独塔斜拉桥的设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着独塔体系斜拉桥设计理论这一主线展开,对相关几方面问题进行了详细研究。
     (1) 首先总结了国内外对独塔斜拉桥的研究现状,并提出了需要进一步研究的问题。对于独塔斜拉桥的研究资料并不多,所见大多集中在对传统双塔的研究上。设计理论的内涵十分丰富,包括体系、参数、特征构件、概念设计以及设计参数优化等。
     (2) 从体系的概念出发,首先提出了体系的概念,然后对独塔斜拉桥体系进行系统的分类,以体系为主线,系统的研究了各种荷载作用下独塔斜拉桥各种体系的力学特性。
     针对目前体系研究的现状,以实桥为研究背景,通过结构受力模型,分别研究独塔体系在活载、温度等荷载作用下的位移和内力,得到了独塔体系力学特性的系统研究结果。研究对象包括独塔普通体系、独塔协作体系和斜塔体系三个方面,普通的独塔斜拉桥又包括对称与非对称体系;协作体系的研究以独塔与连续梁、独塔与T型刚构的协作为重点;斜塔斜拉桥的研究以一座建成的无背索斜拉桥为研究对象,概括了无背索体系的受力特性。
     (3) 讨论了对称、非对称形式的独塔斜拉桥主梁无索区长度变化对结构受力和刚度的影响,分析了独塔斜拉桥的梁塔刚度比变化引起结构受力变化的规律。
     研究了主梁无索区长度与以下因素的关系:
     ①主梁与桥塔的弯曲刚度比S;
     ②主梁边主跨比Ls/Lm;
     ③拉索的刚度C,尤其是主梁主跨外边索和边跨的锚索。
     (4) 研究独塔斜拉桥的特征构件端锚索。从锚索的弦向刚度、应力比影响因素、疲劳等几个方面讨论了锚索的特性,得出了一些有益的结论。
     (5) 研究了独塔斜拉桥经济性能的若干指标和设计参数的优化。通过对已建独塔斜拉桥的分析,得到了包括:主边跨比、主梁高跨比、宽跨比、高宽比、索塔高跨比与主梁、桥塔、拉索经济指标的关系。在设计参数的优化中,利用优化方法中的正交试验原理对一座非对称的独塔斜拉桥方案进行了优化研究。通过16个试验模型的分析,得到了独塔斜拉桥主要参数对选定目标函数的影响曲线,从而得到最优方案。
Mainlined by the design theories of single pylon cable-stayed bridges, several interrelated problems are amply studied in this dissertation as follows:
    (1) The existing research results and practices of single pylon cable-stayed bridges were summarized at first, and the problems, which should be studied further, are then brought forward. There are a little research on single pylon cable-stayed bridges. The traditionary research is mostly on double pylon cable-stayed bridges.
    The connotations of design theories is very rich, it contains research of the system of bridges, parameters, characteristic components, conceptual design and the optimization of the design parameters.
    (2) The conception the "system" is proposed, then basically, the system of single pylon cable-stayed bridges is classified systemically. The special mechanical behaviors of all kinds of single pylon cable-stayed systems under various loads, are systemically studied.
    Based on the existing research results and practices, some structure models of existing bridges, which are single pylon cable-stayed bridges, are considered, and their displacement, internal force are studied under live loads, temperature loads.etc, consequently, the systemic research results on mechanical behaviors of single pylon cable-stayed bridge systems are fined. The research objects include the bridges with common system, combined system and the system of oblique tower. The common system is studied in two sorts: symmetrical and asymmetrical; The study of the combined system emphasize on the combination between single pylon cable stayed bridge and continuous beams, and the combination between single pylon cable stayed bridge and T rigid frame; with the example of a existing single oblique pylon cable-stayed, the mechanical behaviors of such single pylon cable-stayed bridges as without backstays are summarized in the study on the system of oblique pylon.
    (3) In single pylon cable -stayed bridges, the length of" unsupported" deck adjacent to the end supports are the important parameters that affect the internal forces and stiffness of the structure. The influences of the above-mentioned parameters are studied both in the symmetrical system and the asymmetrical system. Besides, the stiffness ratio between girder and tower and its influences on the internal forces are described in the dissertation.
引文
[1] Aboul-ella F. Analysis of cable-stayed bridges supported by flexible towers [J]. Journal of Structural Engineering, 1988, 114(12): 2741-2754.
    [2] Aboul-ella F. Pylons of cable-stayed bridges: a comparison [J]. Canadian Journal of Civil Engineering, 1988, 15: 516-523.
    [3] Agerskov H. Fatigue in steel structures under random loading [J]. Journal of Constructional Steel Research, 2000, 53(3): 283-305.
