镍基纳米材料的制备及其非酶葡萄糖传感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对葡萄糖的传感在生物科技、医疗诊断和食品工业等研究领域具有十分重要的意义。酶类的葡萄糖生物传感器具有良好的选择性和较高的灵敏度。但是由于酶非常容易失活、酶的固定存在一定难度,导致酶类的葡萄糖传感器制作过程复杂、制备成本高而且使用寿命短。因此,非酶的葡萄糖传感器也更多的受到了人们的关注。报道显示镍基的纳米材料,已经被用于对葡萄糖的非酶的探测,并且取得了良好的效果。然而在传统的电极修饰中,活性材料的合成和在电极表面的固定是分两步完成的。这不仅让屯极的制备过程变的复杂,也不能在电极表面上形成有序的纳米结构。这将在一定程度上限制镍基纳米材料在非酶的葡萄糖传感中的应用。因此,在导电的基底上直接制备出镍基材料的纳米结构将具有十分重要的应用价值。
     论文采用水热的方法在基底上制备出了不同结构和形貌的镍基纳米材料薄膜,并且测试了它们的非酶的葡萄糖传感特性。利用葡萄糖在高温水热条件下的碳化制备出了氧化镍和部分石墨化碳的复合纳米片,并讨论了部分石墨化碳对葡萄糖传感器性能的影响。利用聚乙烯吡咯烷酮作为还原剂,制备了金属镍单质纳米颗粒的薄膜,并测试了其非酶的葡萄糖传感性能。具体研究工作如下:
     1.通过使用不同的沉淀剂、改变起始阳离子的浓度配比制备了镍基的水滑石粉体材料和纳米片薄膜,讨论了水滑石纳米片在基底上直接成膜的机理。
     (1)三种沉淀剂包括氨水、氢氧化钠和碳酸钠、尿素分别被用来制备镍铝水滑石。使用不同的沉淀剂制备出的粉样的形貌各不相同。
     (2)通过水热处理硝酸镍、硝酸铝和尿素的混合溶液,在钛片、铁钴镍合金、陶瓷、云母基底上直接制备出了镍铝水滑石的纳米片薄膜。水滑石纳米片在基底上的直接成膜得益于尿素的水解和基底的粗糙度。使用尿素作为沉淀剂时,相对温和的沉淀反应让镍铝水滑石的种晶可以粘附在基底上。而基底表面的粗糙度有助于降低种晶和基底之间的结合能。
     (3)通过改变起始反应溶液中的镍离子与铝离子的浓度配比,在钛片和陶瓷基底上制备了不同形貌的薄膜。
     2.将生长于钛片基底上的镍铝水滑石的纳米片薄膜用于了非酶的葡萄糖的探测。钛片基底在测试中显示出了较高的稳定性,没有参与镍铝水滑石对葡萄糖的电催化氧化。相对传统的涂抹法制备的镍铝水滑石粉末修饰的电极,直接生长在钛片基底上的镍铝水滑石纳米片薄膜在非酶的葡萄糖的探测中显示出了更高的灵敏度、更低的探测极限和更好的稳定性。这些改善得益于水滑石纳米片在金属基底表面的直接成膜。
     3.在基底上制备了氧化镍纳米丝、纳米片、氧化镍和碳复合纳米片薄膜,并比较了氧化镍纳米片和氧化镍/复合纳米片修饰的钛片的非酶的葡萄糖传感性能。
     (1)通过水热处理硝酸镍和尿素的混合溶液,在基底上制备出了纳米丝状的前驱体薄膜。退火后,得到了氧化镍纳米丝薄膜。通过水热处理硝酸镍、尿素和氟化铵的混合溶液,制备出了纳米片状的前驱体薄膜。退火后,得到了氧化镍纳米片薄膜。探讨了纳米片形成的机理以及氟化铵的用量对薄膜形貌的影响。
     (2)通过水热处理硝酸镍、尿素、氟化铵和葡萄糖的混合溶液,在钛片基底上制备出了复合前驱体的纳米片薄膜。在氮气中退火后,得到了氧化镍和部分石石墨化碳材料的复合纳米片薄膜,探讨了葡萄糖的用量对薄膜形貌的影响。
     (3)测试了氧化镍纳米片和氧化镍/碳复合纳米片薄膜修饰的钛片的非酶的葡萄糖传感性能。相比单纯的氧化镍纳米片,氧化镍和部分石墨化碳的复合纳米片显示出了更快的响应速度、更低的探测极限和更高的灵敏度。
     4.通过水热处理硝酸镍、尿素和聚乙烯吡咯烷酮的混合溶液,制备了前驱体的薄膜,在氮气中退火后,得到了金属镍单质纳米材料的薄膜。讨论了金属镍单质生成的机理,并测试了金属镍纳米颗粒薄膜修饰的钛片的非酶的葡萄糖传感特性。与基于镍铝水滑石、氧化镍的葡萄糖传感器相比,基于金属镍纳米材料的葡萄糖传感器显示出了更快的响应速度、更低的探测极限和更高的灵敏度。但是该传感器的稳定性还有待进一步加强。
Glucose sensing is of great importance in the research fields of biotechnology, clinical diagnostics and food industry. Enzymatic glucose biosensors possess good selectivity and high sensitivity. However, the easy inactivation of enzyme and the difficulty of enzyme immobilization on electrode surface result in the complex preparation process, high cost and short life of enzymatic glucose sensor. Thus, nonenzymatic glucose sensors have attracted more attention. Previous reports demonstrated that Ni-based nanomaterials have been used to perform the nonenzymatic detection of glucose and exhibit good performance in terms of glucose sensing. However, the synthesis of sensing material and its immobilization on electrode surface are performed in two steps in the classical electrode modification. This preparation method was not simple and was not suitable for the direct formation of ordered nanostructure on electrodes surface. This drawback was not convenient for the applications of Ni-based nanomaterials in the nonenzymatic glucose sensing. Therefore, the direct fabrication of nanostructured Ni-based materials on conductive substrates is of great value.
