and Structures. 1998, 35(24):3177~3211
    101 Z. Xia, T. Okabe, W. A. Curtin. Shear-lag Versus Finite Element Models for Stress Transfer in Fiber-Reinforced Composites. Composites Science andTechnology. 2002, 62(9):1141~1149
    102 Z. Xia, W. A. Curtin, T. Okabe. Green’s Function vs. Shear-lag Models of Damage and Failure in Fiber Composites. Composites Science and Technology. 2002, 62(10-11):1279~1288
    103 S. Mahesh, J. C. Hanan, I. J. Beyerlein. Shear-lag Model for a Single Fiber Metal Matrix Composite with an Elasto-Plastic Matrix and a Slipping Interface. International Journal of Solids and Structures. 2004, 41(15):4197~4218
    104 T. Okabea, N. Takeda, Y. Kamoshida, M. Shimizu, W. A. Curtin. A 3D Shear-lag Model Considering Micro-Damage and Statistical Strength Prediction of Unidirectional Fiber-Reinforced Composites. Composites Science and Technology. 2001, 61(12):1773~1787
    105 Z. Xia, W. A. Curtin, P. W. M. Peters. Multiscale Modeling of Failure in Metal Matrix Composites. Acta Materialia. 2001, 49(2):273~287
    106 F. Zhang, T. Lisle, W. A. Curtin, Z. Xia. Multiscale Modeling of Ductile-Fiber-Reinforced Composites. Composites Science and Technology. 2009, 69(11-12):1887~1895
    107 J. C. Michel, H. Moulinec, P. Suquet. Effective Properties of Composite Materials with Periodic Microstructure: a Computational Approach. Computer Methods in Applied Mechanics and Engineering. 1999, 172(1-4):109~143
    108 L. Mishnaevsky, N. Lippmann, S. Schmauder. Computational Modeling of Crack Propagation in Real Microstructures of Steels and Virtual Testing of Artificially Designed Materials. International Journal of Fracture. 2003, 120(4):581~600
    109 L. Mishnaevsky. Three-Dimensional Numerical Testing of Microstructures of Particle Reinforced Composites. Acta Materialia. 2004, 52(14):4177~4188
    110 H. R. Lusti, P. J. Hine, A. A. Gusev. Direct Numerical Predictions for Theelastic and Thermoelastic Properties of Short Fibre Composites. Composites Science and Technology. 2002, 62(15):1927~1934
    111 J. Segurado, J. LLorca. A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites. Journal of the Mechanics and Physics of Solids. 2002, 50(10):2107~2121
    112 D. Dugdale. Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids. 1960, 8(2):100~104
    113 A. Needleman, A Continuum Model for Void Nucleation by Inclusion Debonding. Journal of Applied Mechanics. 1987, 54(3):525~531
    114 J. Llorca, A. Needleman, S. Suresh. An Analysis of the Effects of Matrix Void Growth on Deformation and Ductility in Metal-Ceramic Composites. Acta Metallurgica et Materialia. 1991, 39(10):2317~2335
    115 T. Christman, A. Needleman, S. Suresh. An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites. Acta Metallurgica. 1989, 37(11):3029~3050
    116 A. Needleman. An Analysis of Tensile Decohesion Along an Interface. Journal of the Mechanics and Physics of Solids. 1990, 38(3):289~324
    117 V. Tvergaard, Effect of Ductile Particle Debonding During Crack Bridging in Ceramics. International Journal of Mechanical Sciences. 1992, 34(8):635~649
    118 V. Tvergaard. Fiber Debonding and Breakage in a Whisker-Reinforced Metal. Materials Science and Engineering A. 1995, 190(1-2):215~222
    119 K. Y. Volokh. Comparison between Cohesive Zone Models. Communications in Numerical Methods in Engineering. 2004, 20(11):845~856
    120 W. G. Jiang, S. R. Hallett, B. G. Green, M. R. Wisnom. A Concise Interface Constitutive Law for Analysis of Delamination and Splitting in Composite Materials and its Application to Scaled Notched Tensile Specimens. International Journal for Numerical Methods in Engineering. 2007, 69:1982~1995
    121 D. H. Allen, R. H. Jones, J. G. Boyd. Micromechanical Analysis of a Continuous Fiber Metal Matrix Composite Including the Effects of Matrix Viscoplasticity and Evolving Damage. Journal of the Mechanics and Physics of Solids. 1994, 42(3):502~529
    122 D. C. Lo, D. H. Allen. Modeling of Delamination Damage Evolution on Laminated Composites Subjected to Low Velocity Impact. International Journal of Damage Mechanics. 1994, 3(4):378~407
