基于闭合磁环脉冲变压器的紧凑型高压纳秒脉冲发生器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲功率技术在国防、工业以及自然科学研究等领域得到了广泛应用,高峰值功率、高重复频率和小型化是脉冲功率系统发展的主要方向。近年来,实用型紧凑化高压纳秒脉冲发生器在国内外得到了广泛的关注。本论文通过对闭合磁环脉冲变压器、卷绕式平板脉冲形成线、高功率负载和纳秒脉冲检测器等关键部件进行理论分析、工程设计和实验研究,成功地研制了一台结构紧凑的高压纳秒脉冲发生器。这些工作对小型紧凑化高压脉冲发生器的研究具有重要指导意义。
     论文研究的主要内容包括以下四个方面:
     1.研制了一台闭合磁环高压脉冲变压器。1)提出了实现闭合磁芯式脉冲变压器高电压、高变比输出的设计方法,建立了理论计算模型,给出了变压器重要参数的计算公式,该变压器有效耦合系数为0.945。2)对变压器的磁芯饱和和磁芯损耗进行了初步分析。3)对变压器的时域和频域响应特性进行了系统的分析,建立了理论计算模型,通过电路软件模拟和实验证明:减小变压器绕组漏电感和分布电容可改善高频响应能力,陡化输出电压脉冲的前沿和后沿;增大磁化电感可明显改善低频响应能力以及增加脉冲平顶的稳定度。该变压器能较好地响应脉宽为5μs ~100μs的方波脉冲信号和频带为1 Hz ~1 MHz的重频信号。4)利用变压器对0.32 nF电容器进行充电实验,充电电压高达230 kV,升压倍数为109,验证了理论计算和分析的正确性。
     2.研制了卷绕式平板脉冲形成线。建立了关于卷绕式平板脉冲形成线的理论分析模型,对各电磁参数进行了理论计算。利用电磁场分析软件对脉冲形成线进行静电场模拟,并结合充电实验研究了形成线的耐压性能。研制的平板脉冲形成线波阻抗为3.5Ω,输出脉宽为10 ns,能承受的最高脉冲电压大于200 kV。
     3.高功率水电阻负载及纳秒脉冲检测器的研制。1)建立了水电阻负载的寄生参数理论分析模型,从理论计算、软件模拟和实验三个方面分析了寄生参数对负载波形的影响。2)通过改进低压臂电阻,研制了能够准确响应高压短脉冲信号的电阻分压器;建立了Rogowski线圈的分布参数理论分析模型,具体分析了线圈各分布参数、取样电阻的寄生参数以及阻尼电阻对线圈测量波形的影响,通过采用较大功率的无感电阻,成功地研制了脉冲前沿响应时间均小于2.5 ns的磁芯式和非磁芯式两种Rogowski线圈。
     4)研制出一台紧凑型高压纳秒脉冲发生器。该发生器主要由闭合磁环式脉冲变压器、卷绕式平板脉冲形成线、火花开关及负载组成,结构紧凑,其直径为0.22 m、长度为0.8 m、重量为30 kg。在负载匹配情形下(3.5Ω),该脉冲发生器最高输出脉冲电压为84 kV,半高全宽为9 ns,上升沿为5.1 ns;负载阻抗为50Ω时,输出波形为一锯齿波,最高输出电压为165 kV,半高全宽为68 ns,上升沿6.5 ns。目前,该高电压纳秒脉冲发生器已用于触发本实验室的高功率气体开关。
Pulsed power technology has been widely used in the fields of national defence, industry and scientific research. Development tendencies of pulsed power systems mainly include high power, high repetitive frequency and compactness. In recent years, more practical high-voltage nanosecond pulse generator with compact structure has been widely concerned by researchers in the world. A compact high-voltage nanosecond pulse generator, which consists of pulse transformer with closed magnetic core, curled parallel strip pulse forming line (CPSPFL), spark gap and powerful load resistor, is developed in this paper. Nanosecond pulse detectors are also designed. Theoretical analyses, engineering design and experiments have been carried out to study all the important parts of the pulse generator. This work is of great importance to researches on compact high-voltage pulse generator. The detailed contents are as follows.
