基于智能算法的小电流接地故障选线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外中压配电网中性点广泛采用小电流接地(包括不接地、经消弧线圈接地和经高电阻接地)方式,以避免发生单相接地故障(又称为小电流接地故障)时跳闸造成供电中断。对于小电流接地故障,由于故障电流微弱、电弧不稳定和随机因素影响等原因,接地故障选线比较困难,一直缺乏可靠的故障选线方法和高准确度的小电流接地故障选线装置,至今许多变电站仍然使用人工拉路方法查找故障线路。随着人们对配电网自动化水平要求的提高,小电流接地故障自动选线问题更加突出,迫切需要从根本上予以解决。因此,研究高准确度、高可靠性的自动选线技术和研制相应自动选线装置,对于提高供电可靠性、减少停电损失和提高配电自动化水平具有重要的意义。
     本文在分析小电流接地系统单相接地故障特征基础上,分别对基于故障暂态特征信息的选线和基于故障暂态和稳态特征信息的融合选线进行了深入的研究。首先,利用故障暂态特征信息,提出了基于粗糙集理论和小波包分析的故障选线方法。其次,利用故障暂态和稳态特征信息,提出了基于粗糙集理论的融合选线方法。再次,由于基于粗糙集理论的融合选线方法的选线准确度较低,提出了基于神经网络的融合选线方法。然后,针对基于神经网络的融合选线模型训练时间较长的问题,提出了基于粗糙集理论的样本归一化方法。最后,以基于神经网络的融合选线为判据,设计出了小电流接地故障智能选线装置的方案。主要的研究工作如下:
     (1)分析了小电流接地系统单相接地故障的特征。通过对小电流接地系统发生单相接地故障时零序电流的稳态特征、暂态特征以及谐波特征的分析,确定了在进行小电流接地故障选线时应选取零序电流的暂态特征、有功分量特征、五次谐波特征和基波特征作为故障特征。
     (2)分析了基于小波包分析的小电流接地故障选线方法存在的问题,在此基础上,提出了基于粗糙集理论和小波包分析故障选线新方法。基于小波包分析的小电流接地故障选线方法以暂态零序电流为故障特征,因为暂态分量的幅值比稳态分量大很多,所以该方法具有较高的选线准确度。由于受硬件电路的限制,对暂态信号的采样频率不可能太高。经过低频采样后的暂态零序电流信号的幅值会发生不同程度的衰减,当采样后故障线路的暂态零序电流信号幅值衰减严重时,基于小波包分析的故障选线方法可能出现选线错误。所以需要对衰减的信号进行增强处理,衰减越严重、越可能是故障线路的信号,需要增强的比例就要越大。本文提出了采用粗糙集理论对信号增强的小波包选线新方法。首先,分别对暂态零序电流信号进行低频采样和短时间的高频采样,将从高频采样和低频采样的零序电流信号中提取的稳态工频分量幅值、采样前后信号衰减比例和信号首波头极性作为故障特征。然后,将这些故障特征作为条件属性,信号需要增强的比例系数作为决策属性,构建决策表。通过属性约简和值约简得到最小决策规则,根据最小决策规则实现对低频采样信号的增强。最后,对增强的低频采样信号利用小波包故障选线方法进行故障选线。仿真结果表明,该方法无论是在能量衰减严重或首波头极性检测错误时,还是在相电压过零时的故障、母线故障和高阻接地故障,均能实现正确选线,有效地提高了故障选线的准确度。
     (3)定义了小电流接地故障时各种故障特征的故障测度,在此基础上,提出了基于粗糙集理论的融合选线方法。分别采用小波包分析法、有功分量法、五次谐波法和基波幅值法从零序电流信号中提取暂态分量、有功分量、五次谐波分量和基波分量作为故障特征,根据每种故障特征的特点分别定义了它们的故障测度。将这四种故障特征的故障测度作为决策系统的条件属性,线路的故障状态作为决策系统的决策属性,提出了基于粗糙集理论的融合选线方法。通过属性约简和值约简后,得到最小决策规则,根据该规则实现故障选线。该方法消去了冗余的基波分量故障特征,融合了对选线结果影响较大的暂态分量、有功分量和五次谐波分量故障特征,实现了融合选线的目的。利用仿真和现场数据对该选线方法进行测试的结果表明,该方法的选线准确度高于基于单一故障特征的选线方法。
     (4)针对基于粗糙集理论的融合选线方法选线准确度不高的缺点,将经粗糙集理论约简得到的故障特征的故障测度作为神经网络的输入,将融合后的故障测度作为神经网络的输出,提出了基于神经网络的融合选线方法。利用仿真和现场数据对该选线方法进行测试的结果表明,基于神经网络的融合选线方法的选线准确度高于基于粗糙集理论的融合选线方法。
     (5)针对神经网络的训练样本中不同类样本距离较近时神经网络训练时间较长的问题,提出了基于粗糙集理论的神经网络样本归一化方法,并将其应用于小电流接地故障选线。首先,将神经网络的输入作为条件属性,输出作为决策属性,构建决策表。然后,计算决策表中不同类样本间的最小距离,根据该最小距离确定原样本需要伸缩的比例,最小距离越小,伸缩的比例越大。各样本根据各自的伸缩比例进行伸缩处理,然后再将样本归一化。最后,利用归一化处理后的样本训练和测试神经网络。以基于神经网络的小电流接地故障选线为例,对该算法进行了验证,测试结果表明,采用该样本归一化方法的神经网络的训练时间明显缩短。
     (6)利用电磁仿真软件EMTP-ATP建立了小电流接地系统的仿真模型。根据各种故障情况做了大量的仿真试验,仿真数据可以用于各种故障选线方法的分析。
     (7)根据基于神经网络的融合选线判据,设计出了小电流接地故障选线装置的总体结构方案、主要的硬件电路设计和主程序软件流程。
     最后对全文进行了总结,并对下一步的研究工作进行了展望。
Many countries, including China, adopt non-effectively grounding (isolated, Pe-tersen coil or high resistance earthed) neutral in medium voltage distribution networks to reduce outages caused by single-phase-to-earth fault (small current earth fault). When single-phase-to-earth fault occurs, it is difficult to detect the line with an earth fault due to weak current, unstable fault arc and stochastic factors. To date electric utilities still use manual switching to detect an earthed line in the absence of a more reliable fault line detection method and a more accurate device for detecting earth fault line. The problem of fault line detection for single-phase-to-earth fault becomes more and more prominent and it is urgent to resolve this problem thoroughly in order to meet the requirements of distribution automation. Therefore, the study of the high accuracy and high reliable automatic fault line detection technology and the corresponding device is significant to the improvement of the power supply reliability, the reduction in the outage loss and the improvement of distribution automation system.
