等离子体浸没离子注入空心圆柱形介质管内表面鞘层特性的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体浸没离子注入(plasma immersion ion implantation,简称PⅢ)是一种新的离子注入工艺,具有成本低、操作简单、可以处理复杂形状样品等优点,在近年来受到了很多材料工程师和科研学者的青睐,并得到广泛的工业应用,比如材料表面改性、计算机芯片制造流程中的元素掺杂、绝缘体上的硅等。在实际应用中,空心圆柱形介质管内表面的离子注入问题比较复杂,一方面由于介质材料的导电性差导致电荷在表面积累而出现充电效应;另一方面由于放置在等离子体中的空心圆管相对表面的鞘层会随着时间的演化出现重叠,从而导致较低的离子注入剂量和注入能量。为解决上述问题,有必要从理论上深入研究空心圆柱形介质管PⅢ过程中鞘层的演化特性。因为在材料表面形成的鞘层的特性直接影响被加工材料的性能。并且,理论研究的结果可以揭示离子注入过程的物理机理,为实际离子注入工艺的优化提供一定的参考。
     本文主要采用流体动力学方法,对空心圆柱形介质管的内表面PⅢ过程中鞘层扩展规律进行了数值模拟研究,分析讨论了各种参数对鞘层演化过程的影响。
     首先,采用一维无碰撞流体动力学方法对圆柱形介质管内表面的PⅢ鞘层演化进行了数值模拟,得到了鞘层演化的规律,并且进一步讨论了各参数对注入效果的影响。结果表明,等离子体浸没离子注入圆柱形介质管内表面过程中,在脉冲持续时间内鞘层向中心电极方向扩展,在脉冲下降沿鞘层塌缩下来。在相同的参数条件下,与金属靶相比,介质靶表面附近的鞘层厚度变薄;在介质表面存在电荷积累引起的充电效应,这降低了介质表面电势和离子注入能量;各种参数对离子注入产生了一定影响,在实际注入工艺中,为了减小充电效应的影响,应尽量采用较薄的介质薄膜,同时适当延长脉冲上升时间和缩短脉冲下降时间。
     其次,本文采用双离子流体模型分析讨论了不同离子成分比对薄膜介质靶材鞘层演化的影响。结果显示,随着N+离子成分的增加,充电效应会越发明显。在实际的离子注入工艺中,为了抑制充电效应和增加离子注入剂量,应尽可能提高N2+离子的成分。
     最后,我们研究了施加轴向强磁场时圆柱形介质管内表面PⅢ鞘层时空演化规律,并揭示了轴向磁场的引入对鞘层演化特性的影响。结果表明,轴向磁场的引入,不会改变离子能量,但是会使径向离子能量和角向离子能量发生相互转移。轴向磁场的引入产生了角向离子速度,同时轴向磁场越强,径向离子能量分布高能峰越向低能量区移动。
Plasma immersion ion implantation (PⅢ) is a new ion implantation processing, which possesses many advantages such as low costs, simple operation and the capability of processing complex-shaped objects etc. Presently, plasma immersion ion implantation as a new method is regarded by some material engineers and researchers. And it has been applied extensively in industry, such as the modification of materials, doping in the course of the manufacture of CMOS chip and silicon on insulating (SOI). In the actual application, the modification of the inner surface of a cylindrical dielectric tube is very complex. On the one hand, there exist the charging effects as a result of the charge accumulation at the dielectric surface because of low electrical conductivity of the dielectric. On the other hand, owning to overlapping of the converging plasma sheaths from the surfaces inside the hollow cylindrical dielectric tube in the plasma, thus makes the implant dose and energy decrease. In order to solve above problems, it is of necessity to investigate theoretically the sheath evolution next to the inner surface of a hollow cylindrical dielectric tube during the PⅢprocessing. Because the characteristics of the plasma sheath formed near the surface of the processed materials directly affect the final properties of the target materials in PⅢ. And then, theoretical research results can reveal the physical mechanism of ion implantation and provide some guidance for the actual processing of ion implantation optimization.
     In this thesis, we mainly adopt the fluid model to study the principles of PⅢand the expansion of the sheath in the inner surface of a hollow cylindrical dielectric tube. The influences of many parameters on the PⅢare then discussed.