     This thesis discusses the hydrothermal preparation of Ni-based nanomaterial films with different structures and morphologies on various substrates and investigates their nonenzymatic glucose sensing ability. Nickel oxide and partially graphitized carbon composite nanosheet is prepared by the carbonization of glucose in the hydrothermal reaction. The effects of partially graphitized carbon on the electrochemical performance of glucose sensor are also discussed. In addition, metallic nickel nanoparticle film is synthesized using polyvinyl pyrrolidone as reduction agent. The nonenzymatic glucose sensing ability of the prepared metallic nickel nanoparticle film is also investigated. The details are as follows:
     1. Powder samples and films of Ni-based LDH nanomaterials are prepared by varying the kind of precipitation agents and the molar ratio of raw materials. The mechanism of the direct formation of LDHs nanosheet film on substrates is discussed.
     (1) Three kinds of precipitation agents, including ammonia, sodium hydroxide and sodium carbonate, and urea, has been used to synthesize Ni-based LDHs under the same hydrothermal treatment. The morphologies of the prepared powder samples are different from each other using different precipitation agents.
     (2) The direct fabrication of Ni/Al-LDH nanosheet film on titanium foil, Fe-Co-Ni alloy substrate, ceramic wafer, and mica substrate has been performed through the hydrothermal reaction of the mixing solution containing nickel nitrate, aluminum nitrate, and urea. The direct formation of Ni/Al-LDH film on substrates can be attributed to the hydrolysis of urea and the roughness of substrates. Using urea as precipitation agent, the coprecipitation reaction is mild enough for the Ni/Al-LDH seeds to adhere on substrates. Roughness of substrates surface helps to reduce the binding energy between seeds and substrates.
     (3) Films with different morphologies are obtained on Ti foil and ceramic wafer substrates by varying the molar ratio of Ni2+ to Al3+ cation.
     2. The Ni/Al-LDH nanosheet film formed on Ti foil has been used to perform the nonenzymatic detection of glucose. Ti substrate exhibits good stability in the electrochemical measurements and will not be involved in the electrocatalytic oxidation of glucose. Compared to the Ni/Al-LDH powder modified electrode prepared by classical spin coating method, Ni/Al-LDH nanosheet film formed directly on Ti foil exhibits higher sensitivity, lower detection limit and better stability towards the nonenzymatic detection of glucose. These improvements are attributed to the direct formation of LDH nanosheet film on metal substrate.
     3. NiO nanowire film, NiO nanosheet film, and NiO and partially graphitized carbon composite nanosheet film are prepared on substrates. NiO nanosheet film and NiO/carbon composite nanosheet film modified Ti foil have been used to perform the nonenzymatic detection of glucose.
     (1) NiO nanowire film on various substrates is prepared by calcining the precursor, which is synthesized through the hydrothermal reaction of nickel nitrate and urea. NiO nanosheet film is prepared by calcining the precursor, which is synthesized through the hydrothermal reaction of nickel nitrate, urea and NH4F. The formation mechanism of nanosheet is discussed. The effect of the amount of NH4F on the film morphology is investigated in the contrast experiments.
     (2) NiO and partially graphitized carbon composite nanosheet film is prepared on Ti substrate by calcining the precursor in N2 gas, which is synthesized through the hydrothermal reaction of nickel nitrate, urea, NH4F and glucose. The effect of the amount of glucose on the film morphology is investigated in the contrast experiments.
     (3) NiO nanosheet film and NiO/carbon composite nanosheet film modified Ti foil have been used to perform the nonenzymatic detection of glucose. Compared to pure NiO nanosheet, nickel oxide and partially graphitized carbon composite nanosheet exhibits faster response speed, lower detection limit and higher sensitivity towards the detection of glucose.
     4. Metallic nickel nanoparticle film on Ti substrate is prepared by calcining the precursor in N2 gas, which is synthesized through the hydrothermal reaction of nickel nitrate, urea and polyvinyl pyrrolidone. The formation mechanism of metallic nickel is discussed and the nonenzymatic glucose sensing ability of the prepared metallic nickel nanoparticle film is also investigated. Compared to sensors based on Ni/Al-LDH and NiO, glucose sensor based on metallic nickel nanoparticles exhibits faster response speed, lower detection limit and higher sensitivity. However, its stability remains to be further improved.
引文
[1]J. Wang. Electrochemical glucose biosensors. Chem. Rev.,108 (2008) 814-825.
    [2]汪尔康主编.分析化学新进展.北京:科学出版社,2002.
    [3]Dong S. Chen X. Some new aspects in biosensors. J. Biotechnol.,2002,82 (4):303-323.
    [4]Alocilja E. C., Radke S. M. Market analysis of biosensors for food safety. Biosens. Bioelectron.,2003,18(5-6):841-846.
    [5]Farre M., Barcelo D. Toxicity testing of waste water and sewage sludge by biosensors, bioassays and chemical analysis. Tre. Anal. Chem.,2003,22(5): 299-310.
    [6]Purohit H. J. Biosensors as molecular tools for use in bioremediation. J. Clean, Produ,2003.11:293-301.
    [7]张海锋,张小水,王丽娟.生物传感器的研究现状、应用及前景.计测技术,2006,26:92-95.
    [8]Clark L. C., Lyons J. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y Acad. Sci.,1962,102(1):29-45.
    [9]Updike S. J., Hicks G. P. The enzyme electrode. Nature,1967,214(5092):986-988.
    [10]Hecht H. J, Kalisz H. M, Hendle J, Schmid R. D, Schomburg D. Crystal Structure of Glucose Oxidase from Aspergillus niger Refined at 2.3A Resolution. J. Mol. Biol, 1993,229:153-172.
    [11]Weibel M, Bright H. The glucose oxidase mechanism. J Biol Chem.,1971,246: 2734-2744.
    [12]Saipeng Y, Plamen A, Biomedical Instrumentation Technology, Biosensors and Bioelectronics,1995,3:125-133.
    [13]Karube I, Mitsuda S, Suzuki S, Mierobial electrode BOD sensors. Biotechol. Bioeng., 1977,19:1535-1547。
    [14]Janata J, An immunoelectrode. J Am. Chem. Soc,1975,97:2914-2916.
    [15]Rechmitz G A, Kobos R K Riechel S J, Gebauer C R, A bio-selective membrane electrode prepared with living bacterial cells., Anal. Chim. Acta,1977,94:357-365.
    [16]Caras S, Janata J, Field effect transistor sensitive to penicillin, Anal. Chem., 1980,52:1935-1937.
    [17]Aizawa M., Wada M., Kato S. Immobilized mitochondrial electron transport particle for NADH determination. Biotechol. Bioeng.,1980,22,1769-1783.