     Based on analyzing the fault characteristics for single-phase-to-earth fault in non-effectively grounding neutral system, the paper studies the properties of the fault line detection based on fault transient information, and the integrated fault line detection based on fault transient information and fault steady information, respectively. First, applying the fault transient information, the fault line detection based on rough set theory and wavelet packet analysis is proposed. Next, applying fault transient information and fault steady information, the paper proposes the integrated fault line detection based on rough set theory. Next, the integrated fault line detection based on neural networks is presented because of the lower accuracy of the integrated fault line detection based on rough set theory. Next, in order to avoid the longtime training of the fault line detection model based on neural networks, a novel sample normalization algorithm based on rough set theory is proposed. Finally, applying the integrated fault line detection criterion based on neural networks, the design scheme of the device for detecting grounded line in non-effectively grounding neutral system is developed. The main researches are as follows:
     (1) The fault characteristics for single-phase-to-earth in non-effectively grounding neutral system are analyzed systematically. Through analyzing the steady characteristics, transient characteristics and harmonic characteristics of zero sequence current, the paper reveals that the transient characteristics, active component characteristics, the fifth harmonic characteristics and fundamental characteristics of zero sequence current should be selected as fault features to perform fault line detection.
     (2) The problems of the fault line detection method based on wavelet packet analysis for single-phase-to-earth fault in non-effectively grounding neutral system are analyzed. Therefore, a novel fault line detection method based on rough set theory and wavelet packets analysis is proposed. The fault line detection based on wavelet packet analysis, which selects transient component of zero sequence current as fault feature, provides high accuracy of fault line detection due to the magnitude of transient component of zero sequence current is much bigger than the steady component. The sampling frequency rate cannot be very high due to the limitation of the hardware circuit. The magnitude of transient signal sampled by lower sampling frequency rate will decay in different degree. When the magnitude of the sampled transient zero sequence current is attenuated rigorously, the result of fault line detection may be wrong. So the sampling signal must be enhanced. The more rigorously the transient signal is attenuated and the larger the possibility of fault is, the bigger the transient signal enhancement ratio is. The paper proposes a novel fault line detection method based on rough set theory and wavelet packet analysis. Firstly, the transient zero sequence current signals are sampled in lower sampling frequency rate and in higher sampling frequency rate for a short time, respectively. The amplitude of fundamental component, decaying ratio of amplitude between before and after sampling and polarity of initial wavefronts are extracted from the zero sequence current signal sampled in lower sampling frequency rate and in higher sampling frequency rate. Then, the fault features extracted are selected as condition attributes and the signal enhancement ratios are selected as decision attributions and an information system is constructed. Af- ter attribute reduction and attribute value reduction, the minimum solution of decision rules can be obtained. These rules can be used to enhance the low frequency sampling signals. Finally, the enhanced low frequency sampling signals are decomposed by wavelet packet to realize fault line detection. The simulation results show that the proposed method can detect the fault line when the magnitude based criterion or the polarity based criterion is invalid, or when the phase voltage is close to its crossover point, or when the bus grounding fault or the high earth resistance grounding fault occurs. So the method improves markedly the accuracy of fault line detection.
     (3) The fault measures of various fault features for single-phase-to-earth in non-effectively grounding neutral system are defined. Therefore, the integrated fault line detection method based on rough set theory is presented. The fault features of transient component, active component, the fifth harmonic component and fundamental component are extracted from zero sequence current through wavelet packet analysis method, zero sequence current active component method, the fifth harmonic current method and fundamental current component amplitude comparison method, respectively. Then they are transformed into fault measures according to their characteristics. The integrated fault line detection method based on rough set theory, in which the condition attributes are these fault measures and the decision attribute is the integrated fault measure, is proposed. Having performed attribute reduction and attribute value reduction, the minimum solution of decision rules can be obtained. These rules can be used to realize fault line detection. This method reduces these redundant attributes and integrates the fault features of transient component, active component and the fifth harmonic component, which have more effect on fault detection result, and realizes the integrated fault line detection. The fault line detection method is verified by the simulation data and field data for single-phase-to-earth fault and the testing results show that the method can provide the higher accuracy of fault detection than the fault line detection method based on single fault characteristic.
