海底观测网络水下接驳盒原型系统技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底观测网络水下接驳技术是海洋科学与技术领域的前沿课题。将多个海底观测设备在水下连接,实现对各种海底观测设备所需电能和信息集中控制和管理的技术,称为水下接驳技术。应用水下接驳技术对电能和信息实施控制和管理的装置,称为接驳盒。传统的海洋观测技术受到电能长期供给和信息实时传送的限制。基于水下接驳技术的海底观测网络能够提供持续电能供给和实时高带宽数据传输,实现了对海底的长期连续实时原位观测。
     在国家985工程2期浙江大学机电系统创新平台项目“海底观测网络试验平台”的资助下,本文在理论分析和实验测试的基础上,对海底观测网络水下接驳盒原型系统技术进行了较为系统的研究,并初步建成ZERO系统。主要研究内容与结论有:
     1.提出了一种模块化的接驳盒原型系统结构。采用主控电路腔、高压转换腔和低压转换腔3个耐压密封腔体,实现了接驳盒原型系统的机电集成封装。基于第一强度理论,完成了接驳盒耐压腔体的强度设计计算和稳定性校核,并利用ANSYS软件对耐压腔体和端盖进行了仿真分析,保证了接驳盒能够用于深海高压环境。接驳盒耐压腔体使用双层O形密封圈实现了可靠的轴向密封。采用腔体内部充油散热和端盖散热相结合的方法,保证了接驳盒系统的稳定运行。
     2.提出了一种由监控中心层、主干网层和子网层构成的海底观测网络系统结构。参照OSI/RM模型,设计了一种基于TCP/IP协议的主干网通信协议分层模型。针对信息传输的实时性要求,采用了基于TCP/IP协议的光以太网技术、Modbus协议、RS485协议和应用层自定义协议相结合的方法,实现了海底观测网络的数据采集及相应的通信控制。采用SNTP服务器对时和指令帧对时相结合的组合授时方法,实现了系统的精确时间同步。
     3.通过对高压直流输电和交流输电的对比分析,确定ZERO系统采用金属导线回路方式实现高压直流输电。分析了PWM控制、双管正激变换和ISOP组合系统的输入侧均压和输出侧均流技术,提出了将功率MOSFET以输入串联输出并联的方式连接,采用基于PWM电流型反馈控制的双管正激电路的方法,实现了接驳盒的2kV/400V DC/DC变换器的2kV DC高压直流电能到400V DC中压直流电能的转换。
     4.设计了基于MSP430F149单片机的接驳盒电能管理系统,采用霍尔电流传感器测量海底观测设备的电流,采用分压的方法测量电压,使用热敏电阻测量接驳盒内部的温度,并通过机械继电器开关的远程分合控制,实现了海底观测设备的电能分配控制。
     5.开展了ZERO接驳盒系统的实验室高压舱和水池实验研究,实验结果表明了所设计的水下接驳盒原型系统能够应用于海底的高压环境,验证了水下接驳技术的有效性和可靠性。
     本文的研究成果为我国实际的海底观测网络的建设进行了先期的理论研究,提供了重要的理论基础和关键技术支撑。所研制的水下接驳盒原型系统在海洋环境监测、海啸灾害监测和海底资源勘探等领域都具有广阔的应用前景。
Underwater junction technology of seafloor observatory network has become the forefront subject of the ocean science and technology. Underwater junction technology connects several seafloor observation instruments underwater, and implements centralize control and management for electric energy and information of various seafloor observation instruments. Junction box is a kind of equipment which applies underwater junction technology to control and manage electric energy and information. Conventional ocean observation technology is restricted by long-term electric energy supply and realtime information transmission. Seafloor observatory network based on underwater junction technology provides continuous electric energy supply and realtime high-bandwidth data transfer, and implements long-term continuous realtime in-situ observation for seafloor.