     First of all, we apply the one-dimensional collision-less fluid sheath model to study the expansion dynamics of plasma sheath in the inner surface of a cylindrical dielectric tube. Then we can get the characteristics of sheath evolution, and the influence of other parameters including the thickness of dielectric-film, the shapes of pulse etc. on the ion implantation is disclosed in detail. It is disclosed that in the course of PⅢinto the cylindrical dielectric tube, the sheath expands towards the auxiliary central electrode in the pulse duration, and in the pulse fall time, the sheath collapses. Under the same parameters, the sheath near the dielectric surface is thinner than that near the metal surface. There exist the charging effects because of charge accumulation at the surface of dielectric, which decrease the dielectric surface potential and the ion implant energy. Various parameters have certain influence on the ion implantation. In the actual processing, we can thin the dielectric film and at the same time adopt suitably longer pulse rise time and shorter pulse fall time in order to reduce the influence of the charging effects.
     In the next place, we develop a two-ion fluid model describing nitrogen molecular ions N2+ and atomic ions N+ to investigate the influence of ion species ratio on the expansion dynamics of plasma sheath with dielectrics during PⅢ. The numerical results demonstrate that more atomic ions N+ in the plasma can make the charging effects increase. In the actual ion implantation, we had better raise the nitrogen molecular ions N2+ in PⅢwith dielectric-film in order to weaken the charging effects and improve the dose of ion implantation.
     In the end, we study the sheath evolution when applying strong magnetic field in the axis of the cylindrical dielectric tube, and the effects of strong magnetic field on the characteristics of sheath evolution are investigated. The results indicate that the ion energy would remain unchanged when introducing the magnetic field in the axis of a cylindrical dielectric tube. However, the magnetic field makes the ion energy shift between the radius direction and angle direction. The introduction of magnetic in the axis makes the ion velocity in the angle direction appear. At the same time, with increasing the strength of magnetic field, the high energy peak of ion energy distribution in the radius direction would move towards the low energy section.
引文
[1]胡海天.用等离子体源离子注入法提高金属表面耐蚀性[J].材料保护,1995,28(2):26-28.
    [2]Yang B, Townsend P D, and Fromknecht R. Radioluminescence detection of bulk effects in SrTiO3 induced by surface ion implantation[J]. Nucl. Instrum. Methods Phys. Res. B. 2004,217(1):60-64.
    [3]Hubler 0 K and Smidt F A. Application of ion implantation to wear protection of materials[J].Nucl. Instrum. Methods Phys. Res. B,1985,7-8(1):151-157.
    [4]Huler G K. Ion Implantation and Ion Beam Processing of Materials[J]. New York; North-Holland,1983.
    [5]Conrad J R, Radtke J L, and Dodd R A et al. Plasma source ion-implantation technique for surface modification of materials[J].Appl. Phys.,1987,62(11):4591-4596.
    [6]陈英方,刘烈元等.等离子体源离子注入:一种用离子束进行材料改性的新方法[J].国外金属加工,1991,02:24-29.
    [7]Matossian J N. Plasma ion implantation technology at Hughes Research Laboratories[J]. Vac. Sci. Technol. B,1994,12 (2):850-853.
    [8]Lacoste A, Le Coeur F, and Arnal Y et al. PBIIprocessing of dielectric layers:Physical aspects limitations and experimental results[J]. Surf. Technol. 2001,135(2/3):268-273.
    [9]N. Sakudo, H. Endo, R. Yoneda, Y. Ohmura, N. Ikenaga. Gas-barrier enhancement of polymer sheet by plasma-based ion implantation[J]. Surface & Coatings Technology,2005,196:394-397.
    [10]N. Sakudo, D. Mizutani, Y. Ohmura, H. Endo, R. Yoneda, N. Ikenaga, H. Takikawa. Surface modification of PET film by plasma-based ion implantation[J]. Nuclear Instruments and Methods in Physics Research B,2003,206:687-690.
    [11]Ueda M, Kostov K G, and Beloto A F et al. Surface modification of polyethylene terephthalate by plasma immersion ion implantation[J]. Surf. Coat. Tech.,2004, 186:295-298.
    [12]N. Sakudo, T. Shinohara, S. Amaya, H. Endo, S. Okuji, N. Ikenaga. Ion implantation into concave polymer surface[J]. Nuclear Instruments and Methods in Physics Research B.2006,242:349-352.