     (4) To overcome the problem that the accuracy of the fault line detection based on rough set is low, the integrated fault line detection method based on neural network is proposed, in which the inputs are these fault measures reduced by rough set theory and the output is the integrated fault measure. The fault line detection method is verified by the simulation data and field data for single-phase-to-earth fault. The testing results show that the method can provide higher accuracy of fault line detection than the fault line detection method based on rough set theory.
     (5) A novel sample normalization algorithm based on rough set theory is proposed to avoid the longtime training of neural networks classifier caused by the smaller distances between samples of different classes. After the inputs of neural networks are selected as the condition attributes and the outputs of neural networks are selected as decision attribute, the decision table is constructed. Then the minimal distances between different samples of different classes in the decision table are calculated. According to these minimal distances, the samples are extended or contracted. The smaller the minimal distance is, the bigger the radio of extension or contraction is. After all the original samples are extended or contracted, they are normalized. Finally, the normalized samples are used to train and verify the neural network. The method is analyzed with an example of fault line detection in non-effectively grounding neutral system. The simulation results show that the training time of neural networks with the sample normalization method is shortened markedly.
     (6) Using Electromagnetic Transients Program EMTP-ATP, a lot of experiments of single-phase-to-earth fault for all kinds of fault types are carried out. The simulation data can be used to analyze every fault line detection method.
     (7) According to the integrated fault line detection criterion based on neural networks, the design scheme of the device for detecting grounded line in non-effectively grounding neutral system is introduced. Meanwhile, the block diagram of its main hardware and the flow of its main software are designed.
引文
[1] 李润先.中压电网系统接地使用技术[M].中国电力出版社,2002.
    [2] 要唤年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2000.
    [3] K.M. Winter. Swedish distribution networks—a new method for earth fault protection in cable and overhead systems[C]. Proceedings of the Fifth International Conference on Developments in Power System Protection, 1993, (386): 268-270.
    [4] 贺家李,宋从矩.电力系统继电保护原理[M].水利电力出版社,1985.
    [5] 薛永端.基于暂态特征信息的配电网单相接地故障检测研究[D].西安:西安交通大学,2003.
    [6] 齐郑.小电流接地系统单相接地故障选线及定位技术的研究[D].北京:华北电力大学,2005.
    [7] 贾清泉.提高配电网单相接地故障选线保护性能的研究[D].北京:华北电力大学,2002.
    [8] 许颖.3~66kV电网中性点接地方式的几个问题[J].供用电,2005,22(6):4-7
    [9] Matti L, Tapio H. Neutral earthing and power system protection [M]. ABB Transmit Oy Publication, Vaasa, Finland 1996.
    [10] 肖白,束洪春,高峰.小电流接地系统单相接地故障选线方法[J].继电器,2001,29(4):16—20.
    [11] 潘贞存.比相式和比幅式小接地电流系统接地选线保护[J].山东电力技术,1991(3):60-64.
    [12] 郝玉山,杨以涵,任元恒,等.小电流接地微机选线的群体比幅比相原理[J].电力情报,1994,(2):15-19.
    [13] 张尔桦,潘贞存,桑在中,等.群体比幅原理接地选线保护[J].继电器,1991,(2):15-17.
    [14] 郝玉山,高曙.MLN系列小电流接地微机选线装置动作原理[J].电力情 报,1994,(2):7-10.
    [15] 檀国彪,涂东明,陈大鹏.基于最大Isinqφ或△(Isinφ)原理的微机选线原理[J].中国电力,1995,28(7):16-20.
    [16] 牟龙华.零序电流有功分量方向接地选线保护原理[J].电网技术,1999,23(9):60-62.
    [17] 杜丁香,徐玉琴.消弧线圈接地电网有功选线[J].继电器,2002,30(5):33-36.
    [18] 潘贞存,田质广,等.一种中低压配电网单相接地故障选线新方法[J].电网技术,2005,29(3):76-80.
    [19] D. Griffel, V. Leitoff, Y. Harmand, et al. A new deal for safety and quality on MV networks [J]. IEEE Transactions on Power Delivery. 1997, 12(4): 1428-1433.
    [20] Till Welfonder, Volker Leitloff, Rene Feuillet, et al. Location strategies and evaluation of detection algorithms for earth faults in compensated MV distribution systems [J]. IEEE Transactions on Power Delivery, 2000, 15(4): 1121-1128.
    [21] 郝玉山,齐丽芳,尹永生,等.零序网络中的谐波电流分布[J].华北电力学院学报,1995,22(3):12-17.
    [22] 齐郑,杨以涵.中性点非有效接地系统单相接地选线技术分析[J].电力系统自动化,2004,28(14):1-5.
    [23] 曾祥君,尹项根,张哲,等.零序导纳法馈线接地保护的研究[J].中国电机工程学报,2001,21(4):5-10.
    [24] 易东,李群湛,黄彦全.零序导纳法接地选线保护原理[J].电力自动化设备,2002,22(10):40-42.
    [25] B.M. Aucion, R. H. Jones. High impedances fault detection implementation issues[J]. IEEE Transactions on Power Delivery, 1996, 11(1): 212-217.