    [18]Sylvia K, Goral V.N., Baeunmner A. J. Electrochemical mierofluidic biosensor for nucleic acid detection with integrated minipotentiostat. Biosens. Bioelectron., 2006,21,2217-2223.
    [19]Liu X.J, Farmerie W., Schuster S. Molecular Beacons for DNA Bioseusors with Micrometer to Submicrometer Dimensions. Anal. Biochem.,2000,284,348-353.
    [20]Scheller F. W., Wollenberger U, Warsinke A. Research and development in biosensors. Curr. Opin. Biotech.,2001,12,35-40.
    [21]杨丽菊,彭图治.特定序列脱氧核糖核酸电化学生物传感器进展.分析化学,2001,29,355-360.
    [22]Wang J. Survey and Summary:From DNA biosensors to gene chips. Nucleic Acids Res.,2000,28,3011-3016.
    [23]陈丹丹,刘宝红,孔继烈._三氧化二铝溶胶-凝胶固定过氧化氢生物传感器.分析化学2003,30,958-961.
    [24]Guilbault GG, Lubrano GJ, An Enzyme Electrode for Amperometric Determination of Glucose and Lactate, Anal Chem,1973,64:439-445.
    [25]韩梅梅,董国君,孙哲等.生物传感器在环境监测中的应用.环境污染治理技术与设备,2004,5(8):83-87.
    [26]王晓辉.微生物乙醇传感器的研究.化学传感器,1998,18(3):35-39.
    [27]杨明星,缪煜清,齐名.生物传感器在医学检验中的应用.临床检验杂志,2002,20(3):182-184.
    [28]董彩文.生物传感器在鱼肉鲜度测定中的应用.包装与食品机械,2004,22(4):35-38.
    [29]司十辉.生物传感器.北京:化学工业出版社,2003.
    [30]谷林锳,吕鸣祥,宋诗哲.电化学方法原理及应用.北京:化学工业出版社,1986.
    [31]吴浩青,李永舫.电化学动力学.北京:高等教育出版社,1998.
    [32]藤岛昭,相泽益男.电化学测试方法.北京:北京大学出版社,1995.
    [33]张慧明,吴君.重庆:重庆出版社,1987.
    [34]傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,1990.
    [35]董邵俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995.
    [36]方惠群,虞振新.电化学分析.北京:原子能出版社,1984.
    [37]Malitesta C., Palmisano F., Torsi L., Zambonin P.O. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly. Anal. Chem.,1990,62:2735-2740.
    [38]Guibault G. G., Montalvo J. G. An enzyme electrode for the substrate urea Am. Chem. Soc,1970,92 (8):2533-2538.
    [39]Sergeyeva T, Lavrik N. V., Rachkov A. E. et aL An approach to conductometric immunosensor based on phthalocyanine thin film. Biosens. Bioelectron,1998,13 (6): 359-369.
    [40]Wang M J, Sun C Y, Wang L Y et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis, 2003,33(5):1117-1125
    [41]Meric B, Kerman K Ozkan D, et al. Indicator-free electrochemical DNA biosensor based on adenine and guanine signals. Electroanalysis,2002,14(18):1245-1250
    [42]Poumaghi-Azar M H, Hejazi M S, Alipour E. Developing an electrochemical deoxyribonucleic acid(DNA) biosensor On the basis of human interleukine-2 gene using all electroactive label. Analytica Chimica Acta,2006,570(2):144-150
    [43]Choi Y S, Lee K s, Park D H. Gene detection using Hoechst 33258 on a biochip. Current Applied Physics,2006,6(4):777-780
    [44]Medyantseva E P, Khaldeeva E V, Glushko N L, et al. Ampemmetirc enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum. Analytica Chimica Acta,2000,41 1(1-2):13-18
    [45]Dai Z, Yan F, Chen J, et al. Reagentless amperometrie immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antige-125. Analytical Chemistry,2003,75(20):5429-5434
    [46]Dai Z, Yan F, Yu H, et al. Novel amperometrie immunosensor for rapid separation-free immunoassay of carcinoembryonie antigen. Journal of Immunological Methods,2004,287(1-2):13-20
    [47]Hou Y X, Tlilia C, Jaffrezic. Renaulta N, et al. Study of mixed Langmuir Blodgett films of immunoglobulin G/amphiphi le and their application for immunosensor engineering. Biosensors and Bioelectronics,2004,20(6):1126-1133
    [48]Zhuo Y, Yuan R, Chai Y Q, et al. An amperometric immunosensor based on immobilization of hepatitis B surface antibody on gold electrode modified nanoparticles and horseradish peroxidase. Analytica Chimica Acta,2005,548(1-2): 205-210
    [49]Athey D, Ball M, Calum J M, et al. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement. Electro- analysis,1995,7(3):270-273.
    [50]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2002.
    [51]Kharittonov A B, Alfonta L, Katz E, et al. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. Electro-Analytical Chemistry,2000,487(2):133-141.
    [52]Sun Y, Yan F, Yang W. Multilayered constrochemical of glucose oxidase and silica nanoparticles on Au electrodes based on layer by layer covalent attachment. Biomaterials,2006,27(21):4042-4049.
    [53]Laureyn W, Nelis D, Gerwen P' et al. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B Chemical,2000,68(1-3): 360-370.
    [54]Peng H, Soeller C, Cannell M B, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosensors Bioelectronics,2006,21(9):1727-1736.
    [55]Erol Akyilmaz, Erhan Dinckaya. A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of L—ascorbic acid. Talanta, 1999,50:87-93.
    [56]张介驰,于德水,沙长青,等.双乙酰生物传感器的研究.生物工程学报,1999,15(3):327-331.
    [57]岳振峰,彭志英,徐建祥,等.壳聚糖固定化a一葡萄糖营酶的研究.食品与发酵工业,2001,27(4):20-24.
    [58]黄剑锋.溶胶.凝胶原理与技术.北京:化学工业出版社,2005.
    [59]Cass A. E. C., Davis G., Francis G. D. et al. Ferrocene-mediatede enzyme electrode for amperometric determination of glucose. Anal. Chem,1984,56(4):667-671.
    [60]于巧玲,杜亚琳,孙晓艳.羧基化碳纳米管修饰的安培型葡萄糖传感器测定血液中葡萄糖.分析测试学报.2006,25(6):31-34.
    [61]Jia J., Wang B., Wu A., Chen G., Li Z., Dong S. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network, Anal Chem.,2002,74(9):2217-2223.