     1. A small high-voltage pulse transformer with closed magnetic core is developed.
     1) Method of high-voltage outputs and high step-up ratio of pulse transformer with closed magnetic core is put forward. Theoretical calculations of important parameters of pulse transformer are also presented in detail. The effective coupling coefficient of transformer is 0.945. 2) Saturation and the loss of magnetic core have been analyzed. 3) Responsive characteristics of time-domain and frequency-domain of pulse transformer have been studied and theoretical calculations have been done. Results of circuital simulation and experiments show that when leakage inductances and distributed capacitances of transformer windings decrease, characteristics of high-frequency response of transformer can be improved, and the front edge and back edge of output voltage pulse of transformer can also be cut down. When magnetization inductance of transformer increases, characteristics of low-frequency response of transformer can be improved and the flat top of output voltage pulse of transformer becomes more stable. The pulse transformer can excellently respond to square pulse with pulse width ranging from 5μs to100μs and its responsive frequency band ranges from 1 Hz to 1 MHz. 4) The pulse transformer was used to charge a load capacitance of 0.32 nF and results of experiment showed that the amplitude of output voltage of transformer reached as high as 230 kV and step-up ratio is 1: 109. These results backed up theoretical calculations.
     2. A curled parallel strip pulse forming line (CPSPFL) is developed.
     Theoretical analyses of CPSPFL and calculations of important parameters are presented. Distribution of electric fields and potentials of CPSPFL is analyzed by electromagnetic software. Characteristics of high-voltage endurance of CPSPFL are also studied. The CPSPFL with impedance of 3.5Ωproduced short pulse of 10 ns and it was able to resist high voltage pulse with amplitude of 200 kV.
     3. Design of the powerful load resistor and nanosecond pulse detectors.
     1) Parasitic parameters of load resistor have been analyzed. By theoretical calculations, circuital simulation and experiment, the impacts of parasitic parameters on output waveform of load resistor have also been studied. 2) Resistant divider which detects high-voltage short pulses is developed due to the improvement of its low-voltage resistor. Theoretical analyses of distributed parameters of Rogowski coil are presented. Damped resistor, distributed parameters of Rogowski coil and parasitic parameters of sampling resistor have great impacts on output signal of Rogowski coil and these impacts are analyzed in detail. By using high-power resistor with little parasitic inductance, fast responsive Rogowski coils with magnetic core and non-magnetic core have been developed, and their responsive time to front edge of pulse are both less than 2.5 ns.
     4. The compact high-voltage nanosecond pulse generator is developed.
     The compact pulse generator consists of pulse transformer with closed magnetic core, CPSPFL, spark gap and load resistor. The diameter of the generator is 0.22 m, the length is 0.8 m and the weight is about 30 kg. To the matched load (3.5Ω), the pulse generator generated high-voltage short pulse with amplitude of 84 kV, full width at half maximum (FWHM) of 9 ns and rise time of 5.1 ns. To a load of 50Ω, the generator generated saw-tooth pulse with amplitude of 165 kV, FWHM of 68 ns and rise time of 6.5 ns. At present, the high-voltage nanosecond pulse generator has been used to trigger the trigatron and field-distortion switch in our laboratory.
引文
[1]刘锡三.高功率脉冲技术[M].国防工业出版社,北京,2005,pp:5-7.
    [2] J. C. Martin. Nanosecond pulse techniques.SSWA\JCM/703/27,AWRE England, 1970.
    [3] B. Bernstein, I. Smith. Aurora, an electron accelarator [J]. IEEE Trans on Nucl Sci, 1973, vol. 20, pp: 294-298.
    [4] J. A. Alexander, J. P. Corley, D. L. Johnson, et al. Performance of the hermes-III pulse forming lines [C]. Pulsed Power Conference 7th, 1989, pp: 575-578.
    [5] D. L. Johnson, et al. PBFA II conceptual design [C]. 4th IEEE pulsed power conference, 1983, pp: 54.
    [6] T. H. Martin, et al. PBFA II the pulsed power characterization phase [C]. 6th IEEE pulsed Power conference, 1987, pp: 225.
    [7]蒯斌,等.强光—I加速器.第八届全国高功率粒子束会议文集,2001.