     This dissertation is supported by the Second Stage of the National985Project for the Mechatronic System Innovation Platform of Zhejiang University (Project title: Seafloor Observatory Network Test Platform). By means of theoretical analysis and experimental test, underwater junction box prototype system technology of seafloor observatory network is studied in this dissertation, and the Zhejiang University Experimental Research Observatory (ZERO) system has been built basically. The main contributions of this work are as follows:
     1. A modularization framework of junction box prototype system is proposed. Three waterproof pressure-resistant housings including communication control housing, high voltage converter housing and low voltage converter housing, were chosen as mechanical and electronic integration encapsulation structure of the junction box prototype system. Intensity design calculation and stability verifying for the pressure-resistant housing of junction box were fulfilled based on the first intensity theory. ANSYS software was chosen to complete simulation analysis for the pressure-resistant housing and end cap. Accordingly, the junction box can work reliably in the deepsea high-pressure environment. Two O ring were used to implement reliable axial seal. A method combining oil-filled housing heat dissipation and end cap heat dissipation was chosen to assure steady work of the junction box system.
     2. A sort of system architecture of seafloor observatory network was presented, which is composed of the control center layer, the backbone network layer, and the subnet layer. Referring to OSI/RM model, a kind of communication protocol layered model based on TCP/IP of the backbone network was designed. Considering the real-time request of the information transmission, the optic Ethernet technology based on TCP/IP, the Modbus protocol, the RS485protocol, and the application layer user-defined protocol were chosen to implement data collection and corresponding communication control for seafloor observatory network. Combinatorial timing method including the SNTP server timing and the command frame timing were chosen to implement accurate system time synchronism.
     3. Based on comparative analysis of direct current and alternating current high-voltage power transmission, metal conductor loop mode was chosen for high-voltage direct current power transmission of ZERO system. PWM control, two-transistor forward conversion, and input-side voltage sharing output-side current sharing of input-series output-parallel (ISOP) combinatorial system were analyzed. By arraying power MOSFET parts in series on the input-side and in parallel on the output-side, a new method based on PWM current feedback control and two-transistor forward circuit was proposed to transform2kV high-voltage DC to400V middle-voltage DC for the2kV/400V DC/DC converter of junction box.
     4. The electric power management system based on single chip processor MSP430F149of junction box was designed. Hall electric current sensor was chosen to measure electric current for seafloor observation instruments. Resistance voltage divider was chosen to measure electric voltage. Thermal resistor was chosen to measure internal temperature of junction box. By remote on-off control of the relay, the electric energy distribution control was implemented for seafloor observation instruments.
     5. High-pressure chamber and pool experiments for ZERO junction box system were performed in the laboratory, and the experiments results manifest that the underwater junction box prototype system can be used in the high-pressure seafloor environment. Accordingly, the underwater junction technology developed is effective and reliable.
     It's certain that the results of present research provide important theoretical research basis and key technology support for the building of Chinese practical seafloor observatory network. The underwater junction box prototype system has the advantage that it can also be used in applications such as marine environmental monitoring, tsunami disaster monitoring, seafloor resource exploration.
引文
[1]Rona P A. Marine minerals for the 21st century[J]. Episodes,2002,25(1):2-12.
    [2]Rona P A,Scott S D. A special issue on sea-floor hydrothermal mineralization; new perspectives; preface[J]. Economic Geology,1993,88(8):1935-1976.
    [3]Gornitz V,Fung I. Potential distribution of methane hydrates in the world's oceans[J]. Global Biogeochemical Cycles,1994,8(3):335-347.
    [4]Wirsen C. Is life thriving deep beneath the seafloor?[J]. Oceanus Magazine,2004,42(2):1-6.
    [5]Fisher C R,Takai K, Bris N L. Hydrothermal vent ecosystems[J]. Oceanography,2007,20( 1):14-23.
    [6]Prieur D. Microbiology of deep-sea hydrothermal vents[J]. Trends in Biotechnology,1997,15( 7):242-244.
    [7]Chapelle F,O'Neill K,Bradley P,et al. A hydrogen-based subsurface microbial community dominated by methanogens[J]. Nature,2002,415(1):312-314.
    [8]Lee R W. Thermal tolerances of deep-sea hydrothermal vent animals from the Northeast Pacific[J]. The Biological Bulletin,2003,205(2),98-101.
    [9]Reysenbach A L,Cady S L. Microbiology of ancient and modern hydrothermal systems[J]. Trends in Microbiology,2001,9(2):79-86.
    [10]Schrenk M O,Kelley D S,Delaney J R,et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology,2003,69(6):3580-3592.
    [11]陈鹰,杨灿军,顾临怡,等.基于载人潜水器的深海资源勘探作业技术研究[J].机械工程学报,2003,39(11):38-42.