    [62]Huang H., Hu N., Zeng Y., Zhou G. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem.,2002。308(1):141-151.
    [63]Ivanova E…V Magnet E. Direct electron transfer of hemoglobin and myoglobin in methanol and ethanol at didodecyldimethylammonium bromide modified pyrolytic graphite electrodes. Electrochem. Commun.,2005,7(4):323-327.
    [64]Bei ssenhirtz M. K, Scheller F-M, Lisdat F. A superoxide sensor based on a multilayer cytochrome c electrode. Anal Chem.,2004,76(16):4665-4671.
    [65]蔡称心,陈静.纳米管促进氧化还原蛋白质和酶的直接电子转移.电化学,2004,10(2):159-165.
    [66]江丽萍,吴霞琴,金利通.基于金纳米的第三代平面型葡萄糖传感器的研究.上海师范大学学报自然科学版),2003,3:48-52.
    [67]Park S, Boo H, Chung T D. Electrochemical non2enzymatic glucose sensors. Anal. Chim. Acta 2006,556:46-57.
    [68]Shoji E, Freund M S. Potentiometric sensors based on the inductive effect on the pKa of poly:A nonenzymatic glucose sensor. J. Am. Chem. Soc.2001,123:3383-3384.
    [69]Shoji E, Freund M S. Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid). J. Am. Chem. Soc.2002,124:12486-12493.
    [70]Choi S. J, Choi B. G, Park S. M. Electrochemical sensor for electrochemically inactive β-glucose using cyclodextrin template molecules. Anal. Chem.,2002, 74:1998-2002.
    [71]Arimori S, Ushiroda S, PeterLM, et al. A modular electrode chemical sensor for saccharides. Chem. Commun.,2002,2368-2369.
    [72]Popovic K D, Tripkovic A V. Oxidation of glucose on single crystal patinum electrodes:A mechanistic study. J. Electroanal. Chem.1992,339:227-245.
    [73]Ernst S, Heitbaum J, Hamann C H. The electro-oxidation of glucose in phosphate buffer solutions Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem.1979,100:173-183.
    [74]Beden B, Largeaud F, Kokoh K B, et al. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of glucose: Identification of reactive intermediates and reaction p roducts. Electrochim. Acta 1996,41:701-709.
    [75]GebhardtU, Luft G, Richter G J, et al. Development of an implantable electro-catalytic glucose sensor. Bioelectrochem. Bioenerg.,1978,5:607-624.
    [76]Gough D A, Anderson F L, Giner J, et al. Effect of coreactants on electrochemical glucose oxidation. Anal. Chem.1978,50:941-944.
    [77]Vassilyev YB, Khazova 0 A, Nikolaeva N N. Kinetics and mechanism of glucose electrooxidation on different electrode catalysts Part Ⅰ. Adsorp tion and oxidation on platinum. J. Electroanal. Chem.1985,196:105-125.
    [781 Houghes S, Johnson D C. Amperometric detection of simple carbohydrates at platinum electrodes in alkaline solutions by application of a triplepulse potential waveform. Anal. Chim. Acta,1981,132:11-22.
    [79]Houghes S, Johnson D C. Triple pulse amperometric detection of carbohydrates after chromatographic separation. Anal. Chim. Acta,1983,149:1-10.
    [80]Neuburger G G, Johnson D C. Comparison of the pulsed amperometric detection of carbohydrates at gold and platinum electrodes for flow injection and liquid chromatographic systems. Anal. Chem.1987,59:203-204.
    [81]SakamotoM, Takamura K. Catalytic oxidation of biological components on platinum electrodes modified by adsorbed metals Anodic oxidation of glucose. Bio-electrochem. Bioenerg.,1982,9:571-582.
    [82]Kokkinidis G, Xonoglou N. Comparative study of the electrocatalytic influence of under potential heavy metal adatoms on the anodic oxidation of monosaccharides on Pt in acid solutions. Bioelectrochem. Bioenerg.,1985,14:375-387.
    [83]Xonoglou N, Kokkinidis G. Catalysis of the oxidation of monosaccharides on platinum surfaces modified by under potential submonolayers. Bioelectrochem. Bioenerg.,1984,12:485-498.
    [84]Wittstock G, Strubing A, Szargan R, et al. Glucose oxidation at bismuth modified platinum electrodes. J. Electroanal. Chem.1998,444:61273.
    [85]Aoun S B, Bang G S, Koga T, et al. Electrocatalytic oxidation of sugars on silver single crystal gold electrodes in alkaline solutions. Electrochem. Commun.2003, 5:317-320.
    [86]Aoun S B, Dursun Z, Koga T, et al. Effect of metal adlayers on Au (111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J. Electro anal. Chem.2004,567:175-183.
    [87]Matsumoto F, HaradaM, Koura N, et al. Electrochemical oxidation of glucose at Hg adatom modified Au electrode in alkaline aqueous solution. Electrochem. Commun., 2003,5:42-46.
    [88]Bindra D S, Wilson G S. Pulsed amperometric detection of glucose in biological fluids at a surface modified gold electrode. Anal. Chem.1989,61:2566-2570.
    [89]Luo P, Zhang F, Baldwin R P. Comparison ofmetallic electrodes for onstant potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal. Chim. Acta 1991,244:169-178.
    [90]Nagy L, Nagy G, Hajos P. Copper electrode based amperometric detector cell for sugar and organic acid measurements. Sens. Actuators B 2001,76:494-499.
    [91]Casella I G, Desimoni E, Cataldi T R I. Study of a nickel catalysed glassy carbon electrode for detection of carbohydrates in liquid chromatography and flow injection analysis. Anal. Chim. Acta,1991,248:117-125.
    [92]Eramo F, Marioli JM, Arevalo A H, et al. Optimization of the electrodeposition of copper on poly-naphthyamine for the amperometric detection of carbohydrates in HPLC. Talanta,2003,61:341-352.
    [93]Zhang L, L i H, Ni Y, et al. Porous cuprous oxide microcubes for nonenzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem. Commun.,2009, 11:812-815.
    [94]Casella 1 G, Gatta M, Guascito M R, et al. Cataldi. Highly dispersed copper microparticles on the active gold substrate as an amperometric sensor for glucose. Anal. Chim. Acta 1997,357:63-71.
