短脉冲及飞秒脉冲对光学薄膜的损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的日益发展,人们已经成功的将激光脉宽从ns量级缩短到了fs量级,同时随着激光脉冲峰值功率的不断提高,激光与光学系统的相互作用研究进入了全新的领域。光学薄膜几乎是光学系统中不可或缺的元件,同时也是整个系统中最薄弱的环节,因而光学薄膜的激光损伤问题一直是激光向高能量、高功率方向发展的瓶颈。所以,研究光学薄膜的抗激光破坏问题具有非常重要的意义和实用价值。
     脉冲激光对光学薄膜损伤是一个复杂的过程,常常伴随几种损伤机制的出现。本文主要探讨短脉冲激光以及飞秒脉冲激光对薄膜的损伤问题。首先从短脉冲激光的损伤问题出发,然后扩展到飞秒脉冲。通过建立热冲击效应模型,以类金刚石和铝膜反射镜为例,求解了在短脉冲激光作用下,它们了的温度分布以及热应力分布。在此基础上,把激光脉宽从纳秒级别缩短到飞秒级别,介绍了在飞秒脉冲激光作用下,几种经典的能量输运模型。通过构造双温两步模型,以200nm金膜为例,深入的探讨了在飞秒脉冲激光作用下,光学薄膜的热损伤行为。结果表明,在飞秒脉冲激光作用下,光学薄膜的损伤阈值已经不再遵从传统的? 1/2标度律,经典的Fourier热传导模型已经失效。
Along with the development of laser technology, the durations of laser pulse have been compressed successfully from ns to the order of fs, and with the improvement of laser pulse peak power, as a result, the research on the interaction between laser and materials has been advanced to completely new stage. As the essential basic component of almost all optical systems, optical films are the weakest link in the whole systems, thus ,the laser damage of optical thin films has been the bottleneck of high-energy, high-power direction of lasers. Therefore, it is very significant and valuable to research the damage of optical thin-film by lasers.
     The damage of optical thin films by pulsed laser is a complex process, it is often accompanied by the emergence of several mechanisms of damage. The damage of optical thin films by the short pulse laser and the femtosecond pulse laser is analyzed in this paper. First, from short pulse laser damage, and then, it is extended to the femtosecond pulse. Through the establishment of thermal shock effect model, we solve the temperature distribution and thermal stress distribution of diamond-like carbon and aluminum reflector in short pulse lasers. On this basis, we compress the laser pulse from the order of nanosecond to femtosecond , introduce several classical energy transport models in the femtosecond laser pulse. By constructing a two-temperature and two-step model, discussing the damage of optical thin films in 200nm gold film by the femtosecond pulse laser. It suggests that the laser damage threshold of materials disobeys the ? 1/2 law, it can not be treated by the classical fourier thermal conduction theory.
引文
[1] MR.Kozlowki,I.Thomas,J,H,Campbell,and F.Rainer.High power optical coatings for a megajoule-class ICF laser.SPIE.Proc,1782,105-121(1993).
    [2] TW.Walker,AH. Guenter,PE.Nielsen.Plused laser-induced damage to thin-film opti -cal coatings.IEEE.J.Quantum Electron,1981,QE-17(10):2041-2065.
    [3] E .Hacker, H.Lauth . Review of structural influences on the laser damage threshold of oxide coatings. SPIE.1996, 2714.316~330.
    [4] H E .Bennett, A J .Glass, AH. Guenther and B.Newnam. Relation between surface roughness and specular reflectance at normal incidence. Appl.Opt.1984.
    [5] S R .Foltyn. Spot size effects in laser damage testing. SPIE.1984, 368-379.
    [6] AF.Stewart and AH.Guenther. Laser damage of thin film optical coatings:around -robin experiment involving barious pulse lengths and beam diameters. App -l .Opt,23,1984.
    [7] AS.Epifanov, AA.Manenkov and AM.Prokhorov. Theory of avalanche Ionization Induced in transparent dielectrics by an electromagnetic field .Sov .Phys. JETP. 1976,43(2).377-382.
    [8] N.Bloembergen. Laser induce delectric break down in solids. IEEE.J.Quantum Electron. 1974, QE-10.375-386.