    [4] Agocs Z. Conceptual design of cable-stayed systems [A]. Proceedings on Conceptual Design of Structures[C]. Stuttgart, Germany, 1996.
    [5] Agrawal TP. Cable-stayed bridge—parametric study [J]. Journal of Bridge Engineering, 1997, 2(2): 61-67.
    [6] Antonio JR, Pedro JO. Asymmetric and curved cable-stayed bridges [A]. IABSE Conference on Cable-Supported Bridges — Challenging Technical Limits[C]. Seoul, Korea, 2001. 94-95.
    [7] Barr PJ, Eberhard MO, Stanton JF. Live-load distribution factors in prestressed concrete girder bridges [J]. Journal of Bridge Engineering, 2001, 6(5): 298-306.
    [8] Billington DP, Nazmy A. History and aesthetic of cable-stayed bridge [J]. Journal of Structural Engineering, 1990, 117(10): 3103-3134.
    [9] Brozzetti. Design development of steel-concrete composite bridges in France [J]. Journal of Bridge Engineering, 2000, 55(1-3): 229-243.
    [10] Brusehi MG, Discussion of "History and aesthetics of cable-stayed bridges" [J]. Journal of Structural Engineering, 1993, 119(1): 352-353.
    [11] Charland JW, Hernride AG, Pyles MR. Cable systems with elastic supporting elements [J]. Journal of Structural Engineering, 1994, 120 (12): 3649-3665.
    [12] Chilton JC. Who decides—the influence of the education system on conceptual design of structures [A]. Proceedings on Conceptual Design of Structures[C]. Stuttgart, Germany, 1996.
    [13] Cohn MZ, Lounis Z. Optimal design of structural concrete bridge systems [J]. Journal of Structural Engineering, 1994, 120(9): 2653-2674.
    [14] Croll JGA. Thoughts on the structural efficiency of cable-stayed and catenary suspension bridges(feature)[J]. The Structural Engineer, 1997, 75(10): 173-175.
    [15] Croll JGA. Thoughts on the structural efficiency of cable-stayed and catenary suspension bridges (Correspondence) [J]. The Structural Engineer, 1997, 75(19): 345-347.
    [16] Donald BM, Peyrot A. Sag—tension calculation valid for line geometry[J]. Journal of Structural Engineering, 1990, 116(9): 2374-2387.
    [17] Fereiq SM. Economic preliminary design of bridges with prestressed I-girders [J]. Journal of Bridge Engineering, 1996, 1(1):18-25.
    [18] George HW. Discussion: cable-stayed bridge—parametric study [J]. Journal of Bridge Engineering, 1998, 3(3):148-150.
    [19] George HW. Influence of deck material on response of cable-stayed bridges to live loads [J].Journal of Bridge Engineering, 1999, 4(1): 14-22.
    [20] Gimsing NJ. Cable supported bridges—concept & design [M].2ed Ed. Chichester: Wiley J. 1997.
    [21] Gimsing NJ. History of cable-stayed bridges [A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C].Malmo, Sweden, 1999.10-11.
    [22] Guan Hong, Chen YJ, Loo YC, X Yi-Min, Steven GP. Bridge topology optimization with stress, displacement and frequency constraints[J]. Computers and Structures, 2003, 81 (3): 131-145.
    [23] Hegab HIA. Discussion: analysis of cable-stayed bridges supported by flexible towers [J]. Journal of Structural Engineering, 1991, 117(1): 304-307.
    [24] Hegab HIA. Energy analysis of cable-stayed bridges [J]. Journal of Structural Engineering, 1986, 112(5):1182-1195.
    [25] Hegab HIA. Parametric investigation of cable-stayed bridge[J].Journal of Structural Engineeing,1988,114(8):1917-1928.
    [26] Hobbs RE, Raoof M. Behavior of cables under dynamic or repeated loading [J].Journal of Constructional Steel Research, 1996, 39(1):31-50.
    [27] Honigmann C, Billington DP. Conceptual design for the Sunniberg Bridge [J]. Journal of Bridge Engineering, 2003, 8(3): 122-130.
    [28] Kakenouchi K. Single pylons for curved cable-stayed bridges [J]. Structural Engineering International, 1998, 4:269-272.
    [29] Kawaguchi M. Conceptual design suggested by our forerunners [A]. Proceedings on Conceptual Design of Structures[C].Stuttgart, Germany, 1996.
    [30] Khaloo AR, Mirzabozorg H. Load Distribution factors in simply supported skew bridges [J]. Journal of Bridge Engineering, 2003, 8(4):241-244.
    [31] Kiureghhian AD, SeckmanJ L. Tangent geometric stiffness of inclined cables under self-weight [J]. Journal of Bridge Engineering, 2005, 131(6):941-945.
