基于碳纳米管的电化学生物传感器的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1991年,Iigima发现了碳纳米管,其独特的结构、力学性能和电学性能使碳纳米管受到众多领域科研人员的青睐。碳纳米管能够有效地促进电子传递,降低电活性物质的工作电势,具有良好的生物兼容性、比表面积大等优良特性,被广泛应用于生物传感器的构建。本文将碳纳米管优越特性与生物大分子识别的高效专一性结合,在碳纳米管的表面固定血红蛋白、葡萄糖氧化酶和漆酶,制备了相应的生物传感器。具体内容如下:
     1.比较了长度不同的两种碳纳米管/壳聚糖复合膜修饰电极对血红蛋白的直接电化学以及电催化性能的影响。采用机械球磨的方法把长碳纳米管截短,利用透射电镜和扫描电镜对碳纳米管和碳纳米管/壳聚糖复合材料的形貌进行了表征。用循环伏安法、计时电流法和交流阻抗谱等方法比较研究了吸附在两种碳纳米管/壳聚糖复合膜上的血红蛋白的直接电化学以及对过氧化氢的电催化性能。
     2.以多壁碳纳米管为载体固定媒介体ABTS,然后与漆酶一起修饰在电极上,构建了漆酶生物传感器。研究了修饰在多壁碳纳米管上的ABTS的电化学行为、复合膜中漆酶的直接电化学行为以及对氧气的电催化还原作用。讨论了碳纳米管修饰量、pH值及温度等条件对漆酶电极催化性能的影响。
Since their discovery by Iigima in 1991, carbon nanobutes (CNTs) have been received considerable attention in many aspects because of their extraordinary structure, unique mechanical and electrical properties. CNTs can promote electron transfer and lower potential of some electroactive chemicals. Their biocompatibility and large surface area make CNTs ideal candidates for constructing high-performance biosensors. This paper concentrated on the combination of CNTs with biomoleculars to fabricate biosensors. Hemoglobin, glucose oxidase and laccase were immobilized on the surface of CNTs and relevant biosensors were prepared. The details are summarized as follows:
     1. Hemoglobin was immobilized on long CNT/chitosan and short CNT/chitosan composite modified electrode, and the direct electron transfer and catalytic property were comparatively studied. Short CNTs were obtained by ball milling. CNTs and CNTs/chitosan composites were characterized by TEM and SEM. Cyclic voltammetry, amperometric i-t cruve and impedance method were used to comparatively study the direct chemistry and catalytic property of Hemoglobin towards H2O2 on the two kinds of composites.
     2.Mediator ABTS was absorbed on the surface of CNTs, and a laccase biosensor was developed using chitosan as fixative. The electrochemical behavior of ABTS on multi-walled carbon nanotubes was studied carefully. The direct electron transfer of laccase was realized, and the biosensor was sensitive to oxygen. We optimized several experiment parameters such as the modified amount of ABTS-MWCNTs solution, pH and temperature for the best performance of the laccase biosensor.