    [12]陈鹰.海底热液科学考察中的机电装备技术[J].机械工程学报,2002,38(增刊):207-211.
    [13]周怀阳,彭晓彤,叶瑛.天然气水合物勘探开发技术研究进展[J].地质与勘探,2002,38(1):70-73.
    [14]周怀阳,李江涛,彭晓彤.海底热液活动与生命起源[J].自然杂志,2009,31(4):207-212.
    [15]金翔龙,初凤友.大洋海底矿产资源研究现状及其发展趋势[J].东海海洋,2003,21(1):1-4.
    [16]方银霞,包更生,金翔龙.21世纪深海资源开发利用的展望[J].海洋通报,2000,19(5):73-78.
    [17]李江海,初凤友,冯军.深海底热液微生物成矿与深部生物圈研究进展[J].自然科学进展,2005,15(12):1416-1425.
    [18]Kvenvolden K A. Methane hydrates and global climate[J]. Global Biogeochemical Cycles,1988,2(3):221-229.
    [19]http://www.wmo.int/pages/prog/wcrp/wcrp-index.html.
    [20]苏纪兰.21世纪初我国海洋科学的展望[J].海洋学研究,2006,24(1):1-5.
    [21]杜同军,翟世奎,任建国.海底热液活动与海洋科学研究[J].青岛海洋大学学报(自然科学版),2002,32(4),597-602.
    [22]金翔龙.海洋、海洋经济与人类未来[J].海洋学研究,2006,24(2):1-7.
    [23]张鸿翔,赵千钧.海洋资源—人类可持续发展的依托[J].地球科学进展,2003,18(5):806-811.
    [24]Malone T C,Cole M. Toward a global scale coastal ocean observing system[J]. Oceanography,2000,13(1):7-11.
    [25]Kawaguchi K, Hirata K,Miltada H,et al. An expandable deep seafloor monitoring system for earthquake and tsunami observation network[C]. OCEANS 2000 MTS/IEEE Conference and Exhibition,Providence,USA,2000,3:1719-1722.
    [26]李颖虹,王凡,任小波.海洋观测能力建设的现状、趋势与对策思考[J].地球科学进展,2010,25(7):715-722.
    [27]管玉平,谢强,颜文,等.第三次海洋学浪潮及其对策[J].中国科学院院刊,2009,24(3):297-302.
    [28]蔡树群,张文静,王盛安.海洋环境观测技术研究进展[J].热带海洋学报,2007,26(3):76-81.
    [29]赵吉浩,高艳波,朱光文,等.海洋观测技术进展[J].海洋技术,2008,27(4):1-4.
    [30]罗续业,周智海,曹东,等.海洋环境立体监测系统的设计方法[J].海洋通报,2006,25(4):69-77.
    [31]Favali P,Beranzoli L. Seafloor observatory science:a review[J]. Annals of Geophysics,2006,49(2/3):515-567.
    [32]Waterworth G. Connecting long-term seafloor observatories to the shore[J]. Sea Technology,2004,45(9):19-21.
    [33]Kawaguchi K,Hirata K,Nishida T,et al. A new approach for mobile and expandable real-time deep seafloor observation-adaptable observation system[J]. IEEE Journal of Oceanic Engineering,2002,27(2):182-192.
    [34]Suyehiro K,Kiyoshi S,Mikada H,et al. Japanese seafloor observing systems:Present and future[J]. Marine Technology Society Joumal,2003,37(3):102-114.
    [35]陈鹰,杨灿军,陶春辉,等.海底观测系统[M].北京:海洋出版社,2006.
    [36]汪品先.从海底观察地球—地球系统的第三个观测平台[J].自然杂志,2007,29(3):125-130.
    [37]汪品先.海洋科学和技术协同发展的回顾[J].地球科学进展,2011,26(6):644-649.
    [38]汪品先.关于建设海底观测平台的建议[J].学会,2005,5:52-53.
    [39]汪品先.走向深海大洋:揭开地球的隐秘档案[J].科技潮,2005,1:24-27
    [40]Ding K,Seyfried Jr W E,Tivey M K,et al. In situ measurement of dissolved H2 and H2S in high temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge[J]. Earth and Planetary Science Letters,2001,186(3-4),417-425.
    [41]Wu H C,Chen Y,Yang C J,et al. Mechatronic integration and implementation of in situ multipoint temperature measurement for seafloor hydrothermal vent[J]. Science in China Series E:Technological Sciences,2007,50(2),144-153.
