高能激光大气传输热晕效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能激光在大气中传输会产生一系列的线性和非线性效应,其中热晕是一种重要的非线性效应。热晕效应是指高能激光在大气传输时,大气中的分子和气溶胶粒子对激光能量的吸收,使大气受热膨胀,引起局部折射率减小,最终使高能激光光束能量降低,光斑变大,光束发生畸变。
     本文以高斯光束为例,数值模拟了高能激光在大气中传输的稳态和瞬态热晕效应,详细地分析了各种参数对热晕的影响,讨论了如何减小热晕效应对高能激光传输的影响。论文的主要工作:
     1.介绍了大气分子对不同波长激光束的吸收和散射特性,采用Modtran软件模拟了激光波长在1.1μm-11.0μm二氧化碳、水和臭氧中的透过率;并分析了采用波长为10. 6μm的高能激光比3.8μm传输效果要好的原因。
     2.从近轴波动传输方程,结合等压近似下空气密度扰动方程推导了二阶微分方程组,即热晕方程。计算了产生热晕效应的功率阈值。
     3.通过积分算法,差分算法和快速傅里叶变换等算法分析了近轴光束光传输方程和等压近似下流体力学方程的数值解法,并且分析了每种算法的优缺点。采用Sinpson积分算法对连续高能激光大气传输热晕效应进行了数值模拟,并将模拟的结果和国内外的参考文献相比,吻合程度较好。根据数值模拟的结果详细地讨论了激光功率、大气横向风速、激光发射口径、及激光传输距离对热晕效应的影响。
     4.以准直高斯光束为例,详细地分析了瞬态脉冲效应的扰动解。对单脉冲进行模拟计算得到的结果是: t 3脉冲由于仅受到线性吸收的作用,使得其在大气传输中受到的热晕效应影响要比t脉冲小;对于两个长脉冲激光大气传输,脉冲重复数在0.7-2.0,其脉冲在靶面上的相对强度最大。
A series of linear and nonlinear effects can be produced when high-energy laser propagated in the atmosphere. Among them, the thermal blooming is one of the important nonlinear effects. Thermal blooming effect is a phenomenon that the atmospheric molecular and aerosol particles of atmosphere will absorb laser energy which accordingly cause heating expansion and the decrease of the local refractive index when high-energy laser propagates in atmosphere. Eventually, the energy of this high-energy laser beam will be reduced, the spot of this high-energy laser beam will be larger and the wave-front of this high-energy laser beam will be distorted.
     Take Gaussian beam as an example, the impact of various parameters on the thermal blooming by numerical simulation of the steady and transient state of the thermal blooming effect in detail was analyzed and how to reduce the impact of thermal blooming effect on high energy laser propagation was discussed in this dissertation. The main contents of the dissertation are as follows:
     1. The absorption and scattering properties of the different wavelengths of laser beam are absorbed by atmospheric molecules was introduced; and to simulate the transmission of carbon dioxide, water and ozone in the 1.1μm -11.0μm wavelength by using the software Modtran; and analyzed the reason why the transfer results by using a wavelength of 10. 6μm of better than by using 3.8μm .
     2. Thermal blooming equations, which is a second-order differential system, were derived from the scalar wave equation for paraxial beams and perturbation equation of the air density in the condition of approximation of constant pressure. And the power threshold of the thermal blooming effect was calculated.
     3. The numerical solution of the paraxial beam propagation equations was analyzed and the hydrodynamic equations under the condition of constant pressure approximation by the integration algorithm, differential algorithm and fast Fourier transform algorithm, and compared the advantages and disadvantages of each method. Simulated the thermal blooming effect of continuous high-energy laser beam transmitted in the atmosphere with Sinpson integration algorithm. And good agreement is obtained by comparing with the numerical simulation results and references results at home and abroad. According to the results of numerical simulation, the impacts of the power of laser, the wind speed of atmosphere horizontal, the diameter of laser and the distance of laser propagated on the thermal blooming were discussed.