    [26] 齐郑,刘宝柱,王璐,等.广域残留增量选线方法在辐射状谐振接地系统中的应用[J].电力系统自动化,2006,30(3):84-88.
    [27] 曾祥君,尹项根,张哲等.配电网接地故障负序电流分布及接地保护原 理研究[J].中国电机工程学报,2001,21(6):84-89.
    [28] 胡佐,李欣然,石吉银.基于残流与首半波综合的接地选线方法研究[J].继电器,2006,34(7):6-9,37.
    [29] 张兰,龚静,周有庆.小电流接地系统单相接地暂态保护判据研究[J].湖南大学学报,2004,31(2):70-73.
    [30] Oinis Chaari, Patrick Bastard, Michel Meunier. Prony's method: an efficient tool for the analysis of earth fault currents in Petersen-eoil-proteeted networks [J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1234-1241.
    [31] Oinis Chaari, Michel Meunier, Francoise Brouaye. Wavelets: A new tool for the resonant grounded power distribution system relaying[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1301-1308.
    [32] 操丰梅,苏沛浦.小波变换在配电网自动化接地故障检测中的应用研究[J].电力系统自动化,1999,23(13):33-36.
    [33] 毛鹏,孙雅明,张兆宁.小波包在配电网单相接地故障选线中的应用[J].电网技术,2000,24(6):10-17.
    [34] 贾清泉,刘连光,杨以涵,等.应用小波检测故障突变特性实现配电网小电流故障选线保护[J].中国电机工程学报,2001,21(10):78-82.
    [35] 王耀南,霍百林,王辉,等.基于小波包的小电流接地系统故障选线的新判据[J].中国电机工程学报,2004,24(6):54-58.
    [36] 戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报,2003,23(5):44-47.
    [37] 齐郑,陈炯聪,杨奇逊.基于小波变换和LMS自适应滤波器的单相接地选线方法[J].电力系统自动化,2004,28(9):58-61.
    [38] 齐郑,杨以涵,林榕.基于小波变换和维纳滤波技术的小电流接地系统单相接地故障选线研究[J].电网技术,2004,28(13):23-26.
    [39] 戴剑锋,张艳霞,侯喆.小波重构算法在配电网接地选线中的应用[J].电网技术,2004,28(3):43-47.
    [40] M. Michalik, W. Rebizant, M. Lukowicz, et al. High-impedance fault detection in distribution networks with use of wavelet-based algorithm[J]. IEEE Transactions on Power Delivery, 2006, 21 (4): 1793-1802.
    [41] A.R. Sedighi, M. R. Haghifam, O. P. Malik, et al. High impedance fault detection based on wavelet transform and statistical pattern recognition[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2414-2421.
    [42] T.M. Lai, L. A. Snider, E. Lo, et al. High-impedance fault detection using discrete wavelet transform and frequency range and RMS conversion[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 397-407.
    [43] Shyh-Jier Huang, Cheng-Tao Hsieh. High-impedance fault detection utilizing a Morlet wavelet transform approach[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1401-1410.
    [44] A. Lazkano, J. Ruiz, E. Aramendi, et al. A new approach to high impedance fault detection using wavelet packet analysis[J]. Proceedings of Ninth International Conference on Harmonics and Quality of Power, 2000, 3: 1005-1010.
    [45] 何奔腾,胡为进.能量法小电流接地选线原理[J].浙江大学学报(自然科学版),1998,32(4):451-456.
    [46] 束洪春,刘娟,王超,等.谐振接地电网故障暂态能量自适应选线新方法[J].电力系统自动化,2006,30(11):72-76.
    [47] 贾清泉,杨奇逊,杨以涵.基于故障测度概念与证据理论的配电网单相接地故障多判据融合[J].中国电机工程学报,2003,23(12):6-11.
    [48] 贾清泉,杨以涵,杨奇逊.应用证据理论实现配电网单相接地故障选线保护[J].电力系统自动化,2003,27(21):35-38,44.
    [49] A.M. Sharaf, L. A. Snider, K. Debnath. A neural network based ralaying scheme for distribution system high impedance fault detection[C]. Proceedings of First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, 1993, 321-324.
    [50] T.M. Lai, L. A. Snider, E. Lo, et al. High impedance faults detection using artificial neural network[C]. Sixth International Conference on Advances in Power System Control, Operation and Management, 2003, 2: 821-826.
    [51] L.A. Snider, Yuen Yee Shan. The artificial neural networks based relay algorithm for distribution system high impedance fault detection[C]. Fourth In- ternational Conference on Advances in Power System Control, Operation and Management, 1997, 1: 100-106.
    [52] A.M. Sharat, L. A. Snider, K. Debnath. A neural network based back error propagation relay algorithm for distribution system high impedance fault detection[C]. 2nd International Conference on Advances in Power System Control, Operation and Management, 1993, 2:613-620.
    [53] 李荣明,王官洁,罗建.基于神经网络的小电流接地系统综合智能选线[J].重庆大学学报,2004,27(5):85-89.
    [54] F. Ruz, J. A. Fuentes. Fuzzy decision making applied to high impedance fault detection in compensated neutral grounded MV distribution systems[C]. Seventh International Conference on Developments in Power System Protection, 2001:307-310.
