碳纳米管—石墨电接触复合材料的摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用粉末冶金方法制备碳纳米管--石墨复合材料,初压压力200MPa,在H_2保护气氛下烧结并保温1h,复压压力400 MPa制得复合材料。复合材料中石墨和碳纳米管分布均匀,没有明显孔洞和团聚现象发生。
     研究了电流密度(0-25A/cm~2)对复合材料电磨损性能的影响。试验结果表明:随着电流密度增大,发热量增大,粘着磨损加剧,接触表面的接触方式发生改变,导致收缩电阻和过渡电阻减小,接触电压降略有上升;随着电流密度的增大,润滑膜遭到破坏,导致复合材料的摩擦系数增大、磨损量增大;比较电刷正、负极磨损量可以发现,由于接触表面的理化反应和金属转移的存在,导致正刷磨损量大于负刷磨损量,正刷磨损量随电流密度增大而成倍增长,而负刷磨损量与电流密度关系不大,电流密度越大磨损极性的差异越明显;
     研究了圆周速度(5-15m/s)对复合材料电磨损性能的影响。试验结果表明:当压力一定时,随着圆周速度的增大,复合材料的接触电压降略有增加,而圆周速度增大到一定值后,接触电压降和磨损量急剧增加并伴有火花磨损出现:压力较小时(1N/cm~2)圆周速度为7.5m/s时就出现电火花,压力较大时(2.5N/cm~2)圆周速度为15m/s出现电火花。在圆周速度不变的条件下,接触电压降先升后降最后趋于稳定;随着速度的增大机械磨损的摩擦系数有所下降,而电磨损的摩擦系数随着速度的增大反而增大;电磨损磨损量随速度增大增大,而机械磨损的磨损量随速度的增大反而减小;机械磨损的相对磨损率随着速度的增大而减小,而电磨损相对磨损率出现了最小值,这是由于电刷压力、电流、温度等因素综合作用的结果。
In this paper, CNTs-Ag-G composite brushes were fabricated by means of powder metallurgy method. The process included mixing powder, pressing at 200 MPa, sintering for 1h in pure H_2 protective atmosphere at 700℃ and repressing at 400 MPa. The distribution of graphite and CNTs is homogenous in the CNTs -Ag-G composite without obvious micropore and cluster.The effect of the electrical current (0-25A/cm~2) on the electrical wear properties of CNTs-Ag-G composite was studied. The results indicate that the temperature of interface rises and the probability of sticking wear becomes more with the increase of the electrical current. Due to the altering of contact manner, the contact resistance decreases and contact voltage drop increases little. With the increase of the electrical current, the sticking wear aggravates, the lubrication film gets damaged, and finally the friction coefficient and the wear mass loss both become bigger. After the comparison of the positive brush and negative brush, it can be found that the wear mass loss of the positive brush is more than the loss of the negative brush because of the physical and chemical reaction on the interface and the existence of the metal transference. The wear mass loss of the positive brush multiplies with the increase of the electrical current, but the loss of negative brush has little relation with the electrical current. The bigger the electrical current is, the more difference between the wear mass loss of the two brushes is.The effect of the circular velocity (5-15m/s) on the electrical wear properties of the composite was studied. The results indicate when the pressure is certain, the contact voltage drop increases a little with the increase of the circular velocity. While the circular velocity reaches a definite value, the contact voltage drop and the wear mass loss increases sharply as the appearance of electric spark. When the pressure is low (1N/cm~2), electric spark comes out when the circular velocity reaches 7.5m/s. While the pressure becomes higher (2.5N/cm~2), electric spark comes out until 15m/s. Under the condition of constant circular velocity, the contact voltage drop curve falls down after it ascends first, and finally tends to be stable. As the circular velocity increasing, the friction coefficient and the wear mass loss of the mechanical wear decreases, but those of the electrical wear increase. With the increase of the circular velocity, the mechanical relative wear rate increase and the relative electrical wear rate varies as "U" because of co-action of press, electrical current and temperature.