     4. Take Gaussian beam as an example, the perturbation solutions of the transient state pulse effect was analyzed in this dissertation. The results of simulation for single pulse show that: The effect of thermal blooming is relatively larger when t pulse beam propagated in the atmosphere than t3 pulse which is only caused by linear absorption. For two long pulse laser beams with pulse repetition number in 0.7-2.0, which are propagated in atmosphere, its relative strength is largest on the pulse target surface.
引文
[1]季小铃,高功率畸变激光的传输特性和光束控制研究:[博士学位论文].成都:四川大学,2004:1-2
    [2]孙长喜,黄鲲.美国高能激光武器发展概述.国防科技,2006,12(6):38-41
    [3]朱海波,杨帆,杨海波.激光武器浅析.红外与激光工程.2006,35(7):57-58
    [4] Glen P.Perram, Michael A. Marciniak, Matthew Goda. High energy laser weapons: technology overview. SPIE, 2004, 5414:4-8
    [5] Joung R. Cook, John R. Albertine. The navy’s high energy laser weapon system. SPIE, 2988:264-267
    [6]廖银燕.美国高能激光武器研制进展.核武器与高技术,2003,1(5):41-60
    [7]吴健,杨春平,刘建斌.大气中的光传输理论.北京:北京邮电大学出版社,2005:43-53
    [8]吴健,王俊波,胡志平.高能激光非线性传播理论与技术.成都:成都电讯工程学院出版社,1988:204-260
    [9] Frederick G. Gebhardt. High power laser propagation. App. Opt., 1976, 15(6): 1479-1490
    [10] Frederick G. Gebhardt Twenty-five years of thermal blooming: An Overview. SPIE, 1990, 1221: 5-25
    [11] Frederick G. Gebhardt, David C. Smith, Rudolph G. Buser. Turbulence Effects on Thermal Blooming. Appl. Opt., 12(8):1794-1804
    [12]税奇军.气溶胶所致热晕的数值研究:[硕士学位论文].成都:电子科技大学,2007:1-47
    [13] K. Petrowski, Diane Limsui, C. Menyuk, etc. Turbulent Thermal Blooming. SPIE, 2008, 6951:6-10
    [14] Shirish M. Chitanvis, Andrew Zardecki. Effect of themal blooming on pulse propagation through vaporizing aerosols. Appl. Opt., 1988, 27(12):2495-2501
    [15] Fleck J A, Morris J R, Feit M D. Time dependent propagation of high energy laser beams through the atmosphere. Appl. Opt., 1976, 10(11):129-136
    [16] H. E. Bass, H. J. Bauer. Kinetic Model for Thermal Blooming in the Atmosphere. Appl. Opt., 1973, 12(10):1506-1510
    [17] Yanyan Liu, Junbo Wang, Chiyu Liu, etc. Thermal blooming induced by artificial aerosol with CW laser. SPIE, 1998, 3433:118-124
    [18] Frederick G. Overview of atmospheric effects on propagation of high energy laser radition. SPIE, 1978, 195:16-35
    [19] C. McClellan, M. W. Munn, H. Norris, et al. Optical effects of gas flow through an optical train an experimental determination. Appl. Opt., 1979, 18(23):3984-3986
    [20] James Wallace, Joseph Pasciak. Thermal blooming of a rapidly moving laser beam. Appl. Opt., 1976, 15(1):455-459
    [21] Jonathan F. Schonfeld. Analysis and modeling of thermal-blooming compensation. SPIE, 1990, 1221: 118-124
    [22] A. L. Buck. Effects of the Atmosphere on laser beam propagation. Appl. Opt., 1967, 6(4): 703-706
