激光诱导水击穿阈值的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对激光诱导水击穿阈值的计算,从理论上研究了激光与液体物质相互作用过程中的击穿模型,并建立了两种不同的计算模型,在此基础上对击穿辐射阈值做了理论计算,对计算结果进行了分析及与前人的实验结果进行了比较。
     根据对激光与液体介质相互作用引起光学击穿的机制的分析,在此基础上建立了一级模型,得到了三种光学击穿阈值,并对实际阈值的确定进行了分析。同时在自由电子速率方程的基础上建立了另一种模型,并根据多光子电离和雪崩电离的形成条件以及作用对自由电子速率方程进行了适当的简化,然后通过自由电子密度速率方程的数值解的计算来确定水的激光光学击穿阈值。对两种模型所计算出来的理论结果与实验所测得的结果进行了比较,从而比较了两模型的优点与缺陷,同时发现其结果与波长为可见光和近红外波段,脉宽为纳秒级、皮秒级和飞秒级的脉冲对水的击穿阈值的实验结果相当吻合。
     将通过一级模型得到的理论计算结果与不同波段、不同脉宽的激光脉冲在纯净的水和含有杂质的水中的实验测量的击穿阈值进行了比较,从而从理论和实验两方面对光致水击穿的辐射阈值的脉宽依赖性、杂质依赖性和光斑尺寸依赖性进行了详细地讨论。
In this paper, in order to calculate the breakdown thresholds, the physical mechanism of optical breakdown induced by laser in aqueous media is analyzed and two breakdown models are built. Using these models, the breakdown thresholds are calculated in theory. Besides these values are analyzed and compared to the experimental data the researchers have given.
     According to the analysis of the mechanisms of laser induced breakdown (LIB) in aqueous liquids, the first-order model is established, and then three kinds of breakdown thresholds is obtained. In addition, the selection of practical threshold is discussed. Another model based on the rate equation formalism for free electron generation is established. As the formative conditions of multiphoton ionization and avalanche ionization, the rate equation formalism is simplified reasonably. And then the breakdown thresholds are obtained by calculating the numerical value of the rate equation formalism of free electron density generation. Comparing these results with the values gained through the previous experiments, the merits and defects of the two models are proposed. In addition, these results are comparatively corresponded with the measured threshold for visible and near-infrared pulse LIB with nanosecond, picosecond and femtosecond pulsewidths regimes.
     Comparing the calculating values through the first order model with the measured thresholds with various wavelengths and various pulsewidths both in pure and impure water, pulsewidth and impurity dependence, wavelength dependence and the spot size dependence of the LIB threshold are discussed in theory and experiment.
引文
[1]赵青,刘述章,童洪辉编著.等离子体技术及应用.第1版.北京:国防工业出版社,2009
    [2]陆建,倪晓武,贺安之著.激光与材料相互作用物理学.第1版.北京:机械工业出版社,1996
    [3]陈笑.高功率激光与水下物质相互作用过程与机理研究.博士论文,2004
    [4]郑开春编著.等离子体物理.第1版.北京:北京大学出版社,2009
    [5]陈金忠,史金超,张晓萍.激光等离子体光谱法定量分析土壤中的Fe和Ti[J].应用激光.2007,27(01):33-36
    [6]张翼,郑志远,鲁欣等.激光等离子体微推进技术研究进展[J].科技导报.2007,25(19):70-74
    [7]郑志远,张翼,吴秀文,鲁欣等.激光等离子体推进技术研究新进展[J].物理.2007,36(03):236-240
    [8]熊建文,刘桂香,陈丽等.激光等离子体诱导蚀除眼内病理组织的机理分析[J].激光杂志.2005,26(01):69-72
    [9]刘桂香,熊建文,陈丽等.眼组织细胞内的激光等离子体诱导蚀除[J].激光生物学报.2004,13(05):364-368
    [10]A. Vogel. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Ⅰ:Plasma transmission, scattering, and reflection. IEEE J.Quantum Electron.1996: 861-871
    [11]Sliney, D. H. In:Laser-Inflicted Eye Injuries:Epidemiology, Prevention and Treatment. Proc. SPIE,1996:2674
    [12]卞保民,陈笑,夏铭等.液体中激光等离子体冲击波波前传播特性研究及测试[J].物理学报.2004,53(02):508-513
    [13]李定,陈银华等编著.等离子体物理学.第1版.北京:高等教育出版社.2006[14] M.Sparks. Theory of laser heating of solids:Metals. Applied Physics[J].1976,47(3): 837-849
    [15]A.D.Boardmna, B.Cresswell, J.Anderson. An analytical model for the laser ablation of materials. Applied Surface Science.1996:96-98,55-60