引文
[1] 周曦亚编,《复合材料》,化学工业出版社,2005
    [2] 吴人洁著,《复合材料》,天津大学出版社,2000
    [3] 陈华辉,邓海金,李明,林小松编著,《现代复合材料》,中国物资出版社,1998
    [4] 王荣国,武卫莉,谷万里编著,《复合材料概论》,哈尔滨工业大学出版社,1999
    [5] 肖长发著,《纤维复合材料》,中国石化出版社,1995
    [6] 凤仪,陶宁,王文芳,王成福,电流密度对碳纤维-铜-石墨复合材料接触电压降的影响,《中国机械工程》,2001,12(5),P592-594
    [7] 贺福,王茂章著,《碳纤维增强复合材料》,科学出版社,1995
    [8] 顾震隆著,《纤维复合材料力学》,国防工业出版社,1987
    [9] 高强,吴渝英,张国定,洪锓,肖学明,碳纤维对铜—石墨复合材料性能的影响,《中国有色金属学报》,2000,10,P97-101
    [10] 肯尼思·G·克雷德编,温仲元译,李云盛校,《金属基复合材料》,国防工业出版社,1982
    [11] 凤仪,许少凡,颜世钦,应美芳,王成福,纤维强化金属基复合材料及其应用,《机械工程材料》,1995,19(1),P9-12
    [12] T.W.克莱因,P.J.威瑟斯著,余永宁,房志刚译,贾成厂校,《金属基复合材料导论》,冶金工业出版社,1996
    [13] 赵渠森编译,《复合材料》,国防工业出版社,1979
    [14] 王玲,赵浩峰,蔚晓嘉等编著,《金属基复合材料及其浸渗制备的理论与实践》,冶金工业出版社,2005
    [15] A.Senouci;J.Frene;H.Zaidi, Wear mechanism in graphite-copper electrical sliding contact,Wear, 1999,225-229, P949-953
    [16] J.M.Garc'ia-Marquez;N.Anton;A.Jimenez;M.Madrid;M.A.Martinez;J.A.Bas,Viability study and mechanical characterisation of copper-graphite electrical contacts produced by adhesive joining, Journal of Materials Processing Technology ,2003,143-144, P290-293
    [17] A.凯尔,W.A.默尔,E.维纳里库,《电接触和电接触材料》,机械工业出版社,1993
    [18] 张晓燕,张家鼎,吴正纯,宋润生,陈晓杰,曹泽淳,新型复合电接触材料的开发研究,《上海大学学报》,2000,6(1),P91-94
    [19] 碳素材料学会(日)编,《电机用电刷及其使用方法》,机械工业出版社,1982
    [20] 余海峰,马学鸣,雷景轩等,纳米技术在电触头材料中的应用,《稀有金属》2003,02,P366-370
    [21] 汪德林,电刷与滑环性能评价装置的研制和应用,《机械研究与应用》,1995,1,p4
    [22] 邵文柱,甄良,崔玉胜,王岩,杨德庄,铜—金刚石电接触复合材料的导电性,《电工材料》,2002,2,P10-13
    [23] 汪德林,电刷与滑环性能评价装置的研制和应用,《机械研究与应用》,1995,1,P4
    [24] Yu m F;Lourie O;Dyer M J;Moloni K;Kelly T F;Ruoff R S, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, P287
    [25] Valentin N;Popov, Carbon nanotubes: properties and application. Materials Science and Engineering,2004, 43,P61-102
    [26] Zhijie Jia;Zhengyuan Wang;Ji Liang;Bingqing Wei, Dehai Wu.Production of short multi-walled carbon nanotubes, Carbon. 1999, 37, P903-906
    [27] 成会明,《纳米碳管》,化学工业出版社,2002
    [28] Ho Jung Hwang;Oh-Keun Kwon;Jeong Won Kang,Copper nanocluster diffusion in carbon nanotube, Solid State Communications, 2004, 129, P687-690
    [29] 朱宏伟,吴德海,徐才录,碳纳米管,机械工业出版社,2003
    [30] Y. Tzeng;Y. Chen;C. Liu, Electrical contacts between carbon-nanotube coated electrodes,Diamond and Related Materials, 2003, 12, P774-779
    [31] Yamabe;T, Recent development of carbon nanotube, Synthetic Metals, 1995, 70(1-3), P1511-1518
    [32] Bower C;Rosen R;Jin L, Deformation of carbon nanotubes in nanotube-polymer composites, Appl Phys Lett, 1999, 74, 3317-3319
    [33] Chen WX;Tu JP;Wang LY, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon, 2003, 41, P215-222
    [34] Dae-Soon Lim;Jeong-Wook An;Hwack Joo Lee, Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites, Wear, 2002, 252, P512-517
    [35] Thostenson E T;Ren Z,Chou T W, Advances in the science and technology of carbon nanotubes and their composites:aca review, Composites Science and technology, 2001, 61(13), P1899-1912.