    [42]Fornari D J,Voegeli F,Olsson M. Improved low-cost, time-lapse temperature loggers for deep ocean and sea floor observatory monitoring[J]. Ridge Events,1996,7:13-16.
    [43]Chaffey M,Bird L,Erickson J,et al. MBARI's buoy based seafloor observatory design[C]. OCEANS'04 MTTS/IEEE,Kobe,2004,4:1975-1984.
    [44]Chaffey M,Mellinger E,Paul W. Communications and power to the seafloor:MBARI's Ocean Observing System mooring concept[C]. OCEANS 2001 MTS/IEEE Conference and Exhibition,Honolulu,USA,2001,4:2473-2481.
    [45]Frye D,Ware J,Grund M,et al. An acoustically-linked deep-ocean observatory[J]. Oceans 2005-Europe,2005,2:969-974.
    [46]Chave A D,Waterworth G,Maffei A R,et al. Cabled ocean observatory systems[J]. Marine Technology Society Journal,2004,38(2):30-43.
    [47]Person R,Aoustin Y,Blandin J,et al. From bottom landers to observatory networks[J]. Annals of Geophysics,2006,49(2-3):581-593.
    [48]Clark H L. New seafloor observatory networks in support of ocean science research[C]. Oceans 2001 MTS/IEEE Conference and Exhibition,Honolulu,USA,2001,1:245-250.
    [49]Woodroffe A,Round A. Design and operation of a multi node cabled observatory[C]. OCEANS 2008,Quebec City,2008,706-710.
    [50]Shirasaki Y,Nishida T,Yoshida M,et al. Proposal of next-generation real-time seafloor globe monitoring cable-network[C]. OCEANS'02 MTS/IEEE Conference and Exhibition,Biloxi,2002,3:1688-1694.
    [51]Hirata K,Aoyagi M,Mikada H,et al. Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone[J]. IEEE Journal of Oceanic Engineering,2002,27(2):170-181.
    [52]陈鹰,宋宏,陈燕虎,等.海底观测网络的功能定义与组网规范[J].地球科学进展,已投稿.
    [53]卢汉良,李德骏,杨灿军,等.深海海底观测网络水下接驳盒原型系统设计与实现[J].浙江大学学报(工学版),2010,44(1):8-13.
    [54]http://www.soest.hawaii.edu/h2o/.
    [55]Petitt Jr R A,Harris D W, Wooding B,et al. The Hawaii-2 Observatory [J]. IEEE Journal of Oceanic Engineering,2002,27(2),245-253.
    [56]Duennebier F K,Harris D W,Jolly J,et al. The Hawaii-2 Observatory seismic system[J]. IEEE Journal of Oceanic Engineering,2002,27(2):212-217.
    [57]http://venus.uvic.ca/.
    [58]马伟锋,崔维成,刘涛,等.海底电缆观测系统的研究现状与发展趋势[J].海岸工程,2009,28(3):76-84.
    [59]Creed E L,Glenn S,Schofield O M,et al. LEO-15 Observatory-The next generation[C]. OCEANS 2005 Proceedings of MTS/IEEE,2005,1:657-661.
    [60]Forrester N C,Stokey R P,vonAlt C,et al. The LEO-15 Long-term Ecosystem Observatory: design and installation[C]. OCEANS'97 MTS/IEEE Conference Proceedings,1997,2:108 2-1088.
    [61]Duennebier F K,Harris D W.Jolly J,et al. HUGO:the Hawaii Undersea Geo-Observatory[J]. IEEE Journal of Oceanic Engineering,2002,27(2),218-227.
    [62]路道庆,邓斌,于兰英,等.深海水密接插件结构设计[J].机械工程师,2008,7:53-55.
    [63]封锡盛.从有缆遥控水下机器人到自治水下机器人[J].中国工程科学,2000,2(12):29-33.
    [64]彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用,2004,4:43-47.
    [65]李一平.水下机器人-过去、现在和未来[J].自动化博览,2002,19(3):153-155.
    [66]http://www.interactiveoceans.washington.edu/.
    [67]http://neptunepower.apl.washington.edu/.
    [68]http://www.neptunecanada.ca/.