    [8]张自成.紧凑重频Tesla变压器型吉瓦脉冲发生器[D].国防科学技术大学博士学位论文,长沙, 2008.
    [9]邱爱慈,李玉虎,王知广,等.强流相对论电子束加速器—闪光二号.强激光与粒子束, 2002, 14(6): 945-946.
    [10]蒯斌,邱爱慈,王知广,等.强光一号加速器.第八届高功率粒子束暨高压学术交流会论文集,西安,2001: 93-96.
    [11]李劲,戴光森,刘小平,等.“神龙一号”脉冲功率系统研制.首届强流加速器技术研讨会,四川江油,2005: 16-19.
    [12]刘金亮.基于水介质螺旋Blumlein线的紧凑型长脉冲加速器研究[D].清华大学博士学位论文,北京,2008.
    [13] S. D. Korovin, V. P. Gubanov, A. V. Gunin, et al. Repetitive nasecond high-voltage generator based on spiral forming line [C]. The 28th IEEE international conference on Plasma Science, 2001, pp: 1249-1251.
    [14]康强,常安碧,李名加,等.带脉冲形成线的1.0MV 100HZ紧凑型Tesla变压器的研制[J].强激光与粒子束, 2006, 18(3): 451-454.
    [15] Mesyats G. A., Korovin S. D., Gunin A. V., et al., Repetitively pulsed high-current accelerators with transformer charging of forming lines, Laser and Particle Beams, 2003, 21: 197–209.
    [16] Andreev Yu. A., Gubanov V. P., Efremov A. M., Koshelev V. I., Korovin S. D., Kovalchuk B. M., Kremnev V. V., Plisko V. V., Stepchenko A. S. and Sukhushin K. N., High-power ultrawideband radiation source, Laser Part. Beams, 2003, 21: 211–217.
    [17] Korovin S. D., Rostov V. V., High-current nanosecond pulse-periodic electronaccelerators utilizing a Tesla transformer, Russian Physics Journal, 2006, 39(12): 1177–1185. (Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, 1996, No. 12: 21–30)
    [18] Gubanov V. P., Korovin S. D., Pegel I. V., et al., Compact 1000 pps high-voltage nanosecond pulse generator, IEEE Transactions on Plasma Science, 1997, 25(2): 258–265.
    [19] Gubanov V. P., Gunin A. V., Korovin S. D., et al., Periodically pulsed high voltage generator based on Tesla transformer and spiral forming line, IEEE Conference Pulsed Power Plasma Science, 2001: 336.
    [20] Mesyats G. A., Korovin S. D., Rostov V. V., Shpak V. G., and Yalandin M. I., The RADAN series of compact pulsed power generators and their applications, Proceedings of the IEEE, 2004, 92(7): 1166–1178.
    [21] Eltchaninov A. S., Shpak V. G., Urike Y. Y., and Yalandin M. I., RADAN-150 and RADAN-220—A compact pulsed X-ray apparatus, Defectoscopy, 1984, (12): 68–70.
    [22] Eltchaninov A. S., Kotov A. S., Shpak V. G., Urike Y. Y., and Yalandin M. I., RADAN—A compact pulsed repetitive X-ray apparatus and electron accelerators, Electron. Tech. 4, 1987, (2): 33–37.
    [23] Mesyats G. A., Shpak V. G., Yalandin M. I., and Shunailov S. A., Compact high-current repetitive pulsed accelerators, Proc. 8th IEEE Int. Pulsed Power Conf., 1991: 73–77.
    [24] Mesyats G. A., Shpak V. G., Yalandin M. I., and Shunailov S. A., Compact high-current accelerators based on the RADAN SEF-303 pulsed power source, Proc. 9th IEEE Int. Pulsed Power Conf., 9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1993: 835–838.
    [25] Mesyats G. A., Shpak V. G., Yalandin M. I., RADAN-EXPERT portable high-current accelerator, Proc. 10th IEEE Int. Pulsed Power Conf., 1995, 539–543.
    [26] Mesyats G. A., Shpak V. G., Shunailov S. A., and Yalandin M. I., Desk-top subnanosecond pulser research, development and applications, Proc. SPIE Int. Symp.: Intense Microwave Pulses, vol. 2154, 1994: 262–268.