    [55] 陈炯聪,齐郑,杨奇逊.基于模糊理论的小电流单相接地选线装置[J].电力系统自动化,2004,28(8):88-91.
    [56] M.R. Haghifam, A. R. Sedighi, O. E Malik. Development of a fuzzy inference system based on genetic algorithm for high-impedance fault detection[C]. IEE Proceedings of Generation, Transmission and Distribution, 2006, 153(3): 359-367.
    [57] 齐郑,艾欣,王炳革,等.基于粗糙集理论的小电流接地系统故障选线方法的有效域[J].电网技术,2005,29(12):43-46.
    [58] 桑在中,张慧芬,潘贞存,等.用注入法实现小电流接地系统单相接地选线保护[J].电力系统自动化,1996,20(2):11-12.
    [59] 王新超,桑在中.基于“S注入法”的一种故障定位新方法[J].继电器,2001,29(7):9-12.
    [60] 曾祥君,尹项根,于永源,等.基于注入变频信号法的经消弧线圈接地系统控制与保护新方法[J].中国电机工程学报,2000,20(1):29-32.
    [61] 莫娟,严璋,李华,等.基于多种智能化方法的变压器故障综合诊断模型[J].电力系统自动化,2005,29(18):85-89.
    [62] 束洪春,孙向飞,司大军.电力变压器故障诊断专家系统知识库建立和 维护的粗糙集方法[J].中国电机工程学报,2002,22(2):31-35.
    [63] 朱永利,吴立增,李雪玉.贝叶斯分类器与粗糙集相结合的变压器综合故障诊断[J].中国电机工程学报,2005,25(10):159-165.
    [64] 王永强,律方成,李和明.基于粗糙集理论和贝叶斯网络的电力变压器故障诊断方法[J].中国电机工程学报,2006,26(8):137-141.
    [65] 王志勇,郭创新,曹一家.改进范例推理在短期负荷预测中的应用[J].电力系统自动化,2005,29(12):33-37.
    [66] 张晓星,周湶,任海军,等.基于增量约简算法确定电力负荷预测模型输入参数[J].电力系统自动化,2005,29(13):40-44.
    [67] 黎静华,栗然,顾雪平,等.网络化的电力系统短期负荷预测的MDRBR模型[J].电力系统自动化,2005,29(24):27-31.
    [68] J.T. Peng, C. F. Chien, T. L.B. Tseng. Rough set theory for data mining for fault diagnosis on distribution feeder[C]. IEE Proceedings on Generation, Transmission and Distribution, 2004, 151: 689-697.
    [69] Peng Yuqing, Liu Gengqian, Lin Tao, et al. Application of rough set theory in network fault diagnosis[C]. Third International Conference on Information Technology and Applications, 2005, 2: 556-559.
    [70] 束洪春,孙向飞,司大军.基于粗糙集理论的配电网故障诊断研究[J].中国电机工程学报,2001,21(10):73-82.
    [71] 于之虹,郭志忠.基于数据挖掘理论的电力系统暂稳态稳定评估[J].电力系统自动化,2003,27(8):45-48.
    [72] 廖志伟,孙雅明.基于数据挖掘模型的高压输电线系统故障诊断[J].电力系统自动化,2001,25(8):15-19.
    [73] V. Miranda, A. R. G. Castro. Improving the IEC table for transformer failure diagnosis with knowledge extraction from neural networks[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2509-2516.
    [74] A.R.G. Castro, V. Miranda. Knowledge discovery in neural networks with application to transformer failure diagnosis[J]. IEEE Transactions on Power Systems, 2005, 20(2): 717-724.
    [75] P.L. Mao, R. K. Aggarwal. A novel approach to the classification of the tran- sient phenomena in power transformers using combined wavelet transform and neural network[J]. IEEE Transactions on Power Delivery, 2001, 16(4): 654-660.
    [76] T. Saksornchai, Lee Wei-Jen, K. Methaprayoon, et al. Improve the unit commitment scheduling by using the neural-network-based short-term load forecasting[J]. IEEE Transactions on Industry Applications, 2005, 41(1): 169-179.
    [77] L. Mohan Saini, M. Kumar Soni. Artificial neural network-based peak load forecasting using conjugate gradient methods[J]. IEEE Transactions on Power Systems, 2002, 17(3): 907-912.
    [78] J.W. Taylor, R. Buizza. Neural network load forecasting with weather ensemble predictions[J]. IEEE Transactions on Power Systems, 2002, 17(3): 626-632.
    [79] 杨光亮,乐全明,郁惟镛,等.基于小波神经网络和故障录波数据的电网故障类型识别[J].中国电机工程学报,2006,26(10):99-103.
    [80] 陈如清.两种基于神经网络的故障诊断方法[J].中国电机工程学报,2005,25(16):112-115.
    [81] G. Jr. Cardoso, J. G. Rolim, H. H. Zurn. Application of neural-network modules to electric power system fault section estimation[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1034-1041.
    [82] Hsiung Cheng Lin. Intelligent Neural Network-Based Fast Power System Harmonic Detection[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 43-52.
    [83] D. Srinivasan, W. S. Ng, A. C. Liew. Neural-Network-Based Signature Recognition for Harmonic Source Identification[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 398-405.