    [32] Kremmidas SC. Improving bridge stay cable performance under static and dynamic loads [D].University of California, San Diego, 2004.
    [33] Krishan P. Effect of cable-stiffness on cable-stayed bridges [J]. Journal of Structural Engineering, 1985, 111(9):2008-2020.
    [34] Lazar BE. Load balance analysis of cable-stayed bridges [J].Journal of the Structural Division, 1972, 98(ST8):1725-1740.
    [35] Lazar BE. Stiffness analysis of cable-stayed bridge [J].Journal of the Structural Division, 1972, 98(ST7): 1605-1612.
    [36] Leohardt F. Cable-stayed bridge with prestressed concrete [J]. PCI Journal, 1987, 32(5): 52-80.
    [37] Lin TY, Stotesbury SD. Structural concept and system for architects and engineers [M]. 2ed Ed. Van Nostrand Reinhold. New York, 1998.
    [38] Lou ZH. Cable-stayed bridges in China [A]. IABSE Conference on Cable-Supported Bridges — Challenging Technical Limits[C]. Seoul, Korea, 2001. 84~85.
    [39] Meiss K. Design of cable supported bridges using topology optimization [A]. IABSE Conference on Metropolitan Habitats and Infrastructure. Shanghai, China, 2004.
    [40] Negrao JHO, Simoes LMC. Optimization of cable-stayed bridges with three-dimensional modeling [J]. Computers and Structures, 1997, 64(1-4): 741-758.
    [41] Negrao JHO, Simoes LMC. Reliability-based optimum design of Glulam cable-stayed footbridges [J]. Journal of Bridge Engineering, 2005, 10(1): 39-44.
    [42] Peyrot AH, Peyrot EM. Computer—aided design of transmission line [J]. Engineering Structure, 1993, 15(4): 229-237.
    [43] Podado J. Multi-span cable-stayed bridges [A]. IABSE Conference on Cable-Supported Bridges — Challenging Technical Limits[C].Seoul, Korea, 2001. 90-91.
    [44] Podolny W, Scalzi JB. Construction and design of cable-stayed bridges [M]. Chichester: Wiley J. 1976.
    [45] Podolny WJ, Fleming F. Historical development of cable-stayed bridges [J]. Journal of the Structural Division, 1972, 98: 2079-2095,
    [46] Pulkkinen P. Swietokrzyski bridge, Warsaw [A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C]. Maimo, Sweden, 1999. 94-95.
    [47] Reis AJ. Cable-stayed bridges for urban spaces[A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C]. MaimS, Sweden, 1999. 50-51.
    [48] Reis AJ. Pedro JJO. The Europe Bridge in Portugal — concept and structural design [J]. Journal of Constructional Steel Research, 2004, 60: 363-372.
    [49] Saad F. Design concept for large bridge [A]. IABSE Conference on Cable-Supported Bridges — Challenging Technical Limits[C]. Seoul, Korea, 2001. 96-97.
    [50] Saad F. Structural optimization of extradosed bridges [A]. IABSE Conference on Metropolitan Habitats and Infrastructure. Shanghai, China, 2004.
    [51] Saeed S. Towards new structural forms for bridges [J]. Structural Engineering International, 1996, 6(3):195-197.
    [52] Sennah KM, Kennedy JB. Load Distribution factors for composite multicell box girder bridges [J]. Journal of Bridge Engineering, 1999, 4(1):71-78.
    [53] Shao Xudong, Peng Wanghu, Liu Guangdong, Yan Banfu. Design and experimental study of a harp-shaped single span cable-stayed bridge [J]. Journal of Bridge Engineering, 2005, 10(6):658-665.
    [54] Simoes LMC, Negrao JHO. Sizing and geometry optimization of cable-stayed bridges [J].Computers and Structures,1994,52(2):309-321.
    [55] Sirca JGF, Adeli H. Cost optimization of prestressed concrete bridges [J]. Journal of Structural Engineering, 2005, 131(3):380-388.
    [56] Smith BS. A linear method of analysis for double-plane cable-stayed girder bridge [A]. Proceedings of the Institution of Civil Engineering, 1967, 39(1):85-94.
    [57] Smith BS. The single plate cable-stayed girder bridges: a method of analysis suitable for computer use[A].Proceedings of the Institution of Civil Engineering, 1967, 37(3):183-194.
    [58] Song ST, Chai YH, Hida SE. Live-load distribution factors for concrete box-girder bridges [J]. Journal of Bridge Engineering, 2003, 8(5):273-280.
    [59] Stallings JM, Frank KH. Stay-cable fatigue behavior [J]. Journal of Structural Engineering, 1991, 117(3):936-950.