    [27] Gubanov V. P., Korovin S. D., and Stepchenko A. S., High voltage nanosecond generator with repetition frequency of up to 1 kHz, Prib. Tekh. Eksp., 1997, (1): 95–98.
    [28] Shpak V. G., Shunailov S. A., Yalandin M. I., and Dyad’kov A. N., The RADAN SEF-303A, a small high-current pulsed power supply, IET, 1993, 36: 106–111.
    [29] Yalandin M. I., and Shpak V. G., Compact high-power subnanosecond repetitive-pulse generators, IET, 2001, 44(3): 285–310.
    [30] Shpak V. G., Shunailov S. A., Oulmascoulov M. R., and Yalandin M. I., Synchronously operated nano- and subnanosecond pulsed power modulators, Dig.Tech. Papers of 12th IEEE Int. Pulsed Power Conf., 1999, vol. 2: 1472–1475.
    [31] Shpak V. G., Shunailov S. A., and Yalandin M. I., Investigations of compact high-current accelerators RADAN 303 synchronization with nanosecond accuracy, Proc. 10th IEEE Int. Pulsed Power Conf., 1995: 666–671.
    [32]樊亚军.高功率亚纳秒电磁脉冲产生[D].西安交通大学博士学位论文,陕西,2004.
    [33]王莹.高功率脉冲电源[M].原子能出版社,1991.
    [34] Meger R. A., et al., Application of PEOS to high power accelerator for pulse compression and power multiplication, 4th IEEE Pulsed Power Conf., 1983: 335.
    [35] Giesselmann M, Zhang J, Heeren T, et al. Pulse power condition with a transformer for an inductive energy storage system. IEEE, 1999, 1476-1479.
    [36] Zherlitsyn A G, Kanaev G G, Tsvetkov V I. A high-current nanosecond electron accelerator with inductive energy storage [J]. Instruments and Experimental Techniques, 2005, 48(5): 84-87.
    [37]李志强.新型电感储能脉冲功率源及其驱动S波段锥形MILO的研究[D].国防科学技术大学博士学位论文,长沙, 2009.
    [38] Smith I. The early history of western pulsed power [J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1585-1609.
    [39] Martin T H. Summary of the Hermes II Flash X-ray program [R]. 1969, SC-RR-69-421.
    [40]李玉虎,丘爱慈,许日. 6.4 MV Marx发生器[C].全国高功率粒子束十年文集, 1995: 157-162.
    [41] B. M. Novac, M. Istenic, J. Lou, et al. A 10 GW pulsed power supply for HPM sources [J]. IEEE Transactions on Plasma Science, 2005: 358-361.
    [42]秦卫东,李洪涛,顾元朝,等. 200 kV快脉冲Marx发生器[J].高电压技术, 2002, 28(11): 40, 51.
    [43] Grama J D, Gale D G, Sommars W E. Compact 400 kV Marx generator with common switch housing[C]. 11th IEEE International Pulsed Power Conference, 1997: 1519-1523.
    [44]高景明.陡化前沿Marx发生器及其应用研究[D].国防科学技术大学博士学位论文,长沙, 2009.
    [45] Martin B, Raymond P, Wey J. New model for ultracompact coaxial Marx pulse generator simulations [J]. Rev. Sci. Instrum., 2006, 77(4): 043505-1-7.
    [46] Bischoff R, Charon R, Duperoux J P, et al. Study of an ultra-compact, repetitive Marx generator for HPM applications [C]. Proceedings of the 2nd EAPPC, Vilnius, Lithuania, 2008.
    [47] Peterkin F E, Hankla B J, Stevens J L, et al. Compact Marx generator test system[C]. Conference Record of the 25th International Power ModulatorSymposium, 2002: 399-402.
    [48] Patrik Appelgren, Mose Akyuz, Mattias Elfsberg. Study of a Compact HPM System With a Reflex Triode and a Marx Generator [J]. IEEE Transactions on Plasma Science, 2006, 34(5): 1796-1805.
    [49] D.B. Pawelek, P.A.A.F. Wouters, A.J.M. Pemen. Design of Compact Transmission Line Transformer for High Voltage Nanosecond Pulses [J]. IEEE International Pulsed Power Conference, 1996: 522-525.