引文
[1]Clark L.C., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences,1962,102(8):29-45
    [2]张先恩.生物传感器技术原理与应用[M].长春:吉林科技出版社,1991
    [3]Perez J.P.H., Lopez M.S.P. Lopez-Cabarcos E., et al. Amperometric tyrosinase biosensor based on polyacrylamide microgels[J]. Biosens. Bioelectron.,2006,22(3):429-439
    [4]Sukeethi S., Contractor A.Q. Applications of conducting polymers as sensors[J]. Indian. J Chem.,1994,33A(6):565-571
    [5]Zhylyak G.A., Dzyadevich S.V., Korpan Y.I., et al. Application of urease conductometric biosensor for heavy-metal ion determination[J]. Sens. Actuat. B-Chem,1995,24(1): 145-148
    [6]Kornberger, P., Gajdzik J., Hempelmann, R. Modification of galactitol dehydrogenase from rhodobacter sphaeroides D for Immobilization on polycrystalline gold surfaces[J]. Langmuir,2009,25(20):12380-12386
    [7]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58
    [8]朱宏伟,慈立志,梁吉,等.浮游催化法半连续制取碳纳米管的研究[J].新型碳材料,2000,15(1):48-51
    [9]Zhang Y, Gu H, Iijima S. Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere[J]. Appl. Phys. Lett.,1998,73(26):3827-3829
    [10]Rodriguez N.M., Kim M.S., Baker R.T.K. Carbon nanofibers:a unique catalyst support medium[J]. J. Phys. Chem.,1994,98(50):13108-13111
    [11]Britton P.J., Santhanam K.S.V., Ajayan P.M. Carbon nanotube electrode for oxidation of dopamine[J]. Bioelectrochem. Bioenerg,1996,41(1):121-125
    [12]Beitollahi H., Mazloum-Ardakani M., Ganjipour B. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode [J]. Bioelectrochemistry,2009,75(1):1-8
    [13]赫春香,赵常志,唐祯安.碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化[J].分析化学,2003,31(8):958-960
    [14]Hsueh C.C., Brajter-Toth A. Electrochemical preparation and analytical applications of ultrathin overoxidized polypyrrole films[J]. Anal. Chem.1994,66(15):2458-2464
    [15]Li Y.X., Wang P., Wang L. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications[J]. Biosens. Bioelectron.2007,22(12):3120-3125
    [16]Wen J., Zhou L., Jin L., Cao X., Ye B.C. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine[J]. J. Chromatogr. B,2009,877(20-21): 1793-1798
    [17]Zhang M.N, Gong K.P, Mao L.Q. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid[J]. Biosens. Bioelectron.,2005,20(7):1270-1276
    [18]Zheng D., Ye J.S., Zhang W.D. Some properties of sodium dodecyl sulfate functionalized multiwalled carbon nanotubes electrode and its application on detection of dopamine in the presence of ascorbic acid[J]. Electroanalysis,2008,20(16): 1811-1818
    [19]Jiang L.C., Zhang W.D. Electroanalysis of dopamine at RuO2 modified vertically aligned Carbon nanotube electrode[J]. Electroanalysis,2009,21(16):1811-1815
    [20]Nebel C.E. Surface-Conducting Diamond[J]. Science,2007,318(5855):1391-1392
    [21]Robertson J. Diamond-like amorphous carbon[J]. Mater. Sci. Eng., R.,2002,37(4-6): 129-281
    [22]Isono Y, Namazu T., Terayama N. Development of AFM tensile test technique for evaluating mechanical properties of sub-micron thick DLC films[J]. J. Microelectromech. Syst.,2006,15(1):169-180
    [23]Higson S.P.J., Vadgma P.M. Diamond like carbon coated films for enzyme electrodes; characterization of biocompatibility and substrate diffusion limiting properties [J]. Anal. Chim. Acta.,1995,300(1-3):77-83
    [24]Bordeanu A., Kim J., Pyun J.C. Diamond-like carbon (DLC) microelectrode for electrochemical ELISA[J]. Biosens. Bioelectron.2009,24(5):1394-1398
    [25]Kerman K., Vestergaard M., Tamiya E. Label-Free Electrical Sensing of Small-Molecule Inhibition on Tyrosine Phosphorylation[J]. Anal. Chem.2007,79(17): 6881-6885
    [26]Huang K.J., Luo D.F., Xie W.Z., et al. Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzeresulfonic acid film-coated glassy carbon electrode[J]. Colloids Surf. B-Biointerfaces,2008,61(2):176-181
    [27]Deng C.Y., Chen J.H, Chen X.L., et al. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode[J]. Electrochim. Acta.,2009,54(12): 3298-3302
    [28]Wang J., Musameh M. Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes[J]. Anal. Chim. Acta.,2004,511(1):33-36
    [29]Wang J., Tangkuaram T., Loyprasert S., et al. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes[J]. Anal. Chim. Acta.,2007,581(1): 1-6
    [30]Yang J., Y Xu., Zhang R.Y., et al. Direct Electrochemistry and Electrocatalysis of the Hemoglobin Immobilized on Diazonium-Functionalized Aligned Carbon Nanotubes Electrode[J]. Electroanalysis,2009,21(15):1672-1677
    [31]Wang S.F., Xie F., Liu G.D. Direct electrochemistry and electrocatalysis of heme proteins on SWCNTs-CTAB modified electrodes [J]. Talanta 2009,77(4):1343-1350
    [32]Nagaraju D.H., Pandey R.K., Lakshminarayanan V. Electrocatalytic studies of Cytochrome c functionalized single walled carbon nanotubes on self-assembled monolayer of 4-ATP on gold[J]. J. Electroanal. Chem.2009,627(1-2):63-68
    [33]Wang Z.G., Wang Y, Xu H., et al. Carbon Nanotube-Filled Nanofibrous Membranes Electrospun from Poly(acrylonitrile-co-acrylic acid) for Glucose Biosensor [J]. J. Phys. Chem. C,2009,113(7):2955-2960.