    [60] Starossek U. Cable-stayed bridge for longer spans [J]. Journal of Bridge Engineering, 1996, l(3):99-103.
    [61] Starossek U. Weight versus cost — light-weight materials in cable-stayed bridges [J]. Journal of Structural Engineering, 1998, 124(11):1359-1362.
    [62] Suzuki K. The development of bridge aesthetics and conceptual design of structural engineers [A]. Proceedings on Conceptual Design of Structures[C]. Stuttgart, Germany, 1996.
    [63] Svensson HS. The development of composite cable-stayed bridges [A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C]. Malmo, Sweden, 1999.100-101.
    [64] Takena K, Miki C, Shimokawa H, Sakamoto K. Fatigue resistance of large-diameter cable for cable-stayed bridge [J]. Journal of Structural Engineering, 1992, 118 (3):701-715.
    [65] Tang FF. Innovative design of composite cable-supported bridge [A]. IABSE Conference on Cable-Supported Bridges — Challenging Technical Limits[C]. Seoul, Korea, 2001. 46-47.
    [66] Tang MC. Analysis of cable-stayed bridge [J]. Journal of Structural Engineering, 1971, 97: 1481-1496.
    [67] Tang MC. Analysis of cable-stayed bridge [J]. Journal of Structural Engineering, 1972, 98: 1789-1802.
    [68] Tang MC. Construction of East Huntington bridge [J]. PCI Journal, 1987, 32(6)32-48.
    [69] Tassios TP. The interaction between conceptual design and construction [A]. Proceedings on Conceptual Design of Structures[C]. Stuttgart, Germany, 1996.
    [70] Tong W, Saadatmanesh H. Parametric study of continuous prestressed composite girders [J]. Journal of Structural Engineering, 1992, 118(1): 186-206.
    [71] Troitsky MS. Cable-stayed bridge theory and design [M]. London: Granada Publishing Ltd. 1997.
    [72] Virlogeux M. Bridges with multiple cable-stayed spans[A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C]. Malmo, Sweden, 1999. 14-15.
    [73] Virlogeux M. Recent evolution of cable-stayed bridges [J]. Engineering Structures, 1999, 21(8): 737-755.
    [74] Virlogeux M. Structural and architectural design of bridges [A]. Proceedings on Conceptual Design of Structures[C]. Stuttgart, Germany, 1996.
    [75] Wachalski K. Some aspects of the design of Marta Wisla river bridge in Gdansk [A]. IABSE Conference on Cable-Stayed Bridges — Past, Present and future[C]. Maimo, Sweden, 1999. 90-91.
    [76] Walther R. Cable-stayed bridges [M]. 2ed Ed. Thomas Telford Ltd, 1998.
    [77] Wang PH, Tseng TC, Yang CG. Initial shape of cable-stayed bridges [J]. Computers and Structures, 1993, 46: 1095-1106.
    [78] Wang PH, Yang CG. Parametric studies on cable-stayed bridges [J]. Computers and Structures, 1996, 60(2): 243-260.
    [79] Xi Ying, Kuang JS. Ultimate load capacity of cable-stayed bridges [J]. Journal of Bridge Engineering, 1999, 4(1): 14-22.
    [80] Zellner W. Discussion of cable-stayed bridge: degrees of anchoring [J]. Journal of the Structural Division, 1984, 110(ST5): 910-914.
    [81] Zokaie T. AASHTO-LRFD Live load distribution specifications [J]. Journal of Bridge Engineering, 2000, 5(2): 131-138.
    [82] 蔡国宏.斜拉桥的发展经验和展望[J].国外公路,1997,17(4):19-24.
    [83] 曹海顺.大跨度预应力混凝土斜拉桥主梁高度优化参数分析[D].上海:同济大学,2003.
    [84] 陈艾荣,项海帆,Schlaich J.多塔斜拉桥概念设计[A].第十三届全国桥梁学术会议论文集[C].上海,1998.171-177.
    [85] 陈德伟,范立础,张权.独塔斜拉桥的总体布置和参数研究[J].土木工程学报,1999,32(3):34—40.
    [86] 陈亨锦,王凯,李呈根.浅谈部分斜拉桥[J].桥梁建设,2002,1:44~46.
    [87] 陈衡治,徐爱敏,叶昌勇,叶贵如.杭州湾大桥北航道桥结构优化研究[J].中国铁道科学,2004,25(3):76-79.
    [88] 陈开利.独塔斜拉桥的建设和展望[J].桥梁建设,1998,3:33—36.
    [89] 陈明宪.斜拉桥建造技术[M].北京:人民交通出版社,2004.
    [90] 陈少珍.开发新型的桥梁结构形式[J].中外公路,2003,23(4):5-8.