    [23]常金勇.强激光大气传输热晕数值模拟:[硕士学位论文].西安:西安电子科技大学,2009:21-45
    [24]王新宽.强激光大气传输稳态热晕效应的研究:[硕士学位论文].西安:西安电子科技大学,2009:1-45
    [25]姚友群.强激光在大气中传输的热晕效应研究:[硕士学位论文].西安:西安电子科技大学,2009:1-50
    [26]龚知本.激光大气传输研究若干问题进展.量子电子学报,1998,15:120-129
    [27]王英俭,吴毅,汪超,等.风速与风向对小尺度热晕不稳定性的影响.强激光与粒子束,1995,7:450-451
    [28]黄印博,王英俭,饶瑞中等.热晕效应相位补偿定标参数的数值分析.光学学报,2002,22:1461-1464
    [29]万敏,苏毅,张凯等.激光热晕补偿数值模拟计算与实验.红外与激光工程,1996,25:51-55
    [30]王英俭.激光大气传输及其位相补偿的若干问题探讨:[博士学位论文].安徽:中国科学院安徽光学精密机械研究所,1996:32-50
    [31]张天树,雷广玉,谢利娟,等.计及风和湍流的热晕及其相位补偿的数值研究.强激光与粒子束,1994,6(1):16-20
    [32] Rod Frehlich. Simulation of laser propagation in a turbulent atmosphere. Appl. Opt. 2000, 39(3): 393-396
    [33]卢亚雄,余学才,张晓霞.激光物理.北京:北京邮电大学出版社,2005:6-24
    [34]卢容章.电磁场与电磁波基础.北京:高等教育出版社,1985:104-117
    [35]蔡邦维,黄文龙,吕百达等.CW稳态热晕的数值模拟.光学学报,1996,16:948-950
    [36]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社,2006:161-187
    [37]强希文.高平均功率固体激光及其大气传输.强激光与粒子束.2005,17:68-70
    [38]王仕璠,朱自强.现代光学原理.成都:电子科技大学出版社,1998:87-108
    [39] Hillion P, Quinnez S. Thermal blooming calculations with analytical diffraction approximated expressions. J. Math. Phys, 1981, 22(4): 897-907
    [40] David L. Fried, Gus E. Mevers. Thermal-blooming time constant. Appl. Opt., 1982, 72(5): 519-52
    [41]程麟生,丑纪范.大气数值模拟.北京:气象出版社,1991:95-120
    [42] Clinton W A. Thermal blooming due to aerosols. SPIE, 1990, 1221: 305-316
    [43]宋正方.应用大气光学基础.北京:气象出版社,1990:18-20
    [44] Konyaev P A, Lukin V P. Thermal distortions of focused laser beams in the atmosphere. Appl. Opt, 1985, 24(3):415-421
    [45]吴健,严高师.光学原理教程.北京:国防工业出版社,2007:10-25
    [46]傅德薰.流体力学数值模拟.北京:国防科技出版社,1988:106-153
    [47] W. E. Martin, R. J. Winfield. Nonlinear effects on pulsed laser propagation in the atmosphere. Appl. Opt., 1988,27(3):567-569
    [48] R. G. Buser, R. S. Rohde, P. J. Berger, F. G. G.ebhardt, etc. Transient thermal blooming of single and multiple short laser pulses. Appl. Opt., 1975, 14(11):2740-2750
    [49] James Wallace. Thermal blooming of repetitively pulsed laser beams. Appl. Opt., 1974, 64(12):1651-1657
    [50]黄印博,王英俭.热晕效应数值模拟中对计算参数的选取.强激光与粒子束,2005,17:1-4
    [51]冯晓星,范承玉,王英俭等.聚焦脉冲激光大气传输热晕效应的数值分析.推进技术,2007,28:574-577
    [52]孙中涛,孙晓泉,邹继伟.脉冲激光大气传输热晕数值分析.红外与激光工程,2007,36: 190-193
    [53]吴毅,王英俭,汪超等.单脉冲高功率激光热晕效应的实验研究.强激光与粒子束,1992,4:87-89
    [54] Lenoble J. Atmospheric Radiative Transfer. A Deepak Publishing, 1993
    [55]陈抗生.电磁场与电磁波.北京:高等教育出版社,2003:15-20
    [56]傅德薰.流体力学数值模拟.北京:国防科技出版社,1988:106-153
    [57] Richard L Burden, J Douglas Faires. Numerical analysis.北京:高等教育出版社,2001
    [58] James Wallace, Joseph Pasciak. Theoretical aspects of thermal blooming compensation. Appl. Opt. 67(12):1569-1573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700