    [13]S. Okuji, M. Sekiya, M. Nakabayashi, H. Endo, N. Sakudo, K. Nagai. Surface modification of polymeric substrates by plasma-based ion implantation[J]. Nuclear Instruments and Methods in Physics Research B,2006,242:353-356.
    [14]Tanaka T, Yoshida M, and Shinohara M et al. Diamond like carbon deposition on plastic films by plasma source ion implantation[J].Vac. Sci. Technol. A, 2002,20(3),625-633.
    [15]S. Mandl, R. Sader, G. Thorwarth, D. Krause, H. F. Zeilhofer, H. H. Horch and B. Rauschenbach, Investigation on plasma immersion ion implantation treated medical implants[J]. Biomolecular Engineering,2002, (2-6):129-132.
    [16]Qian X Y, Cheung N W, and Lieberman M A et al. Plasma immersion ion implantation of SiF4 and BF3 for sub-100 nm P+/N junction fabrication[J]. Appl. Phys. Lett. 1991,59:348-350.
    [17]Sheng T, Felch S B, and Cooper C B. Characteristics of plasma doping system for semiconductor device fabrication[J].J. Vac. Sci. Technol. B,1994,12(2):969-972.
    [18]Mizuno B, Nakayama I, and Tahase Metal. Plasma doping for silicon[J].Surf. Coat. Tech.,1996,85:51-55.
    [19]Felch S B, Fang Z, and Koo B W et al. n+/p ultra-shallow junction formation with plasma immersion ion implantation[J]. Surf. Coat. Tech.,2002,156(1-3):229-236.
    [20]Liu J B, Iyer S S K, Hu C, et al. [J].Appl Phys Lett,1995,67(16):2361.
    [21]Lu X, Iyer S S K, et al.[J].Appl Phys Lett,1997,70(13):1750.
    [22]Lu X, Iyer S S K, et al.[J].IEEE Intl[C]. SIO Conf Proc,1996.48-49.
    [23]Lu X. Ph D Dissertation[C]. Berkeley:University of California,1997.
    [24]Liu J B, Iyer S S K, and Hu C Metal. Formation of buried oxide in silieon using separation by plasma implantation of oxygen[J]. APPl. Phys. Lett.,1995,67:2361-2363.
    [25]Wang X, Chen M, and Chen J et al. Novel approaches for low cost fabrication of SOI[J].Current Applied Physics,2001,1:225-231.
    [26]Lu X, Iyer S S K, and Liu J B et al. Separation of plasma implantation of oxygen to form silicon on insulator[J]. Appl. Phys. Lett.,1997,70:1748-1750.
    [27]Iyer S S K, Lu X, and Liu J B et al. Separation by Plasma Implantation of Oxygen(SPIMOX) Operational Phase Space[J]. IEEE Trans. Plasma Sci.,1997,25: 1128-1135.
    [28]Lu X, Cheung N W, and Strathman M D et al. Hydrogen induced silicon surface layer cleavage[J].Appl. Phys. Lett.,1997,71:1804-1806.
    [29]Lu X, Iyer S S K, and Hu C M et al. Ion-cut silicon-on-insulator fabrication with plasma immersion ion implantation[J]. Appl. Phys. Lett.,1997,71:2767-2769.
    [30]Chu P K, Qin S, and Chan C et al. Instrumental and Process Considerations for the Fabrication of Silicon-on-Insulators(SOI) Structures by Plasma Immersion Ion Implantation[J]. IEEE Trans. Plasma Sci.,1998,26:79-84.
    [31]张正模.利用PSII进行管材内表面改性[J].等离子体应用技术快报,1997,5:5-6.
    [32]Liberman M A. Model of plasma immersion ion implantation[J]. Appl Phys, 1989,66(7):2926-2927.
    [33]Scheuer J T, ShamimM, Conrad J R. Model of plasma source ion implantation in planar, cylindrical, and spherical geometries[J]. Appl Phys,1990,67(3):1241-1245.
    [34]Xia Z Y, Chan C. Modeling and experiment on plasma source ion implantation[J]. Appl Phys,1993,73(8):3651-3656.
    [35]M. Yoshida, T. Tanaka, M. Shinohara, S. Watanabe, J. W. Lee and T. Takagi. Improvement of oxygen barrier of polyethylene terepthalate film by plasma-source ion implantation of carbon[J]. J. Vac. Sci. Technol. A,2002,20(5):1802-1807.