    [91] 程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990.
    [92] 戴公连,李德建.桥梁结构空间分析设计方法与应用[M].北京:人民交通出版社,2001.
    [93] 戴竞.大跨径桥梁桥型比较[J].公路,2000,4:1-6.
    [94] 戴竞.我国预应力混凝土公路桥的发展与现状[J].土木工程学报,1997,30 (3) :3-10.
    [95] 戴利民.独塔协作体系斜拉桥设计参数研究[J].结构工程师,1999,3:7-13.
    [96] 戴利民.协作体系斜拉桥的结构分析[J].同济大学学报,2000,28(1):92-97.
    [97] 戴利民.协作体系斜拉桥的研究[D].上海:同济大学,1998.
    [98] 戴利民,石志源.独塔协作体系斜拉桥设计参数分析[J].西安公路交通大学学报,2000,20(1):34-38.
    [99] 代希华,方世乐,陈达章,王萍.崖门大桥总体设计与分析[J].桥梁建设,2003,1:1-4.
    [100] 党志杰.斜拉索的疲劳抗力[J].桥梁建设,1999,4:18-21.
    [101] 渡边异著,廖顺庠、吴在辉译.斜拉桥的影响线[M].北京:人民交通出版社,1980.
    [102] 方志禾,陈桂英.我国斜拉桥的建设与技术成就[J].市政技术,1997,3:3-10.
    [103] 房贞政,卓卫东,上官萍,林青.三县洲斜拉桥主梁锚固区应力分析[J].福州大学学报(自然科学版),1999,27(1):65-69.
    [104] 傅强,张泽鹏,严学寨.斜拉桥结构优化设计初探[J].湖南大学学报(自然科学版),2001,28(3):109-115.
    [105] 龚志刚.克罗地亚杜布罗夫瓦克卡海峡独塔斜拉桥[J].世界桥梁,2004,1:9-11.
    [106] 郭金琼.箱形梁设计理论[M].北京:人民交通出版社,1991.
    [107] 郭卓明,李国平,袁万城.独塔单索面斜拉桥主塔稳定简化分析[J].同济大学学报,2000,28(2):215-218.
    [108] 何莉娟.建筑结构的概念设计[J].天然气与石油,1994,12(4):39-45.
    [109] 洪锦如.桥梁结构计算力学[M].上海:同济大学出版社,1998.
    [110] 胡建华,廖建宏.多塔斜拉桥关键技术研究[J].中外公路,2002,22(3):32-36.
    [111] 黄锦源.关于桥梁几个概念的探讨[J].中国市政工程,2000,1:12-17.
    [112] 黄黎丽,严国敏.桥梁的结构和建筑设计[J].国外桥梁,1997,1:59-62.
    [113] 蒋永林,卢伟,强士中.斜拉桥和悬索桥跨越效率的比较[J].国外桥梁,1998,4:10-11.
    [114] 金增洪.斜拉桥的历史和美学(上)[J].国外公路,1997,17(2):21-26.
    [115] 金增洪.斜拉桥的历史和美学(下)[J].国外公路,1997,17(3):26-32.
    [116] 靳欣华,郑凯锋,陈艾荣.斜拉与T构协作体系桥梁全桥结构仿真分析[J].桥梁建设,2002,2:19-22.
    [117] 经柏林,谢华鸾.斜拉桥拉索研究综述[J].中国市政工程,2003,6:19-21.
    [118] 李芳.工程结构优化设计发展综述[J].工程设计学报,2002,9(5):229-235.
    [119] 李俊生,贺到荣,刘玉海.斜拉桥极限跨度及分析[J].华东公路,1999,1:7-8.
    [120] 李强兴.斜拉索静力解[J].桥梁建设,1996,3:21-24.
    [121] 李强兴.斜拉索静力解(续)[J].桥梁建设,1997,1:74-75.
    [122] 李乔.斜拉桥的受力特征分析[J].工程力学增刊,1999,250-254.
    [123] 李先立,宋显辉,刘禹钦.高强镀锌钢丝疲劳可靠性研究[J].土木工程学报,1995,28(2):36-43.
    [124] 李晓莉.葡萄牙欧罗巴大桥的概念和结构设计[J].世界桥梁,2005,4:21-24.
    [125] 李育楷,王全凤.不需要计算机的建筑结构优化—概念设计[J].工业建筑,2001,31(10):21-23.
    [126] 李志文.桥梁结构优化设计基础[M].北京:人民交通出版社,1982.
    [127] 卢汝生,成彤,王荣辉.桥梁结构疲劳特性分析发展历程与评定设计方法综述[J].公路交通科技,2004,3:49-52.
    [128] 林元培.斜拉桥[M].北京:人民交通出版社,1997.