    [50] F. Davanloo, J. L. Korioth, D. L. Borovina, et al. Stacked Blumlein pulse generators [C]. IEEE International Pulsed Power Conference, 1996: 181-185.
    [51] Farzin Davanloo, Carl B. Collins, and Forrest J. Agee. High-Power, Repetitive-Stacked Blumlein Pulsers Commutated by a Single Switching Element [J]. IEEE Transcations on Plasma Science, 1998, 26(5): 1463-1475.
    [52] S. C. Kim, S. S. Park. S. H. Kim, et al. Development of air core type 500 kV HV pulse transformer[C]. IEEE Power Modulator conference,2005: 696-699.
    [53] P.Sarkar, S.W.Braidwoody, I.R. Smith, et al. A compact battery-powered 500 kV pulse generator for UWB radiation [J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1306-1309.
    [54] M. Parafiev, C. Gough, S. Ivkovic. Tesla coil design for electron gun application [J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1085-1088.
    [55] Seth Brussaard, Dmitry Vyuga. A 2.5-MV subnanosecond pulser with laser-triggered spark gap for the generation of high-brightness electron bunches [J]. IEEE Transactions on Plasma Science, 2004, 32(5): 1993-1997.
    [56] G. J. Rohwein, R. N. Lawson, M. C. Clark, et al. A compact 200kV pulse transformer system [C]. Proc. of the 8th IEEE International Pulsed Power Conf. 1991: 968-970.
    [57]刘振祥.水介质螺旋线型长脉冲加速器的研究[D].国防科学技术大学博士学位论文,长沙, 2006.
    [58]柯罗文. (Sergei D Korovin).用在强脉冲重复频率加速器中的特斯拉变压器,国外核试验技术, 1996, 19(1):1-19. (译自俄罗斯科学院西伯利亚分院托木斯克大电流论文选47期)
    [59]彭迎,阮江军,李名加.锥形绕组特快速暂态过电压分布研究[J].中国电机工程学报, 2006, 26(16): 6-14.
    [60]常安碧,康强,罗敏,张永辉,李名加,龚胜刚,苏友斌,冯弟超,赵殿林,甘延青,向飞,刘忠.变压器型重复脉冲强流电子加速器CHP01研制, 1–6 .
    [61]张永辉,常安碧,康强,罗敏,龚胜刚,李名加,李正红,马乔生,向飞,赵殿林,甘延青,刘忠.重复脉冲强流电子束源长时间稳定运行实验研究[J].强激光与粒子束, 2005, 17(5): 751–754.
    [62]康强,常安碧,李名加,苏友斌.重复高压脉冲产生与成形一体化装置研制[J].强激光与粒子束, 2008, 20(4): 701–704.
    [63] Song X. X. , Liu G. Z. , Peng J. C., et al., TPG400: a compact short pulse electron beam accelerator, The 1st Euro-Asian Pulsed Power Conference (EAPPC'06), Mianyang, 2006: 316–320.
    [64]彭建昌,宋晓欣,刘国治,等. Tesla型重频脉冲电子束加速器及其应用[C].第十届高功率粒子束学术交流会议,长沙, 2006.
    [65]马成刚,谢敏,刘云涛. 800 kV高压脉冲变压器[C].第十一届高功率粒子束学术交流会文集, 2007: 75–77.
    [66]马成刚,谢敏,刘云涛,等. 1200 kV脉冲变压器设计及实验研究[C].首届全国脉冲功率会议,安徽芜湖, 2009: 43–45.
    [67]任先文,赵君科,王保健. 200 kW烟气治理用脉冲电源的研制[J].高电压技术,2005, 31(11): 33-34, 54.
    [68] E. P. Bolshakov, V. A. Burtsev, D. V. Getman, et al. Multichannel pulse generator [J]. IEEE Transactions on Plasma Science, 2002, 30(5): 394-395.
    [69]张永辉,陈洪斌,康强。重复频率电子束源技术研究[J].高能物理与核物理, 2002, 26(8): 876-881.
    [70] R.Shuklat, A.Shyam, S.Chaturvedi, et al. A portable electron beam generator for relativistic electron beam characterization experiments [J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1318-1321.
