电池管理系统试验平台的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车具有节能与环保的双重优势,近年来受到世界各国的重视,发展迅速。但动力电池管理系统却是制约电动汽车发展的瓶颈。准确预测电池剩余电量(SOC)以及实现电池组的均衡充放电,延长电池的使用寿命是电动汽车电池管理系统需要解决的问题。对动力电池组实施有效监测和管理,对于解决上述问题具有重要的意义,可有效推动电动汽车的实用化、产业化发展。
     课题针对磷酸铁锂动力电池的特点,开发了一套电池管理系统试验台。该试验台由控制模块、采集模块和工控机组成,可实现对电池组各单体电池电压、测点温度以及电池组总电压、总电流的监测、采集和数据处理。此外,该电池管理试验台还可通过功率输出放大电路、开关量输入调理电路,实现充电机、温控设备的控制以及接收外部状态信号等功能,使电池管理试验台的功能更为完善。
     课题对电池管理试验台的功能及工作可靠性进行了实验验证。使用充电机和放电仪分别以不同电流对动力电池组进行了充放电实验,对电池组的总电压和各单体电池电压进行了实时监测,分析了在相同的剩余电量(SOC)下,充放电电流大小对电池电压的影响。使用电流积分法对SOC的变化量进行估算,针对实验采集的一段电流曲线,在不同采样频率和采样精度下对其计算准确性进行研究,为电池管理系统SOC估算的实际应用提供依据。课题还分析了由于单体电池的不一致性对电池组可放出电量的影响。
     在使用电池管理试验台对电池运行数据进行监测的过程中,电池组的各单体电池在充放电时的电压存在不一致性,说明电池组串联使用时存在不均衡现象。动力电池组不均衡性的危害很大,它不仅降低了电池组的使用效率而且会缩短循环使用寿命。为解决电池组的不均衡性,人们对均衡充放电的各种方法开展了研究,但目前大多都处于理论分析阶段。本课题采用MATLAB/Simulink搭建动力电池模型和部分均衡充放电电路模型,利用此模型对均衡充放电进行仿真,将各种均衡方法的仿真结果进行对比,分析各自的优缺点,为均衡充放电电路的实际应用提供理论依据。
As the dual advantages of energy saving and environmental protection, electric vehicles are developing rapidly worldwide in recent years. However, battery management system is a bottleneck restriction to electric vehicles development. Electric vehicle battery management system necessarily solves problems on State of Charge (SOC) estimation, balanced charge and discharge achievement and prolonging battery life span. The effective monitoring and management of battery pack for solving problems forenamed have important theoretical significance and practical value, which can effectively promote the practicality and commercialization of electric vehicles.
     According to characteristics of the lithium iron phosphate battery, a battery management system testing platform is designed to detect and process the battery performance parameters, including the module voltage, temperature, the pack voltage and current. In addition, the battery management system testing platform has more perfect functions, realization of battery charger and temperature controlling and status signals receiving by relay controlling and digital input signal conditioning.
     The function and reliability of the testing platform are validated. Charge and discharge experiments are conducted at different current using charger and discharge instrument, the real-time monitoring of module voltage and the pack voltage is carried on and the effect of current to the battery voltage in the same SOC is analyzed. The current integration method is to estimate the SOC variable, for calculation accuracy of SOC with different sampling frequency and accuracy to the current experimental curves collected is studied to provide the basis for practical application of the battery management system SOC estimation. Project also analyzed the inconsistencies in the single cell battery pack could be released on the impact of electricity.
     The imbalance of battery packs in series using exists, which is validated with the inconsistencies of module voltage monitored by the testing platform during the battery charge or discharge process. Battery imbalance is harmful to the battery pack, which not only reduces the battery pack efficiency, but also will shorten its life cycle. To solve the imbalance of the battery pack, various methods of balanced charge and discharge are carried out, but mostly in the theoretical analysis phase. By model building of battery and balanced model using MATLAB/Simulink, the charge and discharge is simulated. Varieties of charge and discharge simulation results are compared and the advantages and disadvantages are analyzed to provide theoretical basis for practical application.
引文
[1]催胜民.新能源汽车技术[M].北京大学出版社,2009:1-8
    [2]陈全世.先进电动汽车技术[M].化学工业出版社,2007:1-2
    [3]黄合宝,陈顺峰.锂动力电池BMS的基本论述[R]山东枣庄.2010
    [4]H.L.Chan, D.Sutanto. A New Battery Model for use with Battery Energy Storage System and Electric Vehicles Power System. IEEE,2000:470-475
    [5]Guijun Yao, PhilipS.M.Chin.80C196-Based EV Digital Instrumenttation. Beijing: EVE-14,1997
    [6]Hauck Bemhard. Battery Management System with a Two Wire Bus. Proceeding of the 15th International Electric Vehicle Symposium.Belgium:1998
    [7]L.Bowen, R.Zarr, S.Denton. AmicroController-Base Intelligent Battrey System. IEEE AES Systems Magazine,1994:16-19
    [8]薛振框,郑荣良.电动汽车蓄电池剩余电量计量技术的研究.江苏理工大学学报,2001,Vol.22,No.2:51-55
    [9]Han Xiaodong, ChenQuanshi. Automatic monitoring System of Traction Battery Vehicle. Beijing:EVS-16,1999.