    [129] 刘德宝,马芹纲.桥梁结构创新方法[J].国外桥梁.2002,1:65—68.
    [130] 刘凤奎,蔺鹏臻,陈权,甘燕燕,楼松庆.银湖矮塔斜拉桥无索区长度分析[J].铁道标准设计,2004,5:11-13.
    [131] 刘凤奎,蔺鹏臻,陈权,刘世忠.矮塔斜拉桥特征参数研究[J].工程力学,2004,21(2):199-203.
    [132] 刘光栋,邵旭东.竖琴式斜拉桥的设计构思与关键技术研究[J].工程力学(增刊),2002,021-027.
    [133] 刘乐天.高低塔斜拉桥静力性能研究及施工控制[D].长沙:长沙交通学院,2002.
    [134] 柳惠芬.斜拉桥的实用简化分析[D].上海:同济大学,1995.
    [135] 柳惠芬,姚玲森.斜拉桥非线性实用简化分析[J].同济大学学报,2001,29 (1) :118-121.
    [136] 楼庄鸿.多孔斜拉桥[J].公路交通科技,2002,19(2):79-83.
    [137] 楼庄鸿.斜拉桥的界限[J].中外公路,1997,17(5):31-33.
    [138] 吕福钢.斜交曲线斜拉桥力学性能研究[D].大连:大连理工大学,2005.
    [139] 栾军.试验设计的技术与方法[M].上海:上海交通大学出版社,1986.
    [140] 闾开军,孙江涛,胡晓东.浅谈斜拉桥的发展[J].湖南交通科技,1999,25 (1) :38-40.
    [141] 马景含.大里营斜拉桥方案比较与优化[J].铁道标准设计,1998,2:10-12.
    [142] 马坤全.大跨径斜拉桥建设与展望[J].国外桥梁,2000,4:60-65.
    [143] 欧阳永金,刘世忠,石占良.同安银湖大桥斜拉索体系[J].世界桥梁,2003,1:24-26.
    [144] 潘瑞春.经济指标对桥梁方案比选的影响[J].福建林学院学报,2000,20(3):238-240.
    [145] 彭杰元.斜拉桥的受力分析及其模型试验研究[J].桥梁建设,1998,3:49-52.
    [146] 彭雪林,任伟新,葛继平.大跨度斜拉桥的建模与模态分析[A].全国结构计算理论与工程应用学术会议论文集[C].上海:同济大学出版社,2003.414-417.
    [147] 邱文亮.自锚式悬索桥非线性分析与试验研究[D].大连:大连理工大学,2004.
    [148] 冉一元.国外PC桥梁结构新技术的发展[J].桥梁建设,1993,3:45—48.
    [149] 任飞.500m跨度PC斜拉桥肋板式主梁分析研究[J].中外公路,2003,23(1):54-57.
    [150] 任飞.特大跨径PC斜拉桥主梁设计研究[D].南京:东南大学,2000.
    [151] 山田善一著,林亚超编译.桥梁结构的最优设计[M].北京:人民交通出版社,1980.
    [152] 上官萍,房贞政,卓卫东.部分斜拉桥的结构体系及斜拉索索力影响分析[J].福建建筑,2005,3:8-11.
    [153] 上官萍,房贞政,卓卫东.塔梁墩固结斜拉桥结构受力分析[J].福州大学学报 (自然科学版),1999,27(3):19-22.
    [154] 施新欣.无背索斜拉桥结构性能研究[D].上海:同济大学,2005.
    [155] 苏聪敏,万田保.大跨索承桥梁的构造细节方略[J].世界桥梁,2002,4:21-25.
    [156] 苏达根,韩大建,谭哲东,廖景娱,唐红雁,陈志雄.斜拉桥拉索钢丝腐蚀时效研究[J].华南理工大学学报(自然科学版),1996,24(8):108-112.
    [157] 苏善根,鲍卫刚.斜拉桥设计指南(上)[J].国外公路,1993,1:18-22.
    [158] 孙传洲.捷克易北河玛丽安独塔斜拉桥[J].国外桥梁,2000,2:36-37.
    [159] 孙剑文,肖邦汗.独柱塔曲线斜拉桥[J].国外桥梁,1999,4:21-23.
    [160] 铁道部大桥工程局桥梁科学研究所.斜拉桥[M].北京:科学技术文献出版社,1992.
    [161] 唐明翰,李义.现代斜拉索[J].公路,1997,10:1-8.
    [162] 唐小萍.平行钢绞线拉索与平行钢丝拉索的特性、经济性比较分析[J].国外桥梁,1997,4:17-19.
    [163] 王伯惠.中国近期混凝土斜张桥的新发展[J].东北公路,1993,4:45-51.