    [69]Delaney J,Heath G R,Chave A,et al. NEPTUNE:real-time, long-term ocean and Earth studies at the scale of a tectonic plate[C]. OCEANS 2001 MTS/IEEE Conference and Exhibition,Honol ulu,US A,2001,3:1366-1373.
    [70]Delaney J,Beauchamp P,McNutt M.et al. Project NEPTUNE:an interactive, regional cabled ocean observatory in the Northeast Pacific[C]. OCEANS 2003 Proceedings,San Diego,USA,2003,2:1038-1042.
    [71]Barnes C R,Best M M R,Bornhold B A,et al. The NEPTUNE Project-a cabled ocean observatory in the NE Pacific:Overview, challenges and scientific objectives for the installation and operation of Stage I in Canadian waters[C]. Underwater Technology 2007,Tokyo,2007,308-313.
    [72]Rodgers D H,Maffei A,Beauchamp P M,et al. NEPTUNE regional observatory system design[C]. OCEANS 2001 MTS/IEEE Conference and Exhibition,Honolulu,US A,2001,3:1356-1365.
    [73]Woodroffe A M,Pridie S W,Druce G. The NEPTUNE Canada Junction Box-Interfacing science instruments to sub-sea cabled observatories[C]. OCEANS 2008-MTS/IEEE Kobe Techno-Ocean,Kobe,2008,730-734.
    [74]Kirkham H,Howe B M,Vorperian V,et al. The design of the NEPTUNE power system[C]. OCEANS 2001,Honolulu,USA,2001,3:1374-1380.
    [75]Maffei A R,Chave A D,Massion G,et al. NEPTUNE gigabit Ethernet submarine cable system[C]. OCEANS 2001 MTS/IEEE Conference and Exhibition,Honolulu,US A,2001,2:1303-1310.
    [76]Lentz S T. The NEPTUNE Canada Communications Network[C]. OCEANS 2007 MTS/IEEE, Vancouver,2007,270-274.
    [77]李建如,许惠平.加拿大“海王星”底观测网[J].地球科学进展,2011,26(6):656-661.
    [78]罗续业,李彦.海王星海底长期观测系统的技术分析[J].海洋技术,2006,25(3):15-18.
    [79]周怀阳,王虎.一所独特而令人深省的海洋研究机构:蒙特利海湾研究所(MBARI)[J].地球科学进展,2011,26(6):662-668.
    [80]http://www.mbari.org/mars/.
    [81]Dewey R,Round A,Macoun P,et al. The VENUS cabled observatory:engineering meets science on the seafloor[C]. OCEANS 2007,Vancouver,2007,398-404.
    [82]Dewey R,Tunnicliffe V. VENUS:future science on a coastal mid-depth observatory[C]. 3rd International Workshop on Scientific Use Submarine Cables and Related Technologies,Tokyo,2003,232-233.
    [83]http://www.oceanobservatories.org/.
    [84]Isern A R,Clark H L. The ocean observatories initiative:A continued presence for interactive ocean research[J]. Marine Technology Society Journal,2003,37(3):26-41.
    [85]Isern A R. The ocean observatories initiative:Wiring the ocean for interactive scientific discovery[C]. OCEANS 2006,Boston,2006,1924-1930.
    [86]Clark H L,Isern A R. The OOI and the IOOS-Can they be differentiated? An NSF perspective[J]. Oceanography,2003,16(4):20-21.
    [87]同济大学海洋科技中心海底观测组.美国的两大海洋观测系统:OOI与IOOS[J]地球科学进展,2011,26(6):650-655.
    [88]http://homepage.mac.com/ieee_oes_japan/ARENA/.
    [89]廖又明.解读日本ARENA(新型实时海底监测电缆网络)计划[J].船舶,2005,(4):20-25.
    [90]Kawaguchi K,Kaneda Y,Araki E. The DONET:A real-time seafloor research infrastructure for the precise earthquake and tsunami monitoring[C]. OCEANS 2008 MTS/IEEE Kobe Techno-Ocean,Kobe,2008,121-124.
    [91]http://www.oceanlab.abdn.ac.uk/research/esonet.php.
    [92]http://www.esonet-noe.org/.
    [93]Priede I G,Mienert J,Person R,et al. ESONET-European Sea Floor Observatory Network[J].3rd International Conference on Building the European Capacity for Operational Oceanography,Athens,2003,69:291-294.