    [95]Berchmans S, Gomathi H, Rao G P. Enzymeless approach for the determination of some biologically important species. Sens. Actuators B,1998,50:156-163.
    [96]Salimi A, RoushaniM. Non2enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode. Electrochem. Commun.,2005,7:879-887.
    [97]Sun Y, Buck H, Mallouk T E. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal. Chem.2001,73:1599-1604.
    [98]Wang J, Thomas D F, Chen A. Nonenzymatic electrode chemical glucose sensor based on nanoporous PtPb networks. Anal. Chem.2008,80:997-1004.
    [99]Yeo I.H, Johnson D C. Anodic response of glucose at copper based alloy electrodes. J. Electroanal. Chem.2000,484:157-163.
    [100]Mho S, Johnson D C. Electrocatalytic response of carbohydrates at copper alloy electrodes. J. Electroanal. Chem.2001,500:524-532.
    [101]Pham M T, MaitzM F, Richter E, et al. Electrochemical behaviour of nickel surface alloyed with copper and titanium. J. Electroanal. Chem.2004,572:185-193.
    [102]Yeo I.H, Johnson D C. Electrochemical response of small organic molecules at nickel copper alloy electrodes. J. Electroanal. Chem.2001,495:110-119.
    [103]Ajayan P M. Nanotubes from Carbon. Chem. Rev.1999,99:1787-1799.
    [104]Wang J, L iM, Shi Z, et al. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wal 1 carbon nanotubes. Anal. Chem.2002,74: 1993-1997.
    [105]Musameh M, Wang J, Merkoci A, et al. Low-potential stable NADH detection at carbon nanotube modified glassy carbon electrodes. Electochem. Commun.2002,4: 743-746.
    [106]Wang J, L iM, Shi Z, et al. Electrocatalytic oxidation of norep inephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electro-analysis 2002,14:225-230.
    [107]Ye J S, Wen Y, Zhang W D, et al. Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem. Commun.,2004,6:66-70.
    [108]Deo R P, Wang J. Electrochemical detection of carbohydrates at carbon nanotube modified glassy carbon electrodes. Electrochem. Commun.2004,6:284-287.
    [109]Batchelor McAuley C, Wildgoose G G, Comp ton R G, et al. Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes. Sens. Actuators B,2008,132:356-360.
    [110]Wang J, Musameh M, L in Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc.2003,125:2408-2409.
    [111]CuiHF, Ye J S, ZhangW D, et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum lead alloy nanoparticle/carbon nanotube nanocomposites. Anal. Chim. Acta,2007,594:175-183.
    [112]Rong L Q, Yang C, Qian Q Y, et al. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta,2007, 72:819-824.
    [113]Li L H, Zhang W D. Preparation of carbon nanotubes supported p latinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim. Acta.2008,163:305-311.
    [114]Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis,2008,20:2212-2216.
    [115]Kang X H, Mai Z B, Zou X Y, et al. A novel sensitive nonenzymatic glucose sensor. Anal. Biochem.2007,363:143-151.
    [116]Male K B, Hrapovic S, Liu Y, et al. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 2004,516: 35-41.
    [117]Park S, Chung TD, Kim H C. Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem.2003,75:3046-3049.
    [118]Park S, Boo H, Lee S Y, et al. Apparent electrocatalysis on 3D nanoporous p latinum film electrop lated from hexagonal lyotrop ic liquid crystalline phase of Triton X2100. Electrochim. Acta,2008,53,6143-6148.
    [119]Chou C H, Chen J C, Tai C C, et al. A nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water Insensitive zinc chloride-ethy-3-methylimi-dazolium chloride ionic iquid. Electro-analysis,2008,20:771-775.
    [120]Song Y Y, Zhang D, Gao W, et al. Nonenzymatic glucose detection by using a three dimensionally ordered macroporous platinum template. Chem. Eur. J.2005,11: 2177-2182.
    [121]Yuan J, Wang K, Xia X. Highly ordered p latinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater.2005,15:803-809.
    [122]Cho S, Kang C. Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment. Electroanalysis,2007,19:2315-2320.
    [123]Shin C, ShinW, Hong H G. Electrochemical fabrication and electrocatalytic characteristics studies of gold nano pillar array electrode (AuNPE) for development of a novel electrochemical sensor. Electrochim. Acta 2007,53: 720-728.
    [124]Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic temp late synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun.2007,9:981-988.
    [125]Zhou Y G, Yang S, Qian Q Y, et al. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem. Commun.2009,11: 216-219.
    [126]Jena B K, Raj C R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. Eur. J.2006,12:2702-2708.
    [127]Scavetta E, Stipa S, Tonelli D. Electrodeposition of a nickel based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem. Commun.2007, 9:2838-2842.
    [128]Kurniawan F, Tsakova V, Mirskya V M. Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis,2006,18:1937-1942.
    [129]Liu H, Su X, Tian X, et al. Preparation and electrocatalytic performance of functionalized copper-based nanoparticles supported on the gold Surface. Electroanalysis,2006,18:2055-2060.
    [130]Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B 2006,114:379-386.
    [131]Zhao J, Wang F, Yu J, et al. Electro-oxidation of glucose at self assembled monolayers incorporated by copper particles. Talanta,2006,70:449-454.
    [132]You T, Niwa 0, Tomita M, et al. Characterization and electrochemical p roperties of highly dispersed copper oxide/hydroxide nanoparticles in graphite like carbon films prepared by RF sputtering method. Electrochem. Commun.,2002,4:468-471.
    [133]Zhuang Z, Su X, Yuan H, et al. An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst,2008,133:126-132.
    [134]Reitz E, J iaW, GentileM, et al. CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis,2008,20:2482-2486.
    [135]You T, Niwa 0, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite like carbon film electrode for sugar deter-mination. Anal. Chem.2003,75:5191-5196.
    [1]Scott M A, Kathleen A C, Prabir K D, Handbook of layered materials, Marcel Dekker, Inc. New York,2004.
    [2]Zelinskii N D, Kommarevskii V, J. Chem. Ber.,1924 (57B) 667.
    [3]Feitknecht W. Helvetica. Chem. Acta.1938 (21) 766-771.
    [4]Feitknecht W, Gerber W, J. Helv. Chem. Acta,1942 (25)131-137.
    [5]Feitknecht W. J. Helv. Chem. Acta,1942 (25) 555-559.
    [6]Van O G, Maria C, Brown G, Mortland M M, Clay Miner.1967 (7) 177-181.