    [16]P.E.Nielsen. High-intensity Laser-matter coupling in vacuum. Applied Physics[J].1997, 50(6):3938
    [17]James G.Lunney, Rory Jordan. Pulsed laser ablation of metals. Applied Surface Science. 1998:127-129,941-946
    [18]A.G Gendovets, A. V. Gusarow, and I.Smurov, A model for nanoparticles synthesis by pulsed laser evaporationJ.Phys.1999 (32):2162
    [19]N.M.Bulgkaova, A.V.Bulgkaov. Pulsed laser ablation of solids:transition from normal vaporization to phase explosion. Applied Physics [J].2001 (73):199-208
    [20]Duanming Zhang, Dan Liu. A new model of pulsed laser ablation and plasma shielding. Physics [J].2005(365):82-87
    [21]Annemie Bogaerts*, Zhaoyang Chen et. Laser ablation for analytical sampling:what can we learn from modeling? Spectrochimica Acta.2003(58):1867-1893
    [22]Annemie Bogaerts, Zhaoyang Chen. Effect of laser parameters on laser ablation and laser-induced plasma formation:A numerical modeling investigation. Spectrochimicaa Acta Part B.2005:1280-1307
    [23]Benxin Wu, Yung C. Shin. Modeling of nanosecond laser ablation with vapor plasma formation. Applied Physics [J].2006 (99):8431
    [25]肖刚,张建泉,罗吉庭.激光等离子体形成过程的数值模拟.中国激光.1997,24(11):1017-1022
    [20]屠琴芬,俞汉清.强激光等离子体耦合效应的数值模拟.强激光与粒子束.1997,9(3):391-395
    [26]倪晓武,王文中.激光等离子体流场的数值模拟.光电子激光.1998,9(2):146-149
    [27]钟志成,李智华等.脉冲高能准分子激光烧蚀块靶产生等离子体的动力学过程的差分模拟.强激光与粒子束.2001.13(3):317-320
    [28]傅喜泉,郭弘等.等离子体中X射线激光传输与电子密度诊断的理论及数值比较.物理学报.2002.51(6):1326-1331
    [29]李明,张宏超.激光导致水击穿和等离子体形成过程的物理分析.光子学报.2005,34(11):1610-1614
    [30]C.David, P.V. Avizonis, H.Weickel, C.Bruce, and K.D.Pyatt, Density and temperature of a laser induced plasma. IEEE J. Quantum Electronic.1966,2(9):493
    [31]K.Dick, H.Pepin, J.Martineau, K.Parbhakar, A.Thibaudeau. Plasma creation from thin aluminum targets by a TEA-CO2 laser. Applied Physics [J].1973,44(7):3284
    [32]A.N.Pirri, R.G.Root, P.K.S.Wu. Plasma energy transfer to metal surfaces irradiated by pulsed lasers. AIAA[J].1978,16(12):1296
    [33]H.C.Liu, X.L.Mao, J.H.Yoo, R.E.Russo. Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon. Spectrochimica Acta Part B 1999,54:1607-1624
    [34]Yoshiro ITO, Isamu OGURO, and Susumu NAKAMURA. Nanosecond laser ablation of metals in gases observed by photoacoustic and imaging techniques. SPIE.2000,4065: 461-469
    [35]王公堂,王象泰、满宝元、许炳章、梅良模.激光烧蚀铝靶生成空气等离子体的机 理.原子与分子物理学报.1996,13(2)163-169
    [36]邹彪,陈建平.强激光等离子体有关物理量的声学测量.激光技术.2000,24(6):366-369
    [37]丰善,李文洪等.用脉冲激光全息干涉术测量稠密等离子体电子密度分布.光子学报.2001,30(11):1339-1342
    [38]李玉同,汪文勉等.飞秒激光等离子体的光学诊断.中国科学,A辑.2001.31(1):85-89
    [39]孙承伟,陆启生,范正修,陈裕泽,李成富,关吉利,关崇文.激光辐照效应.第1版.北京:国防工业出版社.2002
    [40]唐华,郭弘等.用脉冲激光全息干涉术测量稠密等离子体电子密度分布超短强激光在等离子体隧道中传输的理论与数值模拟研究.物理学报.2003,53(9):2170-2175
    [41]郝作强,俞进等.用声学诊断方法测量激光等离子体通道的长度和电子密度.物理学报.2005,54(3):1290-1294
    [42]林兆祥等,激光大气等离子体的电子密度空间分布特性研究.光谱学与光谱分析,2007,27(1):18-22
    [43]李静等,激光烧蚀硬铝产生等离子体温度和力学效应测量.强激光与粒子束,2007,19(2):251-254
    [44]马燕云,常文蔚,银燕等.激光导致等离子体空泡及高速离子产生的粒子模拟研究[J].高压物理学报.2002,16(02):147-151
    [45]胡强林.对强激光等离子体相互作用过程中若干问题的理论研究.硕士学位论文,2004
    [46]白顺波.微波法诊断激光等离子体研究.硕士学位论文,2006
    [47]张家泰.超强超短激光脉冲与物质相互作用[D].北京:中国工程物理研究院北京研究生部,2000
    [48]张晓萍,陈金忠,郭庆林等.激光等离子体光谱分析技术的发展现状[J].光谱学与光谱分析.2008,28(3):656-662
    [49]李静,林长贺,李胜利.激光等离子体光谱测量影响因素分析[J].光谱学与光谱分析.2005,25(12):1906-1907
    [50]刘笑兰,刘三秋,杨小松.激光等离子体中的强朗缪尔湍动谱分析[J].核聚变与等离子体物理.2008,28(2):126-128
    [51]曹莉华.超短脉冲超强激光等离子体中新的能量吸收机制[J].物理.1999,28(06):56-58