    [94]Person R,Beranzoli L,Berndt C,et al. ESONET:An European sea observatory initiative[C]. OCEANS 2008-MTS/IEEE Kobe Techno-Ocean,Kobe,2008,1215-1220.
    [95]盛景荃.上海建成中国第一套海底观测组网技术系统[J].华东科技,2009,7:42-42.
    [96]彭晓彤,周怀阳,吴邦春,等.美国MARS海底观测网络中国节点试验[J].地球科学进展,2011,26(9):50-55.
    [97]http://www.most.gov.cn/.
    [98]Painter H,Flynn J. Current and future wet-mate connector technology developments for scientific seabed observatory applications[C]. OCEANS 2006,Boston,2006,881-886.
    [99]黄嘉琥.压力容器材料实用手册—特种材料[M].北京:化学工业出版社,1994.
    [100]李景辰,冯铁中,沈行道等.压力容器基础知识[M].北京:劳动人事出版社,1986.
    [101]薛杨声,赵纪兰.高压装置及其设计原理[M].北京:兵器工业出版社,1992.
    [102]丁伯民,蔡仁良.压力容器设计—原理及工程应用[M].北京:中国石化出版社,1992.
    [103]http://baike.baidu.com/view/1647448.htm.
    [104]董大勤,袁凤隐.压力容器与化工设备实用手册(上册)[M].北京:化学工业出版社,2000.
    [105]栾春远.压力容器ANSYS分析与强度计算[M].北京:中国水利水电出版社,2008.
    [106]蒋伟华.基于O形橡胶圈密封的高压容器设计和研究[D].浙江大学硕士学位论文,杭州:浙江大学,2006.
    [107]黄中华,金波,刘少军.深海高压舱密封性能评价研究[J].浙江大学学报(工学版),2007,41(5):790-793.
    [108]俞徐海.海底接驳盒散热系统研究与实现[D].浙江大学硕士学位论文,杭州:浙江大学,2010.
    [109]McDonald G,Naiman M. Heat transfer advances for submerged oceanographic systems[C]. OCEANS'02,Biloxi,2002,4:2045-2049.
    [110]Petitt R A,Bowen A,Elder R,et al. Power system for the new Jason ROV[C]. OCEANS'04, Kobe,2004,3:1727-1731.
    [111]赵伟.深海非接触式双向信号传输技术研究[D].浙江大学硕士学位论文,杭州:浙江大学,2004.
    [112]何丽萍.水下非接触式信号双向冗余传输技术研究及应用[D].浙江大学硕士学位论文,杭州:浙江大学,2006.
    [113]虞伟乔.深海观测网络结构及其协议研究[D].浙江大学硕士学位论文,杭州:浙江大学,2006.
    [114]穆道生,徐素妍,计国,等.现代光纤通信系统[M].北京:科学出版社,2005.
    [115]王秉钧,王少勇.光纤通信系统[M].北京:电子工业出版社,2004.
    [116]李跃辉,王缨,沈建华.光纤通信网[M].西安:西安电子科技大学出版社,2009.
    [117]闫亮亮,陈剑云,费远鹏.IEC60870-5-104远动规约在铁路电力远动系统中的应用[J].电力系统保护与控制,2009,37(6):48-52.
    [118]鞠阳,张惠刚.IEC60870-5-104远动规约的设计及其应用[J].继电器,2006,34(17):55-58,66.
    [119]唐岳,廖力清,汪治国.IEC60870-5-104远动规约在电网调度中的应用[J].电力系统通信,2005,26(150):50-53.
    [120]徐成.机电监控中嵌入式系统相关理论及应用研究[D].武汉理工大学博士学位论文,武汉:武汉理工大学,2006.
    [121]卢汉良,李德骏,杨灿军,等.深海海底观测网络信息采集监测系统设计与实现[J].传感技术学报,2011,24(3):407-411.
    [122]姜斌.基于Modbus/TCP工业以太网协议的温度采集网络设计[D].大连海事大学硕士学位论文,大连:大连海事大学,2007.
    [123]崔鹏.基于MODBUS协议的单片机智能电炉温度采集系统[D].昆明理工大学硕士学位论文,昆明:昆明理工大学,2008.
    [124]冯向科,邓莹.基于MODBUSRTU通信协议下的CRC算法实现[J].电脑知识与技术,2006,43,59.