    [10]钟星.新能源车竞争版图[J].中国中小企业2009,6
    [11]John Chatzakis, Kostas Kalaitzakis, Nicholas C. Voulgaris, and Stefanos N.Manias.Designing a New Generalized Battery Management System.IEEE transactions on inDustrial electronics,2003,Vol.50,No.5:990-999
    [12]胡建红.基于MC9S12DP512与CAN总线的电池管理系统研究与设计[D].上海.上海交通大学,2008
    [13]廖晓军.基于DSP的电动汽车电池管理系统[D].湖南.湖南大学,2007
    [14]廖晓军,何莉萍,钟志华等.电池管理系统国内外现状及其未来发展趋势[J].汽车工程,2006,Vol.28,No.10:961-964
    [15]廖晓军.基于DSP的电动汽车电池管理系统[D].湖南.湖南大学,2007
    [16]章桐,贾永轩.电动汽车技术革命[M].机械工业出版社,2010:7-8
    [17]Microcontrollers HCS08 MC9S08AW60 Data Sheet Rev3, Freescale semiconductor. 10/2007
    [18]纪少波高压共轨柴油机性能优化平台开发研究[R]山东大学博士后研究报告2010
    [19]李志军,李欣然,石吉银、冷华用CPLD实现多通道数据采集系统的A/D转换器控制电路设计[J].继电器2006,21(34):53-57.
    [20]XC9500 In-System Programmable CPLD Family XILINX 7/2007
    [21]MC1413 High Voltage, High Current Darlington Transistor Arrays, Datasheet, April, 2004-Rev.6
    [22]万光毅孙九安等.SoC单片机实验、实践与应用设计[M].北京航空航天大学出版社,2006:336-337
    [23]王文成.分布式粮仓温度实时监测系统的设计[J].仪表技术与传感器,2010,11:50-52.
    [24]Maxim Integrated Products,DS18B20 Full Data Sheet.2002
    [25]王瑜PCF8563T在电子时钟设计中的应用[J]电子设计工程2009,17(6)115-116
    [26]MAX485-Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers-Maxim Integrated Products.2003
    [27]陈耀和.VHDL语言设计技术[M].电子工业出版社,2004:7-8
    [28]高频/PFC电池充电机使用说明书
    [29]焦慧敏电动汽车动力电池剩余电量的预测方法及其实现[D]硕士学位论文,2006.
    [30]曹贵华陈智家王卓.镍氢动力电池SOC估算方法[J].汽车工程师2009,9:41-44
    [31]付进军,齐铂金,吴红杰,等.动力电池组管理系统单总线测量技术研究[J].中国测量技术,2004,30(6):10-12
    [32]劳力.动力蓄电池管理系统SOC算法研究[D].北京交通大学,2007:4-15.
    [33]R.E.Kalman, a New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering,82 (Series D),35-45.
    [34]张华辉,齐铂金,庞静等.动力锂离子电池荷电态估计的建模与仿真[J].哈尔滨工程大学学报,2009,6(30):669-675.
    [35]官学庚,齐铂金,刘有兵等.电动汽车动力电池模型和SOC估算策略[J].电源技术,2004,28(10):633-636.
    [36]Eberhard Meissner, Gerolf Richter. Battrey monitoring and electrical energy management:precondition for future vehicle electric power system[J]. Journal of Power Sources 2003,116 (1):79-98.
    [37]孙宏涛.电动汽车电池管理系统设计与均衡充电方案研究[D].天津大学2006:37-38.
    [38]尹政,张鹏波,杨永广等.车用锂电池充电技术综述[J].内燃机与动力装置,2010,3(117):2-6
    [39]卢居宵,林成涛,陈全世,韩晓东.三类常用电动汽车电池模型的比较研究[J].电源技术,2006,30(7):535-538.
    [40]李灵杰,叶利福,詹群峰.动力锂电池组充电管理电路设计[J].厦门大学学报.2008,47(5):673-676.
    [41]黄永安,马路,刘慧敏MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].清华大学出版社,2005:10-11.
    [42]陈守平,张军,方英民,梁毅.动力电池组特性分析与均衡管理[J].中国电源博览.2005,3:35-41.
    [43]Nasser H. Kutkut, H. L. N. Wiegman., Deepak M. Divan. Charge Equalization for an Electric Vehicle Battery System, IEEE Transactions on Aerospace and Electronic Systems, INTELEC,1998.34 (1):235-246.
    [44]沈丹.电动汽车电池组单体电池管理系统研究[D].同济大学,2008:52-68.
    [45]Kutkut, N. H., Wiegman, H. L. N., Divan, D. M. Design considerations for charge equalization of an electric vehicle battery system. Industry Application, IEEE Transaction on Volume 35, Issue 1, Jan.-Feb.1999:28-35.
    [46]Yuang Shung Lee, Ming-Wang Cheng, Intelligent control battery equalization for series connected lithium-ion battery strings, Industry Electronics,IEEE Transactions on vol.52, Issue 5.Oct.2005:1297-1307.
    [47]T.Shinpo, H.Ssuzukl. Development of Battery Management Syetem for Electric Vehicle. American:EVS-14,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700