    [164] 王伯惠.独斜塔半索面斜拉桥[J].辽宁省交通高等专科学校学报,2003,5(1):1-9.
    [165] 王伯惠.国外混凝土斜张桥的一些新进展[J].国外公路,1990,3:1-6.
    [166] 王伯惠.我国的混凝土斜拉桥[A].中国土木工程学会第五界年会暨第二次全国城市桥梁学术会议[C].北京:天津大学出版社,1990.
    [167] 王伯惠.斜拉桥结构发展和中国经验(上册)[M].北京:人民交通出版社,2003.
    [168] 王伯惠.斜拉桥的极限跨径(连载一)[J].公路,2002,3:46-53.
    [169] 王伯惠.斜拉桥的极限跨径(连载二)[J].公路,2002,4:38-48.
    [170] 王伯惠.斜拉桥拉索静力计算[J].公路,2003,6:1-8.
    [171] 王伯惠.斜拉桥增大跨径的技术措施[J].公路,2003,2:1-13.
    [172] 王德民,杨佳新,李晖,王良辰.斜拉桥的现状和发展[J].黑龙江水利科技,2000,2:10-11.
    [173] 王碧波.无背索斜拉桥的结构静力平衡特征探讨[J].桥梁建设,2004,3:23-26.
    [174] 王春生,黄道沸.东江大桥主航道桥方案设计[J].广东公路交通,2002,3:5-8.
    [175] 王光远.论工程优化[J].计算结构力学及其应用.1994,11(1):8-18.
    [176] 王红亮,周履.一种计算斜拉桥拉索预施拉力的实用方法[J].国外桥梁,1997, 1:14-18.
    [177] 王胜斌,胡可.安庆长江公路大桥主桥总体结构静力分析[J].公路交通科技,2004,21(6):13-17.
    [178] 王文涛.斜拉桥换索工程[M].北京:人民交通出版社,1996.
    [179] 魏红一,胡世德,范立础.对斜拉桥总体设计参数的讨论[J].结构工程师,2003,3:7-11.
    [180] 魏建东,车惠民.斜拉索静力解及其应用[J].西南交通大学学报,1998,33 (5):539-543.
    [181] 魏建东,赵人达,车惠民.斜拉桥中拉索的静力设计[J].桥梁建设,1999,2:21-23.
    [182] 文武松,彭旭民,党志杰.斜拉索设计试验与安装条例(上)—后张法协会斜拉桥委员会1993年3月[J].国外桥梁,1997,2:35-40.
    [183] 文武松,彭旭民,党志杰.斜拉索设计试验与安装条例(中)—后张法协会斜拉桥委员会1993年3月[J].国外桥梁,1997,3:33-40.
    [184] 文武松,彭旭民,党志杰.斜拉索设计试验与安装条例(下)—后张法协会斜拉桥委员会1993年3月[J].国外桥梁,1997,4:63-71.
    [185] 邬晓光.拱桥极限跨度技术研究[J].东北公路,1996,1:54-56.
    [186] 邬晓光.斜拉桥极限跨度分析[J].重庆交通学院学报,1996,15(3):36-38.
    [187] 吴劲兵,杨耀铨.贵州红枫湖大桥桥型方案比选[J].中外公路,2005,25(2):102-103.
    [188] 项海帆.世界桥梁发展中的主要技术创新[J].广西交通科技.2003,28(5):1-7.
    [189] 肖恩源.论悬挂索的重力刚度[J].公路,2000,8:43-49.
    [190] 肖恩源.索的特性(连载)[J].公路,1997,5:1-7.
    [191] 肖恩源.索的特性(续)[J].公路,1997,6:2-6.
    [192] 肖光宏,张秋陵.采用薄板作斜拉桥主梁的可行性研究[J].重庆交通学院学报,1996,15(4):8-13.
    [193] 肖汝诚,项海帆.斜拉—悬吊协作体系桥力学特性及其经济性能研究[J].中国公路学报,1999,12(3):43-48.
    [194] 肖汝诚.确定大跨经桥梁合理设计状态理论与方法研究[D].上海:同济大学.1996.
    [195] 辛克贵,刘钺强,杨国平.大跨度斜拉桥恒载非线性静力分析[J].清华大学学报(自然科学版),2002,42(6):818-821.
    [196] 辛学忠.芜湖长江大桥主跨312m斜拉桥刚度分析[J].中国铁道科学, 2001,22(5):22-28.
    [197] 熊元克.多跨斜拉桥及其特殊问题[J].交通标准化,2004,8:64-66.
    [198] 徐利平.超大跨径斜拉桥的结构体系分析[J],同济大学学报,2003,31(4):400-403.