    [36]Hyuneui Lim, Yeonhee Lee, Seunghee Han, Youngwoo Kim, Jeonghee Cho, Kang-jin Kim. Reduction in surface resistivity of polymers by plasma source ion implantation[J]. Surface and Coatings Technology,2002,160:158-164.
    [37]Yeonhee Lee, Seunghee Han, Jung-Hye Lee, Jung-Hyeon Yoon, Hyun Eui Lim, and Kang-jin Kim. Surface studies of plasma source ion implantation treated polystyrene[J]. J. Vac. Sci. Technol. A,1998,16(3):1710-1715.
    [38]C. Z. Gong, Z. T. Zhu, J. W. Shi, S. Q. Yang, X. B. Tian, P. K. Chu. Plasma immersion ion implantation of cylindrical bore using self-excited radio-frequency glow discharge[J]. Surface & Coatings Technology,2010.
    [39]马国佳,吴志猛,李新,邓新绿,徐军,唐祯安.等离子体源离子注入法制备类金刚石薄膜[J].材料保护,2003,36:5.
    [40]张谷令,王久丽,杨武保,范松华,刘赤子,杨思泽.内表面栅极等离子体源离子注入TiN薄膜及其特性研究[J].物理学报,2003,52:9.
    [41]T.Sheng, S. B. Felch, and C. B. Cooper. [J]. J. Vac. Sci. Technol. b,1994,12 (2):969-972.
    [42]W. L. Liu, Fabrication of SOI material Using Epitaxial Layer Transfer of Porous Silicon and Luminescence Study of Modified Porous Silicon[J]. doctoral thesis,2002,5:81.
    [43]P. K. Chu and C. Chan, Applications of plasma immersion ion implantation in microelectronics-a brief review[J]. Surf. Coat. Technol.,2001,136:151-156.
    [44]Emmert G A, Henry M A. Numerical simulation of plasma sheath expansion, with applications to plasma source ion implantation[J]. Appl Phys,1992,71(1): 113-117.
    [45]Shamim M, Scheuer J T, Conrad J R. Measurments of spatial and temperal sheath evolution for spherical and cylindrical geometries in plasma source ion implantation[J]. Appl Phys,1991,69(5):2904-2908.
    [46]Hong M P, Emmert G A. Two-dimensional fluid modeling of time-dependent plasma sheath[J]. Vac Sci Technol B,1994,12(2):889-896.
    [47]Sheridan T E. Pulsed-sheath ion dynamics in a trench[J]. Phys D:Appl Phys,1995, 28:1094-1098.
    [48]D.Z.Wang, T. C. Ma and X.L.Deng. Model of collisional sheath evolution in plasma source ion implantation[J]. Appl.Phys.,1994,75(3),1335.
    [49]D.Z.Wang, T. C. Ma and X.L.Deng. A Monte Carlo simulation model for plasma source ion implantation[J]. Appl. Phys.,1993,73(9),4171.
    [50]J.Liu, G. L. Huppert and H. H. Sawin. Ion Bombardment in RF Plasmas [J]. Appl. Phys. 1990,68,3916.
    [51]B. E. Thomopson, H. H. Sawin and D. A. Fisher. Monte Carlo simulation of ion transport through rf glow-discharge sheaths[J]. Appl. Phys.,1988,63,2241.
    [52]Birdsall C K, Langdon A B. Plasma Physics Via Computer Simulation[J]. New York: McGraw-Hill,1985.
    [53]Hockney R W, Eastwood J W. Computer Simulation Using Particles[J]. New York: McGraw-Hill,1981.
    [54]Sheridan T E. Ion focusing by an expanding, two-dimensional plasma sheath[J]. Appl Phys Lett,1996,68(14):1918-1920.
    [55]Lacoste A, Le Coeur F, and Arnal Y et al. PBII processing of dielectric layers:Physical aspects limitations and experimental results[J]. Surf. Coat. Technol.,2001,135(2/3):268-273.
    [56]Zhang W, Wu Z W, and Liu C L et al. Experimental and theoretical investigation of the effects of sample size on copper plasma immersion ion implantation into polyethylene[J].J. Appl. Phys.,2007,101:113302:1-5.