    [9] RW.Hopper, and DR.Uhlmann . Mechanism of inclusion damage in laser glass. Appt.Phys.1970,41(10).4023-4037.
    [10] H.Goldenberg, and MA.Tranter .Heat flow in an infinite medium heated by a sphere. Brit.J.Appl.Phys.1952,2.296-301.
    [11] Christopher.J.Stolz , Robert.J.Tech ,Mark. RKozlowskil, and Anne. Fornier A comparison of nodular defect seed geometries from different deposition techniques. Laser Induced Damage in Optical Materails. SPIE proceedings.1995,374-382.
    [12] MF. Koldunov, AA .Manenkov, IL. Pocotilo.Theory of laser induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,Laser Induced Damage in Optical Materails.SPIE proceedings.1994,469-487.
    [13] MF.Koldunov, AA.Manenkov,LL.Pocotilo.Theory of laser induced damage to optical coatings: Dependence of damage threshold on physical parameters of coating and substrate materials,Laser Induced Damage in Optical Materails.SPIE proceedings.1994,731-745.
    [14] A.Strke,A.Bernhardt.Laser damage threshold measurement according to ISO 112 45.NISTSPIE.Vol.1993,2214.212-220.
    [15] H. Jean , G. Pierre. R-on-1 automatic mapping: a new tool for laser damage testing . proc of SPIE .Vol.1996,2714.90-101.
    [16] MA.Olmstead,NM.Amerand,C.Kohn,andD.Fournierand.AC.Boccara.Phototherma-l displacement spectroscopy an optical probe for solids and surfaces. Applied Physics. 1983,32.141-154.
    [17]吴周令,唐晋发,施柏煊.用横向光热偏转技术测量光学薄膜的微弱光吸收.光学学报.1988,8(9).1044-1047.
    [18] HY.Hu,ZX.Fan.Measuring Weak absorptance of thin film coatings by surface Thermal lensing thchnique. Laser Physics. 2000,10(2).633-681.
    [19] LV.Keldysh. Ionization in the field of a strong electromagnetic wave. Sov.Phys. JETP 1965,20 (8).1307-1314.
    [20] CW.Sun .Laser Irradiation Effect .2002.Beijing :Science Press.310,孙承伟.激光辐照效应.2002.北京:科学出版社.310.
    [21] M.Mansuripur.et al.laser induced local heating of multilayers,applied optics.1982.
    [22] H.Gong ,CF.Li ,and ML.Wang . China Lasers . 1996,23 245.(in Chinese)龚辉,李成富,王明利.中国激光.1996,23 245.
    [23] YH.Yin, Y.Su ,and YZ.Chen . China Lasers.2001, 28 705.(in Chinese) ,尹益辉,苏毅,陈裕泽.中国激光2001,28 705.
    [24] XE.Ping .Thermal Stress & Thermal Tiredness .Beijing :National Defense Industry Press. p25 (in Chinese) ,平修二.热应力与热疲劳.北京:国防工业出版社.p25 .
    [25]吕反修,唐伟忠,李成明.大面积光学金刚石自支撑膜研究进展.红外技术. 25(4).2003.
    [26]小原实,神成文彦,佐藤俊一.应用激光光学.北京:科学出版社.2002. P113.
    [27] LV.Keldysh . Ionization in the field of a strong electromagnetic wave . Sov. Phys. JETP.1965.
    [28] J.Bonse, KW.Brzezinka, AJ.Meixner. Femtosecond laser ablation of silicon-mod -ification thresholds and morphology .Appl.Surf.Sci.2004, 221:215.
    [29] TY.Choi , CP.Grigoropoulos. Femtosecond laser aperturless near-field nanomach -ining of metals assisted by scanning probe microscopy .Appl.Phys.2002.
    [30] SI.Kudryaashov, VI.Emelyanov. Formation of inversion filaments in laser media due to interatomic interactions via the superradiation field .JETP.Lett.2001, 73: 228.
    [31] A.Borowiec ,M.Mackenzie ,GC.Weatherly. Transmission and scanning electronmicroscopy studies of single femtosecond-laser-pulse ablation of silicon. Appl. Phys. 2003, 76:201.
    [32] PP.Pronko, PA.VanRompay, C.Horvath. Avalanche ionization and dielectric break -down in silicon with ultrafast laser pulses.Phys.Rev.1998.