    [199] 徐利平.混合梁斜拉桥边跨混凝土梁受力特点[J].结构工程师,2003,1:12-16.
    [200] 徐利平.混合梁斜拉桥的边、中跨合理比例[J].上海公路,2002,4:28-30.
    [201] 颜东煌.斜拉桥合理设计状态确定与施工控制[D].长沙:湖南大学,2001.
    [202] 严国敏.日本公路桥规范主要修改内容简介(一)[J].国外桥梁,1991,1:18-32.
    [203] 严国敏.现代斜拉桥[M].北京:人民交通出版社,1997.
    [204] 颜娟.金马大桥工程的结构分析和研究[D].大连:大连理工大学,2002.
    [205] 颜娟,黄才良,张哲.协作体系斜拉桥整体静力计算分析[J].公路,2002,7:81-83.
    [206] 杨琪,李乔.斜拉桥的静力行为影响参数及其静力分析[J].国外桥梁,1999,4:31-41.
    [207] 杨霞林,周洁华.斜拉桥箱形主梁底板厚度的参数分析[J].兰州铁道学院学报(自然科学版),2003,22(6):84-87.
    [208] 杨新宝,曹雪琴.大跨度铁路斜拉桥竖向刚度的研究[J].上海铁道学院学报,1995,16(2):12-20.
    [209] 杨义东,胡定成.美国的混凝土斜拉桥桥塔设计[J].国外桥梁,1999,4:28-30.
    [210] 喻梅.多塔斜拉桥结构特性分析[D].成都:西南交通大学,2003.
    [211] 喻梅,李乔.结构布置对多塔斜拉桥力学行为的影响[J].桥梁建设,2004,2:1-4.
    [212] 袁鹏.无背索斜拉桥设计分析及施工控制与荷载试验研究[D].上海:同济大学,2005.
    [213] 张宝胜.三塔斜拉桥静力性能研究[D].西安:长安大学,2001.
    [214] 张朝生.2000MPa热镀锌钢丝和2300MPa级PC钢绞线用线材的开发[J].国外桥梁,2000,2:72-78.
    [215] 张春芳,周履.斜拉索的疲劳性能[J].国外桥梁,1992,3:44-52.
    [216] 张俊,王秀丽,杨佳新,王良辰.斜拉桥现状资料汇集[J].黑龙江水利科技,2000,3:100-103.
    [217] 张哲.金马大桥设计实践和理论探索[J].大连理工大学学报,1999,39(2): 285-294.
    [218] 张哲,黄才良,颜娟,张星云.金马大桥斜拉桥与刚构桥接头部位构造及受力分析[J].桥梁建设,2001,6:18-20.
    [219] 张震陆,陈本贤.柔索分析的“悬链段”方法研究[J].工程力学,1990,7(4):41-49.
    [220] 赵少汴,王忠保.抗疲劳设计[M].北京:机械出版社,1997.
    [221] 郑春,刘晓东.论多塔斜拉桥的刚度[J].公路,2002,6:98-100.
    [222] 郑一峰,黄侨,张宏伟.部分斜拉桥的概念设计[J].公路交通科技,2005,22 (7):85-89.
    [223] 郑一峰,黄侨,张宏伟.部分斜拉桥斜拉索设计方法研究[J].公路,2005,2:27-31.
    [224] 周兵,娄建峰.斜拉桥倒Y型索塔横梁内力分析[J].上海公路,2002,3:22-24.
    [225] 郑一峰,黄侨,张连振.部分斜拉桥结构体系分析[J].公路,2005,6:1-5.
    [226] 周履.20世纪后期世界PC桥梁的若干重要进展[J].世界桥梁,2003,1:1-4.
    [227] 周念先.桥梁方案比选[M].上海:同济大学出版社,1997.
    [228] 周念先,杨共树.预应力混凝土斜张桥[M].北京:人民交通出版社,1989.
    [229] 周念先,周世忠.21世纪特大桥梁跨径的展望[A].中国公路学会桥梁和结构工程学会2000年桥梁学术讨论会论文集[C].北京:人民交通出版社,2000.13-17.
    [230] 朱宜琛.空间直线间距离在斜拉桥布索中的应用[J].山东交通科技,2000,4:28-30.
    [231] 卓卫东,房贞政,林青.墩塔梁固结体系斜拉桥固结节点受力分析[J].福州大学学报(自然科学版),1999,27(4):81-85.
    [232] 邹立华.单索面钢筋混凝土斜拉桥的非线性分析[J].兰州铁道学院学报(自然科学版),2000,19(4):63-67.
    [233] JTG D60—2004.公路桥涵设计通用规范[S].
    [234] JTG D62—2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
    [235] JTJ 027—96.公路斜拉桥设计规范(试行)[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700