    [57]Emmert G A. Model for expanding sheaths and surface charging at dielectric surfaces during plasma source ion implantation[J].J.Vac. Sci. Technol. B,1994,12(2): 880-883.
    [58]En W and Cheung N W. Modeling of effects on in Plasma Immersion Ion Implantation [J].Nucl. Instrum. Methods Phys. Res. B,1995,96:435-439.
    [59]Qin S, Bernstein J D, and Zhao Z et al. Charging effects in plasma immersion ion implantation for microelectronics [J].J. Vac. Sci. Technol. B,1995,13(5): 1994-1998.
    [60]Linder B P and Cheung N W. Plasma immersion ion implantation with dielectric substrates[J]. IEEE Trans. Plasma Sci.,1996,24(6):1383-1388.
    [61]En W, Linder B P, AND Cheung N W. Modeling of oxide charging effects in plasma processing[J].J. Vac. Sci. Technol. B,1996,14(1):552-559.
    [62]X. B. Tian, K. Y. Fu, P. K. Chu, S.Q.Yang. Plasma immersion ion implantation of insulating materials[J]. Surface & Coatings Technology,2005,196:162-166.
    [63]Xiubo Tian, Ricky K. Y. Fu, Junying Chen, Paul K.Chu, Ian G. Brown. Charging of dielectric substrate materials during plasma immersion ion implantation[J]. Nucl. Instr. and Meth. in Phys. Res. B,2002,187:485-491.
    [64]Ricky K.Y.Fu, Paul K.Chu and Xiubo Tian. Inflence of thickness and dielectric properties on implantation efficacy in plasma immersion ion implantation of insulators[J]. J.Appl.Phys.,2004,95(7):3319-3323.
    [65]Xue-Chun Li, You-Nian Wang. Investigation of Secondary Electron Emission Effects in Plasma Immersion Ion Implantation with Dielectric Substrates[J].Thin Solid Films,2006,506-507:307-310.
    [66]Xue-Chun Li, You-Nian Wang. Effect of pulse rise time on charging effects in plasma immersion ion implantation with dielectric substrates with planar and cylindrical geometries[J]. Surface & Coatings Technology,2007,201:6569-6572.
    [67]M. Yoshida, T.Tanaka, M.Shinohara, S. Watanabe, J. W. Lee, T. Takagi. Improvement of oxygen barrier of polyethylene terepthalate film by plasma-source ion implantation of carbon[J]. Vac. Sci. Technol. A,2002,20(5):1802-1807.
    [68]Xiubo Tian, Ricky K.Y. Fu, Junying Chen, Paul K. Chu, Ian G. Brown. Charging of dielectric substrate materials during plasma immersion ion implantation[J].Nucl. Instr. and Meth. in Phys. Res. B,2002,187:485-491.
    [69]Ensinger W. An apparatus for sputter coating the inner walls of tubes[J]. Review of Scientific Instruments,1996,67(1):318.
    [70]Sheridan T E. Ion-matrix sheath in a cylindrical bore[J].Appl Phys,1993,74(8): 4903-4906.
    [71]Sheridan T E. Pulsed sheath dynamics in a small cylindrical bore[J]. Phys Plasmas, 1994,1(10):3485-3489.
    [72]Sheridan T E. Transient sheath in a cylindrical bore for finite-rise-time voltage pulses[J].Sur Coat Technol,1996,85:204-208.
    [73]Sheridan T E. Sheath expansion into a large bore[J].Appl Phys,1996,80(1):66-69.
    [74]Sun M, Yang S Z, Li B. New method of tubular material inner surface modification by plasma source ion implantation[J]. J Vac Sci Technol A,1996,14(2):367-369.
    [75]Sun M, Yang S Z, Chen X C. Measurements of spatial and temporal sheath evolution inside tubular material for inner surface ion implantation[J].J Vac Sci Technol A,1996,14(6):3071-3074.
    [76]YANG Size, ZHANG Guling, WANG Jiuli, LIU Bin, FAN Songhua, YANG Wubao, LIU Yuanfu. Review of Progress on the study of Tubular Inner Surface Modification by Ion lmplantation[J]. Science Technology and Engineering,2003,3(6):594-600.