    [34]Lee J.Y., Park E.J., Lee C.J. Flexible electrochemical biosensors based on O2 plasma functionalized MWCNT[J]. Thin Solid Films,2009,517(14):3883-3887
    [35]Tkac J., Whittaker J.W., Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor[J]. Biosens. Bioelectron.,2007,22(8):1820-1824
    [36]Tsai Y.C., Chen S.Y., Liaw H.W. Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors[J]. Sens. Actuat. B-Chem.,2007, B 125(2):474-481
    [37]Xue W., Cui T.H. A thin-film transistor based acetylcholine sensor using self-assembled carbon nanotubes and SiO2 nanoparticles[J]. Sens. Actuators B-Chem., 2008, B134(2):981-987
    [38]Meng L., Wu P., Chen G.X., et al. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode[J]. Biosens. Bioelectron.,2009,24(6):1751-1756
    [39]Gopalan A.I., Lee K.P., Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network[J]. Biosens. Bioelectron., 2009,24(7):2211-2217
    [40]Lee C.A., Tsai Y.C. Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol[J]. Sens. Actuat B-Chem.,2009, B 138(2):518-523
    [41]Qi H., Li X.X., Chen P. Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode[J]. Talanta,2007, 72(3):1030-1035.
    [42]Zhang Y.Z., Ma H.Y., Zhang K.Y., et al. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles[J]. Electrochim. Acta.,2009,54(8):2385-2391.
    [43]Karadeniz H., Erdem A., Caliskan A. Electrochemical monitoring of DNA hybridization by multiwalled carbon nanotube based screen printed electrodes [J]. Electroanalysis,2008,20(17):1932-1938
    [44]Niu S.Y., Han B., Cao W., et al. Sensitive DNA biosensor improved by luteolin copper(II) as indicator based on silver nanoparticles and carbon nanotubes modified electrode[J]. Anal. Chim. Acta.,2009,651(1):42-47
    [45]Galandova J., Ovadekova C., Ferancova R., et al. Disposable DNA biosensor with the carbon nanotubes-polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines[J]. Anal. Bioanal. Chem.,2009,394(3): 855-861.
    [46]Erdem A., Karadeniz H., Caliskan A. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions[J]. Electroanalysis,2009,21(3-5):464-471
    [47]Lucarelli F., Palchetti I., Marrazza G, et al. Electrochemical DNA biosensor as a screening tool for the detection of toxicants in water and wastewater samples[J]. Talanta,2002,56(5):949-957.
    [48]Zheng Y.Q., Yang C.Z., Pu W.H., et al. Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants[J]. Microchim. Acta.,2009,166 (1-2) 21-26.