    [33] PP.Pronko, PA.VanRompay , RK.Sindh . Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtosecond pulses. Res.Sooc.Symp.Proc.1996,397:45.
    [34] D.Du, X.Liu, G.Korn. et al.Appl. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs .Phys.Lett.1994.
    [35] M.Lenzner ,J. Kruger , S.Sartania .et al. Femtosecond optical breakdown in dielec -trics.Phys.Rev.Lett.1998.
    [36] B.Rethfeld, A.Kaiser, M.Vicanek,and G.Simon.Ultrafast Dynamics of None quilib -rium Electrons in Metals under Femtosecond Laser Inadiation.Phs.Rev.B. 2002,65. 214303-214313.
    [37] N.Delfatti ,C.Voisin, M.Achermann , S.Tzortzakis, D.Christofilos, and F. Vallee. Nonequilibrium Elecron Dynamics in Noble Metals .Phys. Rev. B. 2000,61.
    [38] J.G.Fujimoto , J. M. Liu , E.P.Ippen , and N.Bloembergen . Femtosecond Laser Interaction with metallic tungsten and noneguilibrinm electron and lattice temperature. Phys. Rev.lett.53.1984,1837-1840.
    [39] RW.Schoenlein, WZ.Lin, JG.Fujimoto,and G.L.Eesley. femtosecond studies of nonequilibrium electronic processes in mrtals. Phys.Rev.Lett.1987,53.1680-1683.
    [40] TQ.Qiu, and CL.Tien. Short Pulse Laser Heating on Metals. Int.J.Herat Mass- Transfer.35.1992,719-726.
    [41] TQ.Qiu, and CL.Tien. Heat Transfer Mechanisms during Short Pulse Laser Heating of Metals. ASME.J.Heat Transfer.115.1993,835-841.
    [42] TQ.Qiu, and CL.Tien.Femtosecond Laser Heating of Multi-Layer Metals-1 Analysis. Int.J.Heat Mass Transfer.37.1994,2789-2797.
    [43] TQ.Qiu, T.Juhasz.C, WE.Bron,and CL.Tien. Femtosecond Laser Heating of Multi-Layer Metals-2 Experments. Int.J.Heat Mass Transfer. 37.1994,2799-2808.
    [44] DY.Tzou, JK.Chen, and JE.Beraun. Hot-Electron Blast Induced by Ultrashort pulsed in Layer Media. Int.J.Heat Mass Transfer. 45.2002, 3369-3382.
    [45] HE.Elasyer-Ali, TB.Norris, MA.Pessot, and GA.Mourou. Time Resolved Obser -vation of Electron Phonon Relaxation in Copper.Phys.Rev.lett.58.1987, 1212 -1215.
    [46] RW.Schoenlcin, WZ.Lin, JG.Fujimoto, and GL.Eesley. Femtosecond Studies ofElectronic Processes in Metals. Phys.Rev.Lett.58.1987,1680-1683.
    [47] T.Hertel, E.Knoesel, M.Wolf, and G.Ertl. Ultrafast Electron Dynamics at Cu: Response of an Electron Gas to Optical Excitation. Phys.Rev.Lett. 76.1996, 535-538.
    [48] DW.Fradin. Dependence of laser-induced breakdown field strength on pulse duration Laser Focus. Laser Focus.1974.
    [49] NN.Grigorev,NA.Kudykina. Mechanism of laser damage of transparent semicon -ductors.Ukr.Phys.1987.
    [50] BG.Gorshkov. Size effect and statistics of laser breakdown of alkali halide crystals Tr.Fian.1982.
    [51] VA.Gnatyuk. Laser-induced shock wave stimulated doping of CdTe crystals. Phys.Status Solidi.A.1999.
    [52] VA.Gnatyuk, A.Baidullaeva, AI.Vlasenko.etc. Surface States of Laser‐Irradiated Cadmium-and Tellurium-Containing Solid Solutions of II-VI Compounds. Inst.Phys.Conf. Ser. 1997.
    [53] E.Fretwurst. et al. Deep inelastic scattering events with a large rapidity gap at HERA.Nucl.Instr.and Meth.A. 1993.