    [84] A.G. Bahbah, A. A. Girgis. New method for generators' angles and angular velocities prediction for transient stability assessment of multimachine power systems using recurrent artificial neural network[J]. IEEE Transactions on Power Systems, 2004, 19(2): 1015-1022.
    [85] Shin Myong-Chul, Park Chul-Won, Kim Jong-Hyung. Fuzzy logic-based relaying for large power transformer protection[J]. IEEE Transactions on Power Delivery, 2003, 18(3): 718-724.
    [86] Yang Hong-Tzer, Liao Chiung-Chou. Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers[J]. IEEE Transactions on Power Delivery, 1999, 14(4): 1342-4350.
    [87] Huang Yarm-Chang, Yang Hong-Tzer, Huang Ching-Lien. Developing a new transformer fault diagnosis system through evolutionary fuzzy logic[J]. IEEE Transactions on Power Delivery, 1997, 12(2): 761-767.
    [88] 叶彬,朱承治,郭创新,等.基于混合算法的短期负荷预测模糊建模[J].电力系统自动化,2006,30(2):32-40,95.
    [89] Song Kyung-Bin, Back Young-Silk, Hong Dug Hun, et al. Short-term load forecasting for the holidays using fuzzy linear regression method[J]. IEEE Transactions on Power Systems, 2005, 20(1): 96-101.
    [90] P.A. Mastorocostas, J. B. Theocharis, A. G. Bakirtzis. Fuzzy modeling for short term load forecasting using the orthogonal least squares method[J]. IEEE Transactions on Power Systems, 1999, 14(1): 29-36.
    [91] S.E. Papadakis, J. B. Theocharis, S. J. Kiartzis, et al. A novel approach to short-term load forecasting using fuzzy neural networks[J]. IEEE Transactions on Power Systems, 1998, 13(2): 480-492.
    [92] B.Das. Fuzzy Logic-Based Fault-Type Identification in Unbalanced Radial Power Distribution System[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 278-285.
    [93] S. Vasilic, M. Kezunovic. Fuzzy ART neural network algorithm for classifying the power system faults[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1306-1314.
    [94] 鲁文,徐晨亮,丁孝华,等.一种考虑分布电容的模糊故障测距算法[J].电力系统自动化,2006,30(8):57-60.
    [95] 王伟,张粒子,麻秀范.基于模糊综合评价的结构元中压配电网规划[J].电力系统自动化,2006,30(12):42-46.
    [96] 谢敏,陈金富,段献忠,等.基于模糊阻塞管理的启发式电网规划方法[J]. 中国电机工程学报,2005,25(22):61-67.
    [97] 成敬周,张举,陈琛,等.基于高频暂态分量进行相关分析及模糊推理的选相新方法[J].2005,29(5):50-55.
    [98] 陈章潮,顾洁,孙纯军.改进的混合模拟退火—遗传算法应用于电网规划[J].电力系统自动化,1999,23(10):28-31,40.
    [99] I.J. Ramirez-Rosado, J. L. Bemal-Agustin. Genetic algorithms applied to the design of large power distribution systems[J]. IEEE Transactions on Power Systems, 1998,13(2): 696-703.
    [100] 王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):11-15.
    [101] 杨秀霞,张晓峰,张毅,等.基于启发式遗传算法的舰船电力系统网络重构研究[J].中国电机工程学报,2003,23(10):42-46.
    [102] 毕鹏翔,刘健,刘春新,等.配电网络重构的改进遗传算法[J].电力系统自动化,2002,26(2):57-61.
    [103] 魏萍,李乃湖,武寒,等.基于遗传算法的电力系统日有功优化调度[J].电力系统自动化,1999,23(10):23-27.
    [104] Y. Malachi, S. Singer. A genetic algorithm for the corrective control of voltage and reactive power[J]. IEEE Transactions on Power Systems, 2006, 21(1): 295-300.
    [105] 卫志农,何桦,郑玉平.配电网故障区间电位的高级遗传算法[J].中国电机工程学报,2002,22(4):127-130.
    [106] Su Hongsheng, Li Qunzhan. Transformer Insulation Fault Diagnosis Method Based on Rough Set and Fuzzy Set and Evidence Theory[C]. The Sixth World Congress on Intelligent Control and Automation, 2006, 2: 5442-5446.
    [107] 孙雅明,廖志伟.基于不同RS和NN组合的数据挖掘配电网故障诊断模型[J].电力系统自动化,2003,27(6):31-35.
    [108] Li Qiu-Dan, Chi Zhong-Xian, Shi Wen-Bing. Application of rough set theory and artificial neural network for load forecasting[C]. International Conference on Machine Learning and Cybernetics, 2002:1148-1152.
    [109] Liao Gwo-Ching, Tsao Ta-Peng. Application of a fuzzy neural network com- bined with a chaos genetic algorithm and simulated annealing to short-term load forecasting[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 330-340.
    [110] Kim Kwang-Ho, Youn Hyoung-Sun, Kang Yong-Cheol. Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method[J]. IEEE Transactions on Power Systems, 2000, 15(2): 559-565.
    [111] A. Khotanzad, Zhou Enwang, H. Elragal. A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment[J]. IEEE Transactions on Power Systems, 2002, 17(4): 1273-1282.
    [112] M. Daneshdoost, M. Lotfalian G. Bumroonggit, et al. Neural network with fuzzy set-based classification for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1386-1391.