    [49]Nassar A.E.F., Willis W.S., Rusling F.J. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules[J]. Anal. Chem.1995,67(14):2386-2392
    [50]Sun H., Hu N., Ma H., et al. Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes[J]. Electroanalysis,2000,12(13): 1064-1070
    [51]Zhou Y., Zeng Y., Rusling J.F., et al. Heme Protein-Clay Films:Direct Electrochemistry and Electrochemical Catalysis[J]. Langmuir,2002,18(1):211-219
    [52]Han X., Huang W., Jia J., Dong S.J., et al. Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2[J]. Biosens. Bioelectron.,2002, 17(9):741-746
    [53]Zhao G., Feng J.J., Xu J.J., et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film[J]. Electrochem. Commun.,2005, 7(7):724-729
    [54]Yin F., Shin H.K., Kwon Y.S. A hydrogen peroxide biosensor based on Langmuir-Blodgett technique:Direct electron transfer of hemoglobin in octadecylamine layer[J]. Talanta,2005,67(1):221-226
    [55]Zhao Y.D., Bi Y.H., Zhang W.D., et al. The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2[J]. Talanta,2005,65(2):489-494
    [56]Ding X.Q., Hu J.B., Li Q.L. Direct electrochemistry and superficial characterization of DNA-cytochrome c-MUA films on chemically modified gold surface[J]. Talanta,2006, 68(3):653-658
    [57]Pacios M., Bartroli J., Esplandiu M.J., et al. Electrochemical behavior of rigid carbon nanotube composite electrodes[J]. J. Electroanal. Chem.,2008,619-620:117-124
    [58]Lawrence N.S., Deo R.P., Wang J., et al. Comparision of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources [J]. Electroanalysis, 2005,17(1):65-72
    [59]Lawrence N.S., Deo R.P., Wang J., et al. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes [J]. Anal. Chim. Acta.,2004,517(1-2): 131-137
    [60]胡军福.碳纳米管修饰电极对多巴胺的电催化[J].郧阳师范高等专科学校学报,2005,25(6):60-62
    [61]杨丽娟,郑文刚,赵春江,等.用于农药残留检测酶生物传感器研究进展[J].化学通报,2009,72(3):208-214
    [62]胡陈果,王万录,马勇,等.碳纳米管电极上的电化学行为分析[J].微纳电子技术,2003,7/8:520-525
    [63]Liu S.Q., Lin B.Q., Zhang Q.Q., et al. Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film[J]. J. Phys. Chem. B,2007,111(5):1182-1188
    [64]Cai C.X., Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode[J]. Anal. Biochem.,2004,325(2):285-292
    [65]Yang J., Hu N., Rusling J.F. Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes [J]. J. Electroanal. Chem.,1999, 463(1):53-62
    [66]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem.,1979,101(1):19-28
    [67]Pumera M., Merkoci A., Alegret S. Carbon nanotube-epoxy composites for electrochemical sensing[J]. Sens Actu-B,2006,113(2):617-622
    [68]Palonen H., Saloheimo M., Viikari L. et al. Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella species[J]. Enzyme Microb. Technol.,2003,33(6):854-862
    [69]Sundaram U., Hedman B., Hodgson K., et al. Spectroscopic investigation of peroxide binding to the trinuclear copper clu intermediate and relevance to catalysis[J]. J. Am. Chem. Soc.,1997,119(51):12525-12540
    [70]Armstrong F.A. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions[J]. J. Chem. Soc., Dalton Transactions,2002(5), 661-671
    [71]Barriere F., Ferry Y., Rcchefort D, et al. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less bio fuel cell[J]. Electrochem. Commun., 2004,6(3):237-241
    [72]Klis M., Maicka E., Michota A., et al. Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes [J]. Electrochim. Acta.,2007,52(18): 5591-5598
    [73]Palmore G., Kim H. Electro-enzymic reduction of dioxygen to water in the cathode compartment of a biofuel cell[J]. J. Electroanal. Chem.,1999,464(1):110-117
    [74]Liu Y, Qu X.H., Dong S.J., et al. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite[J]. Biosens. Bioelectron.,2006,21(12):2195-2201
    [75]鞠烷先.电分析化学与生物传感技术[M].北京:科学出版社,2006:191
    [76]Xiao Y., Ju H.X., Chen H.Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cystamine monolayer[J]. Anal. Chim. Acta,1999,391(3):73-82
    [77]Nicholson R. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics [J]. Anal. Chem.,1965,37(11):1351-1355
    [78]Soukharev V., Mano N., Heller A. A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V[J]. J. Am. Chem. Soc.2004, 126(27):8368-8369
    [79]Klis M., Karbarz M., Stojek Z., et al. Thermoresponsive poly(N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes [J]. J. Phys. Chem. B. 2009,113(17):6062-6067
    [80]孙冬梅,蔡称心,邢巍,等.含铜氧化酶在活性炭上的固定及直接电化学[J].科学通报,2004,49(17):1722-1724
    [81]Qiu J.D., Xue H.Y., Liang R.P. Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application[J]. Microchim. Acta,2008,162(1-2): 57-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700