    123 C. González, J. Segurado, J. LLorca. Numerical Simulation of Elastoplastic Deformation of Composites: Evolution of Stress Microfields and Implications for Homogenization Models. Journal of the Mechanics and Physics of Solids. 2004, 52:1573~1593
    124 C. González, J. LLorca. Mechanical Behavior of Unidirectional Fiber-Reinforced Polymers under Transverse Compression: Microscopic Mechanisms and Modeling. Composites Science and Technology. 2007, 67(13):2795~2806
    125 S. Ghosh, Y. Ling, B. Majumdar, R. Kim. Interfacial Debonding Analysis in Multiple Fiber Reinforced Composites. Mechanics of Materials. 2000, 32(10):561~591
    126 S. Li, S. Ghosh. Modeling Interfacial Debonding and Matrix Cracking in Fiber Reinforced Composites by the Extended Voronoi Cell FEM. Finite Elements in Analysis and Design. 2007, 43(5):397~410
    127 L. Mishnaevsky. Automatic Voxel-based Generation of 3D Microstructural FE Models and its Application to the Damage Analysis of Composites. MaterialsScience and Engineering A. 2005, 407(1-2):11~23
    128 H. Qing, L. Mishnaevsky. Unidirectional High Fiber Content Composites: Automatic 3D FE Model Generation and Damage Simulation. Computational Materials Science. 2009, 47(2):548~555
    129 L. Mishnaevsky, S. Schmauder. Damage Evolution and Heterogeneity of Materials: Model Based on Fuzzy Set Theory. Engineering Fracture Mechanics. 1997, 57(6):625~636
    130 L. Mishnaevsky, P. Br?ndsted. Micromechanisms of Damage in Unidirectional Fiber Reinforced Composites: 3D Computational Analysis. Composites Science and Technology. 2009, 69(7-8):1036~1044
    131 L. Mishnaevsky, T. Shioya. Optimization of Materials Microstructures: Information Theory Approach. Journal of the school of Engineering, The University of Tokyo. 2001, 48:1~11
    132 P. D. Soden, M. J. Hinton, A. S. Kaddour. Lamina Propertites, Lay-up Configurations and Loading Conditions for a Range of Fiber-Reinforced Composite Laminates. Composites Science and Technology, 1998, 58(7):1011~1022
    133 M. J. Hinton, P. D. Soden. Predicting Failure in Composite Laminates: the Background to the Exercise. Composites Science and Technology, 1998, 58(7):1001~1010
    134黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势—“破坏分析奥运会”评估综述.力学进展. 2007, 37(1):80-98
    135 B. D. Coleman. On the Strength of Classical Fibers and Fiber Bundles. Journal of the Mechanics and Physics of Solids. 1958, 7:60~70
    136 E. W. Tokarsky, F. J. Diefendorf. Modulus and Strength of Carbon Fibers. Twelfth Biennial Conference on Carbon, Page 301, American Carbon Committee, Pittsburgh, Pennsylvania, July 1975; and Ploymer Engineering and Science. 1975, 15:150
    137 C. Baxevanakis, D. Jeulin, D. Valentin. Fracture Statistics of Single-Fiber Composite Specimens. Composites Science and Technology. 1993, 48(1-4):47~56
    138 G. I. Barenblatt. The Formation of Equilibrium Cracks During Brittle Fracture. General Ideas and Hypotheses: Axiallysymmetric Cracks. Journal of Applied Mathematics and Mechanics (PMM). 1959, 23:434~444
    139 P. Rahulkumar, A. Jagota, S. J. Bennison, S. Saigal. Cohesive Element Modeling of Viscoelastic Fracture: Application to Peel Testing of Polymers. International Journal of Solids and Structures. 2000, 37(13):1873~1897
    140 I. Mohammed, K. M. Leichti. Cohesive Zone Modeling of Crack Nucleation at Bimaterial Corners. Journal of the Mechanics and Physics of Solids. 2000, 48(4):735~764
    141 G. Alfano, M. A. Crisfield. Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues. International Journal for Numerical Methods in Engineering. 2001, 50(7):1701~1736
    142 J. W. Foulk, D. H. Allen, K. L. E. Helms. Formulation of a Three-Dimensional Cohesive Zone Model for Application to a Finite Element Algorithm. Computer Methods in Applied Mechanics and Engineering. 2000, 183(1-2):51~66
    143 L. Liu, Y. J. Song, H. J. Fu, Z. X. Jiang, X. Z. Zhang, L. N. Wu, Y. D. Huang. The Effect of Interphase Modification on Carbon Fiber/Polyarylacetylene Resin Composites. Applied Surface Science. 2008, 254(17):5342~5347