    [113] 毕天姝,倪以信,吴复立,等.基于径向基函数神经网络和模糊控制系统的电网故障诊断新方法[J].中国电机工程学报,2005,25(14):12-18.
    [114] 孙雅明,杜红卫,廖志伟.基于神经逻辑网络冗余纠错和FNN组合的配网高容错性故障定位[J].电工技术学报,2001,16(4):71-75,60.
    [115] 林飞,刘玉田.基于模糊神经网络的电力系统暂态稳定控制决策[J].电工技术学报,2001,16(2):83-87.
    [116] 冯丽,邱家驹.基于模糊多目标遗传优化算法的节假日电力负荷预测[J].中国电机工程学报,2005,25(10):29-34.
    [117] 申东滨,潘贞存,张慧芬,等.配电网单相接地故障的综合选线方法及其实现[J].继电器,2005,33(18):11-14.
    [118] 仉志华,康忠健,张加胜.一种扩展隶属函数及其在故障诊断中的应用[J].电力系统及其自动化学报,2005,17(5):50-54.
    [119] Yasmine ASSEF, Patrick BASTARD, Michel MEUNIER. Artificial neural networks for single phase fault detection in resonant grounded power distribution systems[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 1996: 566-572.
    [120] 房鑫炎,郁惟镛,庄伟.模糊神经网络在小电流接地系统选线中的应用[J].电网技术,2002,26(5):15-19.
    [121] 都洪基,姚婷婷,刘林兴.遗传优化神经网络在小电流接地系统故障选线中的应用[J].继电器,2004,32(5):29-31.
    [122] 李福寿.中性点非有效接地电网的运行[M].北京:水利电力出版社,1993.
    [123] 解光润.电力系统过电压[M].北京:水利电力出版社,1985.
    [124] 牛发亮,黄进,杨家强.基于电磁转矩小波变换的感应电机转子断条故障诊断[J].中国电机工程学报,2005,25(24):122-127.
    [125] 张大波,刘志刚,张亚军.复小波研究现状及其在电力系统中的应用进展[J].电力系统自动化,2006,30(17):97-104.
    [126] I. Daubechies. Where do wavelet come from: a personal point of view[C]. Proceeding of IEEE, 1996, 84(4): 510-513.
    [127] I. Daubechies. Ten lectures on wavelets[M]. Philadelphia, PA, USA: SIAM, 1992.
    [128] 王大凯.小波分析及其在信号处理中的应用[M].北京:电子工业出版社,2006.
    [129] 任震,黄雯莹,黄群古,等.小波分析及其在电力系统中的应用[M].北京:中国电力出版社,2003.
    [130] I. Daubechies. Orthonormal bases of compactly supported wavelets Ⅱ. Variations on a theme[J]. SIAM J.Math.Anal., 1993, 24:499~519.
    [131] A. Cohen, I. Daubechies. Orthonormal bases of compactly supported wavelets Ⅲ. Better frequency localization[J]. SIAM J. Math. Anal., 1993, 24: 520-527.
    [132] 庞清乐,孙同景,钟麦英,等.基于粗集理论的小电流接地系统故障选线[J].中国电机工程学报,2007,27(4):60-64.
    [133] 庞清乐,孙同景,穆健等.基于神经网络的中性点经消弧线圈接地系统故障选线方法[J].电网技术,2005,29(24):78-81.
    [134] 薛永端,冯祖仁,徐丙垠.中性点非直接接地电网单相接地故障暂态特征分析[J].西安交通大学学报,2004,38(2):195-199.
    [135] 韩祯祥,张琦,文福拴.粗糙集理论及其应用[J].信息与控制,1998,27(1):37-45.
    [136] Z. Pawlak Rough sets[J]. International Joumal of Computer and Information Sciences, 1982, 11: 341-356.
    [137] Z. Pawlak. Why rough sets[J]. IEEE International Conference on Fuzzy Systems, 1996, 2: 738-743.
    [138] Z. Pawlak. Rough sets approach to knowledge-based decision support[J], European Journal of Operational Research, 1997, 99: 48-57.
    [139] 曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1996
    [140] 刘清.Rough集及Rough推理[M].北京:科学出版社,2001.
    [141] 张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2005.
    [142] 曾祥君.电力线路故障检测与定位新原理及其信息融合实现研究[D].武汉:华中理工大学,2000.
    [143] 康耀红.数据融合理论与应用[M].西安电子科技大学出版社,1997.
    [144] S. Grossberg. Neural Networks and Natural Intelligence[M]. Cambridge, MA: MIT Press, 1988.
    [145] D.E. Rumelhart, J. L. MeClelland. Parallel Distributed Processing: Explorations in Microstructure of Cognition. Cambridge[M]. MA: MIT Press, 1986.
    [146] D.E. Rumelhart, J. L. McClelland. Parallel Distributed Processing: Explorations in Microstructure of Cognition[M]. Cambridge, MA: MIT Press, 1986.
    [147] 刘同明,夏祖勋,等.数据融合技术及其应用[M].北京:国防工业出版社,1998,9.
    [148] Richard T Antony. Principle of Data Fusion Automation[M]. London: Artech House, 1995.
    [149] Pramod K. Varshney. Distributed detection and data fusion[M]. New York: Springer, 1997.
    [150] 张雨,温熙森.设备故障信息融合问题的思考[J].长沙交通学院学报,1999,15(2):22-29.