    [7]Ross G J, Kodama H, A reply. Am. Miner.1968 (53) 1058-1068.
    [8]Allman R, Jepsn H P. Neues Jahrb Mineral, Monatsh,1969 (12) 544.
    [9]Taylor H F W, J. Miner. Mag.,1969 (37) 338-341.
    [10]Miyata S, Kumura T, Chem. Lett.,1973 (8)843.
    [11]Taylor H F W, J. Miner. Mag.,1973 (39) 377-381.
    [12]Reichle W T, J. Catal.,1995 (151) 50.
    [13]Palomeque J, Figueras F, Gelbard G, Applied Catalysis A:General 2006 (300) 100.
    [14]Burzlaff A, Brethauer S, Kasper C, Jackisch B O, Scheper T, Cytometry Part A,2004 (62A) 65.
    [15]Hu C W, Liu Y Y, Science in China,1995 (B25) 916.
    [16]Jana S K, Wu P, Tatsumi T, Jourmal of Catalysis,2006 (240) 268.
    [17]Cavani F, Trifiro F, Vaccari A, Catal. Today,1991 (11) 173-181.
    [18]Desigaux L, Belkacem M B, Richard P, Cellier J, Leone P, Cario L, Leroux F, Taviot-Gueho C, Pitard B, Nano Letters,6,2006 (2) 199.
    [19]Chitraar R., Tezuka S., Sonoda A., Sakane K., Ooi K., Hirotsu T., J. Colloid and Interface Science 2005 (290) 45.
    [20]Liu Z., Ma R., Osada M., Lyi N., Ebina Y., Takada K., Sasaki T., J. American Chemical Society 2006 (128) 4872.
    [21]De'ka'ny I., Turi L., Szucs A., Kira'ly Z., Colloids Surface 1998 (A141) 405.
    [22]Nikiforov M. P., Chernysheva M. V., Eliseev A. A., Lukashin A. V., Tretyakov Y. D., Maksimov Y. V., et al. Mater Science Engineering B 2004 (109) 226.
    [23]Bao Y. Z., Huang Z. M., Weng Z. X., J Applied Polymer Science 2006 (102)1471.
    [24]Halliwell C. M., Simon E., Toh C. S., Bartlett P. N., Cass A. E. G., Analytical Chemistry Act 2002 (453) 191.
    [251 Lee W. F., Chen Y. C., European Polymer Journal 2006 (42) 1634.
    [26]Shan D., Cosnier S., Mousty C., Analytical Chemistry 2003 (75) 3872.
    [27]S. Velu, K. Suzuki, M. Okazaki, T. Osaki, S. Tomura, F. Ohashi, Synthesis of New Sn-Incorporated Layered Double Hydroxides and Their Thermal Evolution to Mixed Oxides, Chem. Mater.11 (1999) 2163-2172.
    [28]J. B. Qiu, G. Villemure, Anionic clay modified electrodes:electrochemical activity of nickel (Ⅱ) sites in layered double hydroxide films, J. Electroanal. Chem.395 (1995) 159-166.
    [29]D. Shan, W. J. Yao, H. G. Xue, Amperometric Detection of Glucose with Glucose Oxidase Immobilized in Layered Double Hydroxides, Electroanalysis 18 (2006) 1485-1491.
    [30]H. Chen, C. Mousty, S. Cosnier, C. Silveira, J. J. G. Moura, M. G. Almeida, Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH, Electrochem. Commun.9 (2007) 2240-2245.
    [31]C. Mousty,0. Kaftan, V. Prevot, C. Forano, Alkaline phosphatase biosensors based on layered double hydroxides matrices:Role of LDH composition, Sens. Actuators B 133 (2008) 442-448.
    [32]S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, Direct intercalation of amino acids into layered double hydroxides by coprecipitation, J. Solid State Chem.162 (2001) 52-62.
    [33]J.-H. Choy, S.-Y. Kwak, J.-S. Park, Y.-J. Jeong, J. Portier, Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide, J. Am. Chem. Soc.121 (1999) 1399-1400.
    [34]X. Chen, C. L. Fu, Y. Wang, W. S. Yang, D. G. Evans, Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets, Biosens. Bioelectron.24 (2008) 356-361.
    [1]B. Sels, D. D. Vos, M. Buntinx, F. Pierard, A. K. D. Mesmaeker, P. Jacobs, Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination, Nature 400 (1999) 855-857.
    [2]S. Velu, K. Suzuki, M. Okazaki, T. Osaki, S. Tomura, F. Ohashi, Synthesis of New Sn-Incorporated Layered Double Hydroxides and Their Thermal Evolution to Mixed Oxides, Chem. Mater.11 (1999) 2163-2172.
    [3]J. B. Qiu, G. Villemure, Anionic clay modified electrodes:electrochemical activity of nickel(Ⅱ) sites in layered double hydroxide films, J. Electroanal. Chem.395 (1995) 159-166.
    [4]D. Shan, W. J. Yao, H. G. Xue, Amperometric Detection of Glucose with Glucose Oxidase Immobilized in Layered Double Hydroxides, Electroanalysis 18 (2006) 1485-1491.
    [5]H. Chen, C. Mousty, S. Cosnier, C. Silveira, J. J. G. Moura, M. G. Almeida, Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH, Electrochem. Commun.9 (2007) 2240-2245.
    [6]C. Mousty,O. Kaftan, V. Prevot, C. Forano, Alkaline phosphatase biosensors based on layered double hydroxides matrices:Role of LDH composition, Sens. Actuators B 133 (2008) 442-448.
    [7]S. Aisawa, S. Takahashi, W. Ogasawara, Y. Umetsu, E. Narita, Direct intercalation of amino acids into layered double hydroxides by coprecipitation, J. Solid State Chem.162 (2001) 52-62.
    [8]J.-H. Choy, S.-Y. Kwak, J.-S. Park, Y.-J. Jeong, J. Portier, Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide, J. Am. Chem. Soc.121 (1999) 1399-1400.
    [9]X. Chen, C. L. Fu, Y. Wang, W. S. Yang, D. G. Evans, Direct electrochemistry and electrocatalysis based on a film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets, Biosens. Bioelectron.24 (2008) 356-361.
    [10]C. Z. Zhao, C. L. Shao, M. H. Li, K. Jiao, Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode, Talanta 71 (2007) 1769-1773.