    [54] HJ.Ziock. et al.IEEE.Trans. Temperature dependence of the radiation induced change of depletion voltage in silicon PIN detectors.Nucl.Sci.NS 1993.
    [55] E.Fretwurst. et al. First measurement of the deep-inelastic structure of proton diffraction.Nucl.Nucl .Instr.and Mesh.A 1994.
    [56] T.Ohsugi. et al. Search for Charged Higgs Boson Decays of the Top Quark using Hadronic Decays of the Tau Lepton.Instr.and Meth.A 1999.
    [57] Y.Unno. et al. Microdischarges of AC-coupled silicon strip sensors.Nucl.Instr.and Meth.A.1996.
    [58] S.Worm. Measurement of diffractive dijet production at the Fermilab Tevatron. Nucl.Instr and Meth.A.1998.
    [59] HM.Vandrielin,RR.Alfano.SemiconductorsProbedbyUltrafast.Laser.Spectroscopy.Vol.2.Orlando:Academic Press.1984,57-94.
    [60] CV.Shank, R.Yen,C.Hirlimann. Femtosecond-time-resolved surface structural dy -namics of optically excited silicon. Phys.Rev.Lett.1983,50.454-457.
    [61] HW.K.Tom,GD.Aumiller,CH.Brito-Cruz. Time-resolved study of laser-induced disorder of Si surfaces. Phys.Rev.Lett.1988,60.1438-1441.
    [62] SV.Govorkov,T.Schroder,IL.Shumay,P.Heist. Transient gratings and second harm -onic probing of the phase transformation of a GaAs surface under femtosecondlaser irradiation.phys.Rev.B.1992,46.6864-6868.
    [63] K.Sockolowsi-Tinten,D.Vonderlinde. Pulse properties of a synchronously mode -locked, cavity dumped, picosecond dye laser system.Phys.Rev.B. 2000,61.2643- 2650.
    [64] A.Rousse, C.Rischel, S.Fourmanux, I.Uschmann, S.Sebban. Non-thermal melting in semiconductors measured at femtosecond resolution.Nature.2001,410.65-68.
    [65] J.A.Vanvechten,R.Tsu,F.W.Saris. Reasons to believe pulsed laser annealing of Si does not involve simple thermal melting.Phys.Lett.1979,74.422-426.
    [66] P.Allenspacher, B.Huttner,W.Riede. ltrashort pulse damage of Si and Ge semicon -ductors.SPIE.2003,358-365.
    [67] C.Momma, BN.Chichkov, S.Molte et al. Short-Pulse laser ablation of solid targets. J.Opt.Commun.1996,134-142.
    [68] DY.Tzou. Macro to microscale heat transfer. 1996.
    [69] J.Liu et al.Generalized time delay bioheat equation and preliminary analysis on its wave nature.Chinese Science Bulletin.1997,189-192.
    [70] KK.Tamma and X.Zhou. Mzcroscale and microscale thermal transport and thermo -mechanical interactions-some noteworthy perspectives. Journal of Thermal Stress. 1998,21.405-449.
    [71] TQ.Qiu,and CL.Tien. Femtosecond laser heating of multi-layer metals-1.Analysis Int.J.Heat Mass Transfer.1994,37(17).2789-2797.
    [72] SI.Anisinow,BL.Kapeliovich andTL.Perelman.Soviet.Physics .JETP.1974,375-377.
    [73] JG.Fujimoto,JM.Liu,and E.P.Ippen. Phys.Rev.Lett.1984,53(19).1837-1840.
    [74] Jiang Fang ming,Liu Deng ying. New progress on Non-Fourier Heat Conduction Advances in Mechanics.2002,32(1).128-140.
    [75] Liu Jing.Micro Nano-scale Heat Transfer .Science Press.2002.
    [76] TQ.Qiu, CL.Tien. Heat transfer mechanisms during short pulse laser heating of metal.ASME.J.Heat Transfer.1993.
    [77] NW.Ashcroft,and ND.Mermin.Solid State Physics.NewYork.1976.
    [78] B.Rethfeld,A.Kaiser,M.Vicanek, G.Simon.Ulrtafast Dynamics of Nonequilibrium Elecrtons in Metals under Femtosecond Laser Inadiation.Phys.Rev.B.2002,65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700