    [71] J.O. Rossif, M. Ueda. A 100kV/200A Blumlein Pulser for High-Energy Plasma Implantation [J]. IEEE Transactions on Plasma Science, 2005, 33(5): 1037-1040.
    [72]欧阳佳.折叠型平板Blumlein线及其应用研究[D].国防科技大学博士学位论文,长沙, 2007.
    [73]李永忠,李传胪,朱晓欣.可折叠的带状Blumlein线的研究[J].国防科技大学学报, 2002, 22卷增刊: 21-23.
    [74]张同意,石顺祥,赵卫等.高效层叠平行板Blumlein脉冲产生器性能分析[J].光子学报, 2007, 36(6): 976-981.
    [75]欧阳佳,刘永贵,刘金亮.折叠型平板Blumlein线的理论与实验研究[J].强激光与粒子束, 2007, 19(6): 1044-1048.
    [76] H. A. Wheeler,‘‘Transmission-line properties of parallel strips separated by a dielectric sheet,’’IEEE Trans. Microwave Theory Tech., Mar. 1965, vol.MTT-12, pp: 172-185.
    [77]陈蒸.一种紧凑型重复频率脉冲触发源研究[D].国防科技大学硕士学位论文,长沙, 2008.
    [78]肖明珠,陈光,谈效华.一种可调的高压脉冲发生器[J].强激光与粒子束,2004, 16(5): 663-666.
    [79] B M Novac, I R Smith, S E Goh. An economic compact high voltage pulse generator [J]. The institution of electric engineers, 2000: 1-3.
    [80] D. J. Thrimawithana, U. K. Madawala and R. C. B. Woodheadt. Pulsed power generation techniques [J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2014-2019.
    [81] Fei Wang, Tao Tang, Charlie Cathey. Solid-state high voltage nanosecond pulse generator [J]. IEEE Transactions on Plasma Science, 2005, 35(5): 1199-1202.
    [82]孙蓓云,谢彦召,相辉. 50kV,1ns前沿高压脉冲源的研制[J].核电子学与探测技术, 200727(2): 280-281.
    [83]何小平,汤俊萍,孙蓓云. 60 kV同轴快沿脉冲源研制与测试[J].强激光与粒子束, 2006, 18(3): 501-504.
    [84]王新新.介质阻挡放电及其应用[J].高电压技术, 2009, 35(1): 1-16.
    [85] Boeuf J P, Plasma display panel: physics, recent developments and key issues [J]. J Phys D: Appl Phys, 2003, 36(6): R53-R79.
    [86]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社, 2003.
    [87]马成恩,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社, 2008.
    [88] Zhan Huamao, Li Chengrong, Xu Jinbao, et al. Homogeneous Dielectric Barrier Discharge in Air For Surface Treatment [J]. 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2007: 683-686.
    [89] Yong Hwan L , Won-Suk J , Yu-Ri C , et al. Application of pulsed corona induced plasma chemical process to an indust rial in incinerator [J ]. Environ Sci Technol , 2003 , 37 (11) : 2563-2567.
    [90]刘克富,赵海洋,邱剑.快脉冲放电等离子体用于难降解污水处理[J].高电压技术, 2009, 35(1): 12-16.
    [91] Masayuki Sato. Environmental and biotechnological applications of high-voltage pulsed discharges in water [J]. Plasma Sources Science and Technology, 2008, 17(7): 21-24.
    [92] Secu L, Magureanu M, Mandache N B, et al. Decomposition of methylene blue in water by corona discharges [C]. 28th ICPIG. Prague,Czech Republic, 2007: 1348-1351.
    [93] Masakazu Tanino, Wang Xilu, Kazunori Takashima, et al. Sterilization using dielectric barrier discharge at atmospheric pressure [J]. IEEE IAS, 2005: 784-787.
    [94]房俊龙,张长利,李文哲. 100 kV/cm高压脉冲电场杀菌系统设计与试验[J].中国乳品工业,2007,35(11): 38-40.
    [95] H. Bluhm. Pulsed Power Systems [M].江伟华,张弛译.北京:清华大学出版社, 2008.