    [151] 郁文贤,雍少为.多传感器信息融合技术评述[J].国防科技大学学报,1994,16(3):1-11.
    [152] 梁建成.基于多传感器融合技术的智能加工监测与控制方法的研究[D].武汉:华中理工大学,1995.
    [153] 伍行健.故障信息的识别与处理[D].武汉:华中理工大学,1999.
    [154] 张彦铎,姜兴渭.多传感器信息融合及在智能故障诊断中的应用[J].传感器技术,1999,18(2):18-22.
    [155] 高德平,黄雪梅.多传感器和数据融合[J].红外与激光工程,1999,28(1):1-4.
    [156] 王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,16(5):519-522.
    [157] A. Pinky, M. Eskin, Y. Soroka. Statistical cluster analysis approach to sensor fusion problem [C]. Proceedings of the IEEE 1997 National Aerospace and Electronics Conference, 1997, 2:809-814.
    [158] 曾祥君,K.K.Li,W.L.Chan,等.信息融合技术在故障选线中的应用[J].继电器,2002,30(9):15-20.
    [159] 庞清乐,曹银杰,穆健,等.基于粗集理论的小电流接地系统故障选线研究[J].北京邮电大学学报,2006,S2:79-82.
    [160] R. Hecht-Neilsen. Kolmogorov mapping neural network existence theorem[C]. Proceeding of IEEE First International Conference on Neural Networks, 1987: 11-13.
    [161] B. Irie, S. Miyake. Capabilities of three-layered perceptrons[C]. Proceedings of IEEE International Conference on Neural Networks, 1988: 641-648.
    [162] K.I. Funahashi. On the approximate realization of continuous mappings by neural networks[J]. Neural Networks, 1989, 2:183-192.
    [163] K. Hornick, M. Stinchcombe, H. White. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2: 359-366.
    [164] D.A. Vaccari and E. Wojciechowski. Neural networks as function approximators: Teaching a neural network to multiply[C]. Proceedings of IEEE International Conference on Neural Networks: IEEE World Congress Computa- tional Intelligence, 1994:2217-2222.
    [165] D. Tien, P. Nobar. Dificiency in the current trend of training of neural network systems, suggestions and solutions[C]. Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, 2001, 1: 43-49.
    [166] H.F. Leung, H. K. Lam, S. H. Ling, K. S. Tam. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Transactions on Neural Networks, 2003, 14(1): 79-88.
    [167] S. Ferrari, M. Maggioni, N. A. Borghese. Multiscale approximation with hierarchical radial basis functions networks[J]. IEEE Transactions on Neural Nerworks, 2004, 15(1): 178-188.
    [168] P. Y. Liu, H. X. Li. Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 545-558.
    [169] S. Ferrari, R. F. Stengel. Smooth function approximation using neural networks[J] IEEE Transactions on Neural Networks, 2005, 16(1): 24-38.
    [170] G.B. Huang, P. Saratchandran, N. Sundararajan. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J] IEEE Transactions on Neural Networks, 2005, 16(1): 57-67.
    [171] 周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
    [172] 吴简彤,王建华.神经网络技术及其应用[M].哈尔滨:哈尔滨工程大学出版社,1996.
    [173] 李学桥,马莉.神经网络·工程应用[M].重庆:重庆大学出版社,1996.
    [174] 孙增圻.智能控制理论与技术[M].北京:清华大学出版社,1997.
    [175] 姚一波,王纪亮.提高BP网络训练速度的研究[J].信息技术,2002,(1):4-6.
    [176] 林丽兰,何勇.改进的BP神经网络方法及其在农业商品总产值预测中的应用[J].科技通报,2005,21(1):6-9.
    [177] Pawan Lingras. Rough neural networks[J]. Information Sciences, 1998, 110: 207-215.
    [178] 庞清乐,孙同景,杨福刚,等.基于粗糙集理论的归一化方法[J].计算机工程,2007,33(8):36-38.
    [179] 季涛.基于暂态行波的配电线路故障测度研究[D].济南:山东大学,2006.
    [180] ATPDRAW version 3 user manual [Z]. TRA4389, EFI, Norway, 1996.
    [181] ATP-EMTP Rule Book[Z]. Canadian-American EMTP Users Group, Portland, 1997.
    [182] 钱鑫,李虎,施围.电力系统仿真计算软件介绍[J].继电器,2001,30(1):43-46.
    [183] 程刚,张沛超.基于MATLAB和ATP的微机距离保护动态仿真[J].继电器,2006,34(22):5-8.
    [184] 庞清乐,孙同景,钟麦英.基于小波包分析的配电网故障选线新方法[J].电力自动化设备,2007,27(4):19-22.
    [185] 庞清乐,孙同景,钟麦英.基于粗糙集理论的配电网故障选线装置研究[J].高电压技术,33(3):37-41.
    [186] 56F8346/56FS146 Data Sheet[Z]. Freescale Inc, 2004.
    [187] 56F8300 Peripheral User Manual[Z]. Freescale Inc, 2004.
    [188] 黄智伟,王彦.FPGA系统设计与实践[M].北京:电子工业出版社,2005.
    [189] 刘韬,楼兴华.FPGA数据系统设计与开发实例导航[M].北京:人民邮电出版社,2005.
    [190] Uwe Meyer-Baese.Digital Signal Processing with Programmble Gate Arrays[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700