    [77]Xuchu Zeng, Tat-Kun Kwok, Aiguo Liu, Paul K. Chu, Baoyin Tang, and Terrence E. Sheridan. Plasma-Immersion Ion Implantation of the Interior Surface of a Small Cylindrical Bore Using an Auxiliary Electrode for Finite Rise-Time Voltage Pulses[J].IEEE TRANSACTIONS ON PLASMA SCIENCE,1998,26(2):175-180.
    [78]Zeng X C, Tang B Y, Chu P K. Improving the plasma immersion ion implantation impact energy inside a cylindrical bore by using an auxiliary electrode[J].Appl Phys Lett,1996,69(25):3815-3817.
    [79]Liu B, Liu C Z, Yang S Z, et al. A new method for inner surface modification by plasma source ion implantation[J]. Nucl Instr and Meth in Phys Res B,2001,184: 644-648.
    [80]Liu B, Zhang G L, Chen D J, et al. Inner surface coating of TiN by the grid-enhanced plasma source ion implantation technique[J]. J Vac Sci Technol A,2001,19(6): 2958-2962.
    [81]张谷令,王久丽,杨武保,等.内表面栅极等离子体源离子注入TiN薄膜及其特性研[J].物理学报,2003,52(9):2213-2218.
    [82]Wang J L, Zhang G L, Fan S H, et al. Pulsed ion-sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation[J]. Chin Phys Lett,2002,19(10):1473-1475.
    [83]Wang J L, Zhang G L, Fan S H, et al. Influence of grid and target radius and ion-neutral collisions on grid-enhanced plasma source ion implantation process[J]. Phys D:Appl Phys,2003,36:1192-1197.
    [84]Kyoung-Jae Chung, Soon-Wook Jung, Jae-Myung Choe, Gon-Ho Kim, and Y. S. Hwang. Self-consistent circuit model for plasma source ion implantation[J].Rev. Sci. Instrum.,2008,79:1-5.
    [85]Shamim M M, Scheuer J T, and Fetherston R P et al. Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation[J]. Appl. Phys. 1991,70(9):4756-4759.
    [86]宫野.计算物理,大连,大连工学院出版社,1987年,P 128-134.
    [87]Tang B Y, Fetherston R P, and Shamim M et al. Measurement of ion species ratio in the plasma source ion implantation process[J]. Appl. Phys.,1993,73(9): 4176-4180.
    [88]Wang Jiu-Li(王久丽),Zhang Gu-Ling(张谷令),Liu Yuan-Fu(刘元富),Wang You-Nian(王友年),Liu Chi-Zi(刘赤子),and Yang Si-Ze(杨思泽).Influence of ion species ratio on grid-enhanced plasma source ion implantation [J]. Chinese Physics, 2004,13(01):65-70.
    [89]D. L. Tang, R. K. Y. Fu, X. B. Tian, P.Peng, P. K. Chu. Influence of magnetic field on magnetized hydrogen plasmas in plasma immersion ion implantation[J]. Nucl. Instr. and Meth. in Phys. Res.B,2003,808-812.
    [90]T. Meziani, P. Colpo, F. Rossi. Design of a magnetic-pole enhanced inductively coupled plasma source[J]. Plasma Sources Sci. Technol.,2001,10:276-283.
    [91]D. L. Tang, R. K. Y. Fu, X. B. Tian, P. K. Chu. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation[J]. Rev. Sci. Instrum.,2003,74 (5):2704-2708.
    [92]M. Keidar,0. R. Monteiro A. Anders and I. D. Boyd. Magnetic field effect on the sheath thickness in plasma immersion ion implantation[J]. Appl. Phys. Lett.,2002,81(07): 1183-1185.
    [93]Tan IH, Ueda M, Dallaqua R, Oliveria R, Rossi JO. Magnetic field effects on secondary electron emission during ion implantation in a nitrogen plasma [J]. Appl. Phys.,2006,100:033303.
    [94]D. J. Rej, B. P. Wood, R. J. Faehl, H. H. Fleischmann. Magnetic insulation of secondary electron in plasma source ion implantation[J]. Vac. Sci. Technol. B,1994,21: 861-866.
    [95]Hamid Ghomi, Mohammadreza Ghasemkhani. Effects of strong magnetic field on plasma immersion ion implantation of dielectric substrates[J]. Vacuum,2009, 88:1427-1430.
    [96]M. Davoudabadi and F. Mashayek. Dust particle dynamics in magnetized plasma sheath[J].Physics of Plasmas,2005,12:73505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700