    [52]赵青,刘述章,童洪辉等著.等离子体技术及应用.第1版.北京:国防工业出版社,2009
    [53]李定,陈银华,马锦秀,杨维纮编著.等离子体物理学.第1版.北京:高等教育出版 社,2006
    [54]李玉同.超短超强激光与等离子体相互作用研究.博士后论文,2003
    [55]Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B.A. Rockwell and C. R. Thompson, IEEE J. Quantum Electron.1997 (33):127
    [56]Kennedy, P. K., Wright, E. M., Feng, Q. Cook, K. Hammer, D. X. Thompson, C.R. Moloney, J. V. Rockwell, B. A. Druessel, J. J. and Newell, A. C. In:Laser-Tissue Interaction VII. S.L. Jacques. SPIE.1996:390
    [57]强希文,朱润合,张建泉,刘峰.激光等离子体的非线性逆轫致吸收[D].大连:第九届全国等离子体科学技术会议论文集,1999
    [58]P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G.D. Noojin, and W. P. Roach. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media-Part Ⅱ:Comparison to experiment. IEEE J. Quantum Electron.1995(31):2250~2257
    [59]A. Vogel. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Ⅰ:Plasma transmission, scattering, and reflection. IEEE J.Quantum Electron.1996: 861~871
    [60]Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B.A. Rockwell and C. R. Thompson, IEEE J. Quantum Electron.1997 (33):127
    [61]李玉同,张杰,盛政明等.飞秒激光脉冲和液体等离子体相互作用产生的高能电子特性研究[J].物理.2003,32(9):572-576
    [62]Paul K. Kennedy, Daniel X. Hammer. Laser-induced breakdown in aqueous media. Prog. Quant.Electr.1997,21 (3):155-248
    [63]P. K. Kennedy, IEEE J. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media-Part Ⅱ:Comparison to experiment. Quantum Electron.1995 (31):2241
    [64]P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin and W. P. Roach. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media-Part Ⅱ:Comparison to experiment. IEEE J. Quantum Electron.1995 (31):2250
    [65]F. Docchio, L. Dossi and C. A. Sacchi. Study of the temporal and spatial dynamics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses 1-nalysis of the plasma starting times. Lasers Life Sci.1986:87
    [66]C. A. Sacchi. J. Structural studies of biological via laser fluorescent micro-irradiation. Opt. Sot. Am. B.1991 (8):337
    [67]H. B. Bebb and A. Gold. Semicond. Semimet. Phys. Rev.1966,143
    [68]况龙钰,王传珂,王哲斌.激光等离子体电子密度诊断数据处理程序[J].兵工自动化.2006,25(03):88-89
    [69]Shen, Y. R., John Wiley and Sons. The Principles of Nonlinear Optics. New York,1984: 528-539
    [70]C. P. Cain, C. D. DiCarlo, B. A. Rockwell, P. K. Kennedy:G. D. Noojin, D. J:Stolarski, D. X. Hammer, C. A. Toth and W. P. Roach, Graefe's Arch. Clin. Exper. Ophthalmol.1996: 234
    [71]陈明,盛政明,郑君等.粒子模拟程序的发展及其在激光等离子体相互作用研究中的应用[J].计算物理.2008,25(1):43-50
    [72]张海鸥,王琨,王桂兰.激光等离子体相互作用的数值模拟[J].强激光与粒子束.2007,19(12):2039-2042
    [73]刘占军,朱少平,曹莉华,郑春阳.利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用[J].物理学报.2007,56(12):7084-7089
    [74]邹彪.计算激光等离子体参数的数学模型[J].数学的实践与认识.2004,34(07):10-11
    [75]K.Nahen, A. Vogel. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Ⅱ:Plasma transmission, scattering, and reflection. IEEE J.Quantum Electron,1996:861~871,
    [76]Joachim Noack, Alfred Voge. Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales Calculation of Thresholds, Absorption Coefficients, and Energy Density. IEEE J. Quantum Electron,1999(35):1155~1167
    [77]林长贺,李静.激光等离子体光谱法测定水溶液中钠[J].光谱实验室.2005,22(02):336-368
    [78]李静,张鉴秋,李胜利.激光等离子体光谱法用于测量硬质合金中钴含量[J].光谱学与光谱分析.2006,26(12):2323-2325
    [79]李静,林长贺,李胜利.激光等离子体光谱法用于测量水溶液中钙的浓度[J].光谱学与光谱分析.2006,26(05):944-946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700