    [11]E. Scavetta, S. Stipa, D. Tonelli, Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing, Electrochem. Commun.9 (2007) 2838-2842.
    [12]K. Koczkur, Q. Yi, A. Chen, Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties, Adv. Mater.19 (2007) 2648-2652.
    [13]Y. F. Gao, M. Nagai, Y. Masuda, F. Sato W. S. Seo, K. Koumoto, Surface Precipitation of Highly Porous Hydrotalcite-like Film on Al from a Zinc Aqueous Solution, Langmuir 22 (2006) 3521-3527.
    [14]J. P. Liu, Y. Y. Li, X. T. Huang, G.Y. Li, Z. K. Li. Layered Double Hydroxide Nano-and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-ion Battery Electrodes, Adv. Funct. Mater.18 (2008) 1448-1458.
    [15]Z. Lu, F. Z. Zhang, X. D. Lei, L. Yang, S. L. Xu, X. Duan, In situ growth of layered double hydroxide films on anodic aluminum oxide/aluminum and its catalytic feature in aldol condensation of acetone, Chem. Eng. Sci.63 (2008) 4055-4062.
    [16]R. Roto, G. Villemure, Electrochemical impedance spectroscopy of electrodes modified with thin films of Ni-Al-Cl layered double hydroxides, J. Electroanal. Chem.527 (2002) 123-130.
    [17]J. H. Lee, S. W. Rhee, D.Y. Jung, Solvothermal Ion Exchange of Aliphatic Dicarboxylates into the Gallery Space of Layered Double Hydroxides Immobilized on Si Substrates, Chem. Mater.16 (2004) 3774-3779.
    [18]J. Wang, J. You, Z. S. Li, P.P. Yang, X. Y. Jing, D. X. Cao, M. L. Zhang, Electrochemical performance of Ni/Al hydrotalcite supported on porous nickel electrode in hexacyanoferrate(III) media, Solid State Sciences 10 (2008) 1093-1098.
    [19]A. Mignani, E. Scavetta, D. Tonelli, Electrodeposited glucose oxidase/anionic clay for glucose biosensors design, Anal. Chim. Acta.577 (2006) 98-106.
    [20]S. Aisawa, S. Sasaki, S. Takahashi, H. Hirahara, H. Nakayama, E. Narita, Intercalation of amino acids and oligopeptides into Zn-Al layered double hydroxide by coprecipitation reaction, J. Phys. Chem. Solids 67 (2006) 920-925.
    [21]T. Y. You,O. Niwa, Z. L. Chen, K. Hayashi, M. Tomita, S. Hirono, An Amperometric Detector Formed of Highly Dispersed Ni Nanoparticles Embedded in a Graphite-like Carbon Film Electrode for Sugar Determination, Anal. Chem.75 (2003) 5191-5196.
    [22]A. Salimi, M. Roushani, Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol-gel dispersed renewable carbon ceramic electrode, Electrochem. Commun.7 (2005) 879-887.
    [23]H.H Ai, X. T. Huang, Z. H. Zhu, J. P. Liu, Q. B. Chi, Y. Y. Li, Z. K. Li, X. X. Ji, A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan, Biosens. Bioelectron.24 (2008) 1048-1052.
    [1]Noguera C. Physics and chemistry at oxide surfaces; Cambridge University Press: Cambridge, UK,1996.
    [2]Kung H H. Transition metal xxides:Surface chemistry catalyst, Elsevier:Amsterdam, 1989.
    [3]Henrich V E, Cox P A. The surface chemistry of metal oxides. Cambridge University Press:Cambridge, UK,1994.
    [4]Wells A F. Structural inorganic chemistry,6th ed. Oxford University Press:New York, 1987.
    [5]Harrison WA。Electronic structure and the properties of solids, Dover:New York, 1989.
    [6]Wang Z L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides·from materials to nanodevices. Adv Mater,2003,15:432-435.
    [7]Wang Z L, Kang Z C. Functional and smart material:Structural evolution and structure analysis, Plenum, New York,1998.
    [8]Wang Y, Zhu J, Yang, et al. Effect of cryoprotectants on eutectics of NiCl2 and KCl studied by temperature wave analysis and differential scanning calorimetry. Thermochem Acta,2005,437:106-110.
    [9]Uhma Y R, Park J H, Kima W, et al. Magnetic properties of nanosize Ni synthesized by the pulsed wire evaporation(PWE)method. Mater Sci EngB,2004,106:224-227.
    [10]Wang X, Song J, L. Gao, et al. Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology,2005, 16:37-43.
    [11]Sato H, Minami T, Takata S, et al. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films,1993,236:27-35.
    [12]Srinivasan V, Weidner J. An electrochemical route for making porous nickel oxide electrochemical capacitors. J Electrochem Soc,1997,144:210-219.
    [13]He J, Hagfeldt A, Lindquist S E, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B,1999,103:8940-8944.
    [14]Yoshimura K, Miki T, S. Tanemura. Nickel oxide electrochromic thin films prepared by reactive DC magnetron sputtering. Jpn J Appl Phys,1995,34:2440-2495.
    [15]Wang S F, Shi L Y, Feng X, et al. Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation. Mater Lett,2007,61:1549-1555.
    [16]Lin Y, Xie T, Cheng B C, et al. Ordered nickel oxide nanowire arrays and their optical absorption properties. Chem. Phy Lett,2003,380:521-532.
    [17]Niasari M S, Mir N, Davar E Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron,2009,28:1111-1114.
    [18]Liang J H, Y D. Synthesis and characterization of Ni(OH)2 single-crystal nanorods. Chem Lett,2003,32:1126-1134.
    [19]Liang Z H, Zhu Y J, Hu X L. 1B-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. J Phys Chem B,2004,108:3488-3491.
    [20]Yang D N, Wang R M Zhang J, et al. Synthesis of nickel hydroxide nanoribbons with a new Phase: a solution chemistry approach. J Phys Chem B,2004,108:753 1-7540.
    [21]Kodama H, Makhlouf A, Berkowitz E. Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett,1997,97:1393-1396.
    [22]Yang L X, Zhu Y J, Tong H, et al. Hierarchical Ni(OH)2 and NiO camations assembled from nanosheet building blocks. Crys Growth Des,2007,7:2716-2721.
    [23]Wh M Q, Gao J H, Zhang S 1L et al. Comparative studies of nickel oxide films on different substrates for electrochemical supercapacitors. J Power Sources.2006,1 59:365-369.