    [36] Wagner H D,Feldman L, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Apply Phys Lett, 1998, 72(2), P188-190.
    [37] Lau, Kin-taka;Shi, San-Qianga;Cheng, Hui-mingb, Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures, Composites Science and Techology, 2003, 8 (63), P1161-1164
    [38] Li Y B;Ya Q;Wei B Q;Liang J;Wu D H, Processing of a carbon nanotubes-Fe82P18 metallic glass composite, J.Mater.Sci.Lett, 1998 7(17), P56-59
    [39] 霍斯特.契可斯编,刘钟华,陈善雄,吴鹿鸣译,《摩擦学》,机械工业出版社,1984
    [40] 温诗铸,黄平著著,《摩擦学原理》,清华大学出版社,2002
    [41] 余海峰,马学鸣,雷景轩等,纳米技术在电触头材料中的应用,《稀有金属》,2003,02,P366-370
    [42] M.P. Filippakou;C.G Karagiannopoulos;D.P. Agoris, et al, Electrical contact overheating under short-circuit currents, Electric Power Systems Research, 2001, 57, P141-147
    [43] Mansori ME;Paulmier D;Ginsztler J, et al, Lubrication mechanisms of sliding contact. by simultaneous action of electric current and magnetic, Wear, 1999,225, P1011-1016
    [44] A.凯尔,W.A.默尔,E.维纳里库,《电接触和电接触材料》,机械工业出版社,1993
    [45] 马学鸣,雷景轩,制粉工艺对制备/石墨电触头材料性能的影响,《热处理》,2003,18(1),P24-27
    [46] 曾德麟,《粉末冶金材料》,冶金工业出版社,1989
    [47] L.M.Ang;T.S.A.Hor;G.Q.Xu;Decroation of activeated carbon nanotubes with copper and nickel, Carbon, 2000 (38), P363-372
    [48] Yi Feng;HaiLong Yuan, Electroless plating of carbon nanotubes with sliver, Journal of Materials Science, 2004, 39(9), P3241-3243
    [49] Wang C F;Ying M F;Feng Y, Physical properties of short carbon fiber reinforced silver composites, Acta Metallurgica Sinica, 1994, 7, P157-160
    [50] 凤仪,袁海龙,张敏,碳纳米管基复合材料制备工艺和电导率,《中国有色会属学报》,2004,14(9),P1451-1455
    [51] 大森丰明,《电接触材料手册》,机械工业出版社,1978
    [52] F.P.鲍登,D.泰伯著,袁汉昌,张绪寿,陈绍澧译,《固体的摩擦与润滑》,机械工业出版社,1982
    [53] F.P.鲍登,D.泰伯著,袁汉昌,张绪寿,陈绍澧译,《固体的摩擦与润滑(续篇)》,机械工业出版社,1986
    [54] 董树荣,张孝彬,纳米碳管增强铜基复合材料的滑动磨损特性研究,《摩擦学报》,1999,01,P1-6
    [55] 何奖爱,王玉玮著,《材料的摩擦与耐磨材料》,东北大学出版社,2001
    [56] 刘先曙,《电接触材料的研究和应用》,国防工业出版社,1979.
    [57] 张敏,凤仪,电流对碳纳米管石墨复合材料摩擦磨损性能的影响,《摩擦学学报》,2005,25(4),P328-332
    [58] 凤仪,张敏,徐屹,外加载荷对碳纳米管石墨复合材料电磨损性能的影响,《中国有色金属学报》,2005,15(10),P1483-1488
    [59] Yi Feng;Min Zhang;Yi Xu, Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites, Carbon, 2005, 43, P2685-2692
    [60] 周序科,徐红军,超导单极电机电刷滑动接触的物理化学过程,《碳素》,1995,3,P36-44
    [61] 徐屹,凤仪,王松林,张学斌,张敏,沈剑,圆周速度对碳纳米管--石墨复合材料接触电压降的影响,《功能材料》,2006,37(2),P225-227
    [62] Konchits VV;Kim CK, Electric current passage and interface heating, Wear, 1999, 232
    [63] Shinchi A;ImadaY;Honda F, Electric contact surface of Pd-plated metal in organic gas/air atmospheres, Wear, 1999,230
    [64] 科拉格利斯基,陀贝钦,康巴洛夫著,汪一麟,朱安仁,范明德译,《摩擦磨损计算原理》,机械工业出版社,1982
    [65] 高彩桥,刘家浚著,《材料的粘着磨损与疲劳磨损》,机械工业出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700