    144 J. Zhang, Q. P. Guo, M. Huson, I. Slota, B. Fox. Interphase Study of Thermoplastic Modified Epoxy Matrix Composites: Phase Behaviour Around a Single Fibre Influenced by Heating Rate and Surface Treatment. Composites Part A. 2010, 41(6):787~794
    145 J. P. Favre, M. C. Merienne. Characterization of Fibre/Resin Bonding in Composites Using a Pull-Out Test. International Journal of Adhesion and Adhesives. 1981, 1(6):311~316
    146 L. S. Penn, S. M. Lee. Interpretation of the Force Trace for Kevlar/Epoxy Single Filament Pull-Out Tests. Fibre Science and Technology. 1982, 17(2):91~97
    147 U. Gaur, B. Miller. Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface: Evaluation of Experimental Parameters. Composites Science and Technology. 1989, 34(1):35~51
    148 Y. P. Bai, Z. Wang, L. Q. Feng. Interface properties of carbon fiber/epoxy resin composite improved by supercritical water and oxygen in supercritical water. Materials & Design. 2010, 31(3):1613~1616
    149 S. K. Kang, D. B. Lee, N. S. Choi. Fiber/Epoxy Interfacial Shear Strength Measured by the Microdroplet Test. Composites Science and Technology. 2009, 69(2):245~251
    150 J. F. Mandell, J. H. Chen, F. J. McGarry. A Microdebonding Test for In-situ Assessment of Fibre/Matrix Bond Strength in Composite Materials. International Journal of Adhesion and Adhesives. 1980, 1(1):40~44
    151 H. Ho, L. T. Drzal. Evaluation of Interfacial Mechanical Properties of Fiber Reinforced Composites Using the Microindentation Method. Composites Part A. 1996, 27(10):961~971
    152 P. J. Herrera-Franco, V. Rao, L. T. Drzal, Martin Y, Chiang M. Bond Strength Measurement in Composites Analysis of Experimental Techniques. Composites Engineering. 1992, 2(1):31~45
    153 H. D. Wagner, H. E. Gallis, E. Wiesel. Study of the Interface in Kevlar 49-Epoxy Composites by Means of Microbond and Fragmentation Tests: Effects of Materials and Testing Variables. Journal of Materials Science. 1993, 28(8):2238~2244
    154 K. H. Lee, J. R. Youn. Friction and Wear Behavior of Short Fiber-Reinforced Poly(Amide–Imide) Composite. Polymer Composites. 1992, 13:251~257
    155 K. Meinkard, M. Bernhard, G. Georg. Residual Stresses in Fiber-Reinforced Ceramics Due to Thermal Expansion Mismatch. Journal of the American Ceramic Society. 1993, 76(10):2607~2612
    156 J. H. Wang, L. F. Qian, R. S. Yuan. Thermal Residual Stresses in Composite Material Barrel. Journal of Ballistics. 2007, 19:82~85
    157 K. S. Kim, H. T. Hahn. Residual Stress Development During Processing of Graphite/Epoxy Composites. Composites Science and Technology. 1989, 36(2): 121~132
    158陈耀庭,周明义,王国全,俞炯,谷晓昱,者东梅.碳纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究.塑料科技. 1997, 6:4~7
    159高峰,姚穆,霍群力.短碳纤维增强丁腈橡胶复合材料的电性能研究.西北纺织工学院报. 1998, 2:103~105
    160杨小平,荣浩鸣,沈曾民等.碳纤维面状发热材料的性能研究.高科技纤维与应用. 2000, 3:39~42
    161 J. C. Abry, S. Bochard, A. Chateauminois, M. Salvia, G. Giraud. In situ Detection of Damage in CFRP Laminates by Electrical Resistance Measurements. Composites Science and Technology. 1999, 59(6):925~935
    162 J. C. Abry, Y. K. Choi, A. Chateauminois, B. Dalloz, G. Giraud, M. Salvia. In-situ Monitoring of Damage in CFRP Laminates by Means of AC and DC Measurements. Composites Science and Technology. 2001, 61:855~864
    163 T. Prasse, F. Michel, G. Mook, K. Schulte, W. Bauhofer. A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates. Composites Science and Technology. 2001, 61(6):831~835
    164 J. M. Park, S. Lee, J. H. Choi. Cure Monitoring and Residual Stress Sensing of Single-Carbon Fiber Reinforced Epoxy Composites Using Electrical Resistivity Measurement. Composites Science and Technology. 2005, 65(3-4):571~580
    165 Z. H. Karadeniz, D. Kumlutas. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Composite Structures. 2007,78(1):1~10
    166 Abaqus User's Manual. Abaqus Inc; 2009
    167 D. Aragones. Fracture Micromechanisms in C/Epoxy Composites under Transverse Compression. Master Thesis, Universidad Politecnica de Madrid. 2007:23~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700