    [24]Palanisamy P, Raichur A M. Synthesis of spherical NiO nanoparticles through a novel biosuffactant mediated emulsion technique. Mater Sci Eng C,2009,29:199-206.
    [25]Zhang Y Gui Y H, Xia T C, et al. Preparation of nanostructures NiO and their electrochemical capacitive behaviors. Int J hydrogen energy,2009,34:2467-2473.
    [26]J. X. Wang, X. W. Sun, X. P. Cai, Y. Lei, L. Song, S. S. Xie, Electrochem. Solid-State Lett 10 (2007) 58-60.
    [27]J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu, Electrochem. Commun. 6 (2004) 66-70.
    [28]J. C. Ndamanisha, L. P. Guo, Bioelectrochemistry 77 (2009) 60-63.
    [29]A. Safavi, N. Maleki, E. Farjami, Biosens. Bioelectron.24 (2009) 1655-1660.
    [30]M. Shamsipur, M. Najafi, M. M. Hosseini, Bioelectrochemistry 77 (2010) 120-124.
    [1]H.L.Wen,K.S.Yao,Y D.Zhang, Z.M.Zhou, A.Kirschning.Catalytic transfer hydrogenation of aromatic nitro compounds in presence of polymer-supported nano-amorphous Ni-B catalyst. Catal. Commun,2009,10(8):1207-1211.
    [2]H. C. Liu, H. Wang, J. H. Shen, Y Sun, Z. M. Liu. Preparation, characterization and activities of the llano-sized Ni/SBA.1 5 catalyst for producing hydrogen from ammonia. Appl Cataly A:Gen,2008,337(2):138-147.
    [3]M. Watanabe, H. Yamashita, X. Chen, J. Yamanakab, M. Kotobukia, H. Suzukic, H. Uchidac. Nano-sized Ni particles on hollow alumina ball:Catalysts for hydrogen production. Appl. Catal. B:Environ.2007,7 10.4):237-245.
    [4]刘先松,陈鲁国,黄凯.纳米金属镍的制备与磁性研究.稀有金属材料与工程,2008,37:456-459.
    [5]M. Srivastava, V K. w. Grips, K. S. Rajam. Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles. Applied Surface Science,2007,253(8):3814-3824.
    [6]晋传贵,檀杰.化学还原法制备金属镍纳米颗粒.安徽工业大学学报,2007,24:36-38
    [7]徐小兵,刘先松,U. Mefidor微波辅助polyol法制备纳米金属镍及磁性研究.功能材料,2008,39:553-556.
    [8]王棒峰,黄冈慧,田宗军,刘志东.温度对金属镍电沉积中枝晶分形生长的影响Electro-plating&Pollution ContrOl.,2007,27:16-19.
    [9]S. Z. Chu, K. Wada, S. Inoue, S. Todoroki. Fabrication and Characteristics of Ordered Ni Nanostructures on Glass by Anodization and Direct Current Electrodeposition Chem. Mater.,2002,14(11):4595-4602.
    [10]J. J. Mock, S. J. Oldenburg, D. R. Smith, D. A. Schultz, S. Schultz. Composite Plasmon Resonant Nanowires, Nano Lett.,2002,2(5):465-469.
    [11]Q. Liu, H. Liu, M. Han, J. M. Zhu, Y YLiang, Z. Xu, Y. Song. Nanomater-Sized Nickel Hollow Spheres. Adv. Mater,2005,17(16):1995-1999.
    [12]Q. F. Yi, W. Huang, W. Q. Yu, L. Li, X. P. Liu, Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose, Electro-analysis,2008, (20) 2016-2022.
    [13]L. Shen, Z. Li, P. L. He, Electrochem. Commun.12 (2010) 876.
    [14]S. Tang, X. Z. Wang, J. P. Lei, Z. Hu, S. Y. Deng, II. X. Ju, Biosens. Bioelectron. 26 (2010) 432.
    [15]H. Y. Li, X. H. Zhang, H. L. Pang, C. T. Huang, J. H. Chen, J Solid State Electrochem. 14 (2010) 2267.
    [16]J. X. Wang, X. W. Sun, X. P. Cai, Y. Lei, L. Song, S. S. Xie, Electrochem. Solid-State Lett 10 (2007) 58.
    [17]L. M. Lu, L. Zhang, F. L. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q.A.Wang, G. L. Shen, R. Q. Yu, Biosens. Bioelectron.25 (2009) 218.
    [18]W.D. Zhang, J. Chen, L.C. Jiang, Y. X. Yu, J. Q. Zhang, Microchim Acta 168 (2010) 259.
    [19]M. Sevilla, A. B. Fuertes, Carbon 47 (2009) 2281.
    [20]L. L. Wu, Y. S. Wu, H. Y. Wei, Y. C. Shi, C. X. Hu, Mater. Lett.58 (2004) 2700.
    [21]P. Justin, S. K. Meher, G. R. Rao, J. Phys. Chem. C.114 (2010) 5203.
    [22]E. Scavetta, M. Berrettoni, R. Seeber, D. Tonelli, Electrochim. Acta 46 (2001) 2681.
    [23]R. Ojani, J. B. Raoof, S. A. Parisa, J. Electroanal. Chem.571 (2004) 1.
    [24]Liu H, Su X, Tian X, et al. Preparation and electrocatalytic performance of functionalized copper-based nanoparticles supported on the gold Surface. Electroanalysis,2006,18:2055-2060.
    [25]Xu Q, Zhao Y, Xu J Z, et al. Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens. Actuators, B 2006,114:379-386.
    [26]Zhao J, Wang F, Yu J, et al. Electro-oxidation of glucose at self assembled monolayers incorporated by copper particles. Talanta,2006,70:449-454.
    [27]You T, Niwa 0, Tomita M, et al. Characterization and electrochemical p roperties of highly dispersed copper oxide/hydroxide nanoparticles in graphite like carbon films prepared by RF sputtering method. Electrochem. Commun.,2002,4:468-471.
    [28]Zhuang Z, Su X, Yuan H, et al. An improved sensitivity nonenzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst,2008,133:126-132.
    [29]Reitz E, J iaW, GentileM, et al. CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis,2008,20:2482-2486.
    [30]You T, Niwa 0, Chen Z, et al. An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite like carbon film electrode for sugar deter-mination. Anal. Chem.2003,75:5191-5196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700