    [96]李承祖,赵凤章.电动力学教程[M].长沙:国防科技大学出版社, 1993.
    [97]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社, 2000.
    [98]李士忠.高功率带绕式脉冲变压器的研究[D].国防科学技术大学硕士学位论文,长沙,2005.
    [99]王瑞华.脉冲变压器设计[M].北京:科学出版社, 1987.
    [100] H. W. Lord. Pulse transformers [J]. IEEE Trans. Magn., 1971, vol. MAG-7, no. 1, pp. 17–28.
    [101] P.M. Ranon. Compact pulsed transformer power conditioning system for generating high voltage, high energy, rapid rise time pulses [J]. IEEE Trans. Magn., 1989, vol. 25, no.1, pp. 480–484.
    [102] Luis Manuel Redondo, JoséFernando Silva, Elmano Margato. Pulse shape improvement in core-type high-voltage pulse transformers with auxiliary windings [J]. IEEE Trans. Magn., 2007, vol. 43, no. 5, pp: 1973-1982.
    [103] S.T.Pai, Q.Zhang, Introduction to High Power Pulse Technology [M], Singapore, World Scientific Publishing Co .Pre .Ltd. 1995
    [104]顾继慧,微波技术[M].北京:科学出版社,2004.
    [105] Jin Au Kong著,吴季等译,电磁波理论[M].北京:电子工业出版社,2003.
    [106]顾茂章,张可潜,微波技术[M].北京:清华大学出版社,1989.
    [107]梁曦东,关志成,陈昌渔,高电压工程[M],北京:清华大学出版社,2000.
    [108]曾正中,实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003.
    [109]梁曦陈,陈昌渔,周远翔.高电压工程[M].清化大学出版社,2003.
    [110]徐学基,诸定昌.气体放电物理[M].复旦大学出版社,1998.
    [111]罗敏.高功率重复频率气体火花开关理论与实验研究[D].中国工程物理研究院硕士学位论文,2003.
    [112]梁曦陈,陈昌渔,周远翔.高电压工程[M].清化大学出版社,2003.
    [113]程新兵.高功率重复频率气体火花开关研究[D].国防科学技术大学硕士学位论文,长沙, 2008.
    [114] E.Kuffel, W.S.Zaengl. High Voltage Engineering [M].西安:机械工业出版社,邱毓昌,戚庆成译, 1993.
    [115] T. H. Martin, J. F. Seamen, D. O. Jobe. Energy losses in switches [C]. Pulsed Power Conference, 1993, pp: 463-470.
    [116]刘金亮,詹天文,曾乃工,等.用于强留电子束加速器的大功率匹配负载的研制[J].强激光与粒子束, 2007, 19(5): 825-829.
    [117]刘金亮,徐启福,李士忠,等.测量ns级脉冲大电流的折带式分流器[J].高电压技术, 2006, 32(5): 57-59.
    [118]清华大学电力系高电压技术专业.冲击大电流技术[M].北京:科学出版社,1978: 137-150.
    [119]刘金亮,谭启美,刘存华等.测量电子束流的法拉第筒[J].强激光与粒子束,1993,15(4): 626-632.
    [120]李海燕,蒋国雄.测量强流陡脉冲的ns级Rogowski线圈[J].电工电能新技术, 1989, 2:40-45.
    [121] Douglass J D, Greenly J B, Hammer D A, et al. Design and use of small Rogowski coil for use with large, fast current pulse [C]. IEEE Pulsed Power Conference, 2005: 717-720.
    [122] Ljumir Kojovic. Rogowski coils suit relay protection and measurement [J]. IEEE computer applications in power, July, 1997, pp: 47-52.
    [123] John D. Ramboz. Mechinable Rogowski coil, design and calibration [J]. IEEE transactions on instrumentation and measurement, 1996, vol.45, no.2, pp: 511-515.
    [124] D. A. Ward, J. L. T. Exon.Using Rogowski coils for transient current measurement [J]. Eng. Sci. Educ. J., June 1993, pp: 105-113.
    [125] W. F. Ray. The use of Rogowski coil for low amplitude current waveform measurement [R]. Measurement Techniques for Power Electronics, IEE Colloquium, 1992.