    [125]王忠,李廷社,游智胜.CRC算法设计与程序实现[J].电子测量技术,2007,30(12):26-30,36.
    [126]卢汉良,李德骏,杨灿军,等.基于水下接驳盒的深海海底观测网络设计[J].计算机工程,2011,37(18):19-21.
    [127]王罡,林立志.基于Windows的TCP/IP编程[M].北京:清华大学出版社,2002.
    [128]邓全良Winsock网络程序设计[M].北京:中国铁道出版社,2002.
    [129]李现勇Visual C++串口通信技术与工程实践[M].北京:人民邮电出版社,2004.
    [130]Lentz S,Lecroart A. Precision timing in the NEPTUNE Canada network[C]. OCEANS 2009-EUROPE,Bremen,2009,128-132.
    [131]全渝娟,刘桂雄,洪晓斌.时间同步方法及其在工业测控系统中应用[J].现代制造工程,2007,3:94-97.
    [132]陈敏.基于NTP协议的网络时间同步系统的研究与实现[D].华中科技大学硕士学位论文,武汉:华中科技大学,2005.
    [133]卢汉良,李德骏,杨灿军,等.深海海底观测网络远程电力监控系统研究[J].传感技术 学报,2011,24(4):564-569.
    [134]赵伟,杨灿军,张佳帆,等.新型赤潮监测系统设计研究[J].传感技术学报,2008,21(5):744-747.
    [135]刘玉龙.海底观测网络水下节点后备电源管理系统研究[D].浙江大学硕士学位论文,杭州:浙江大学,2008.
    [136]秦龙.MSP430单片机应用系统开发典型实例[M].北京:中国电力出版社,2005.
    [137]魏小龙.MSP430系列单片机接口技术及系统设计实例[M].北京:北京航空航天大学出版社,2002.
    [138]胡大可.MSP430系列FLASH型超低功耗16位单片机[M].北京:北京航空航天大学出版社,2001.
    [139]韩民晓,文俊,徐永海,等.高压直流输电原理与运行[M].北京:机械工业出版社,2008.
    [140]刘振亚.特高压直流输电理论[M].北京:中国电力出版社,2009.
    [141]李兴源.高压直流输电系统[M].北京:科学出版社,2010.
    [142]SG3525 datasheet.
    [143]冯宇丽,戴珂,曹震,等.基于SG3525控制的双管正激变换器[J].电源技术应用,2007,10(1):23-26.
    [144]李桂丹,高晗璎,张春喜.基于SG3525的DC/DC直流变换器的研究[J].通信电源技术,2008,25(5):28-30.
    [145]刘彬.基于PWM控制模式的电流型DC-DC降压转换器的研究[D].西安电子科技大学硕士学位论文,西安:西安电子科技大学,2008.
    [146]程良涛,邹娟,李辉.双管正激变换器[J].大功率变流技术,2010,2:34-37,55.
    [147]冯翰.双管正激变换器组合研究[D].浙江大学博士学位论文,杭州:浙江大学,2001.
    [148]石健将.双管正激变换器组合研究[D].南京航空航天大学博士学位论文,南京:南京航空航天大学,2003.
    [149]石健将,王慧贞,严仰光.双管正激并、串联组合变换器研究与应用[J].电力电子技 术,2002,36(5):14-16,71.
    [150]赵海舟,肖岚.串-并组合式双管正激变换器的研究[J].电力电子技术,2004,38(4):41-42,48.
    [151]IRFP460 datasheet.
    [152]程璐璐,阮新波,章涛.输入串联输出并联的直流变换器控制策略研究[J].中国电机工程学报,2006,26(22):67-73.
    [153]陈武,阮新波,颜红.DC/DC多模块串并联组合系统控制策略[J].电工技术学报,2009,24(7):93-102.
    [154]Texas Instruments MSP430xlxx Family User's Guide.2000,33-44.
    [155]李泽勇,王文生.闭环霍尔电流传感器在逆变焊机中的应用[J].机械工人:热加工,2006.1:41-43.
    [156]HJ210 NTP网络时间服务器用户手册.
    [157]李小三,杨灿军,陈燕虎,等.海底观测网络摄像系统设计与实现[J].船舶工程,2011,33(1):65-69.
    [158]李小三.海底观测网络摄像系统设计与实现[D].浙江大学硕士学位论文,杭州:浙江大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700