    [126] Ehsan Abdi-Jalebi, Richard McMahon. Simple and practical construction of high-performance, low-cost Rogowski transducers and accompanying circuitry for research applications [C]. IMTC 2005-Instrumentation and Measurement Technology Conference, Ottawa, Canada, 2005, pp: 17-19.
    [127] P. H. Pretorius, A. C. Britten, J. M. Van Coller. Experience in measuring disconnector-generated interference currents in a high voltage substation using Rogowski coils [C]. Proceedings of the 1998 South African Symposium on Communications and Signal Processing, 1998, 7-8 (9): 299-304.
    [128] G. D. Antona, E. Carminati, M. A. C. Lazzaroni. Current measurements via digital processing of Rogowski coils signal [C]. IEEE Instrumentation and Measurement Technology Conference, Alaska, USA , 2002, pp: 693-698.
    [129] Liao Jingsheng, Guo Xiaohua, Luo Cheng, et al. Study of Rogowski Coil Current Transducer for Low Amplitude Current (100A) Measurement [C]. CCECE2003-CCGEI2003, Montreal, May, 2003:463-466.
    [130] Wei Li, Xianggen Yin, Deshu Chen. The study of transient performance of current sensor based on Rogowski coil and its application in dynamic simulation experiment [C]. International Conference on Power System Technology, 2006, pp: 162-165.
    [131] Jeffrey D. Bull, Student Member. A New Hybrid Current Sensor for High-Voltage Applications [C]. IEEE transactions on power delivery, 2005, pp:32-38.
    [132]张瑜,刘金亮,文建春等。Rogowski线圈信号电阻对纳秒级脉冲大电流的响应[J]。强激光与离子束, 2009, 31(10): 1583-1588.
    [133]梁昆淼.数学物理方法[M].北京:高等教育出版社, 1999.
    [134] J. L. Liu, Y. Yin, B. Ge. A compact high power pulsed modulator based on spiral Blumlein line [J]. Rev. Sci. Instrum. , October, 2007
    [135] McPhee A J, Somerville I C, MacGregor S J. The design and testing of an extended lifetime, high voltage, low jitter trigatron for repetitive operation [C]. Proc. of 10th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1995.
    [136] A. S. Elchaninov, S. D. Korovin, G. A. Mesyats, V. V. Rostov,V. G. Shpak, and M. I. Yalandin.Generation and amplification of microwave radiation with the use of high-current small-size accelerators [C]. Proc. 6th Int. Conf. High-Power Particle Beams: BEAMS-86, 1986, pp: 552–555.
    [137] E. Kuffel, M. Bera. Breakdown in triggered spark gaps in air [J]. IEEE Trans. on Power Apparatus and System, 1968, vol. PAS-87, no. 7, pp: 1628-1635.
    [138] P. Osmokrovic, N.Arsic, Z. Lazarevie. Triggered vacuum and gas spark gaps [J]. IEEE Trans on Power Delivery, 1996, vol.11, no.2, pp: 858-864.
    [139]罗敏,常安碧,赵殿林,等. MV级重复频率三电极气体开关的优化研究[J].强激光与粒子束, 2006, 18(2): 269-272.
    [140]王桂吉,吴刚,赵剑衡,等.平面火花隙三电极开关研制及性能测试[J].强激光与粒子束, 2006, 18(2): 349-352.
    [141] Mac Gregor S J, Tuema F A, Turnbull S M, et a1. The influence of polarity on trigatron switching perforance [J]. IEEE Transactions on Plasma Science, 1997, 25 (2): 1118-1123.
    [142] Peterkin F E, Williams P F. Physical mechanism of triggering in trigatron spark gaps [J]. Appl. Phys. Lett., 1988, 53(3): 182-184.
    [143]何孟兵,李涛,吴国华,等.两电极气体火花开关触发系统[J].强激光与粒子束, 2009, 21(6): 951-955.
    [144]郭良福,周圣,李志鹏,等.高库仑量大电流两电极气体火花开关研究[J].强激光与粒子束, 2007, 19(5): 878-880.
    [145]赖贵友,郭良福,力一峥,等.大电流两电极气体开关研究[J].强激光与粒子束, 2006, 18(6): 1037-1040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700