电磁场化学气相沉积制备各向同性热解炭及微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在课题组前期研究提出的电磁场化学气相沉积原理基础上,提出了微正压和负压化学气相沉积两种制备高密度块体各向同性热解炭材料的新型工艺。论文采用自行设计的化学气相沉积炉,以石墨为沉积基体、丙烯为碳源气体、氮气和氢气为稀释气体和载气,在温度为1000~1400℃C、丙烯流量范围为0.1~1.0L/min、氮气流量范围为0~15L/min、氢气流量范围为0~0.6 L/min、沉积时间为20h~40h的工艺条件下,制得平均密度为1.03~1.76g/cm3、厚度2~22mm的各向同性热解炭材料。
     利用X射线衍射仪、扫描电子显微镜、偏光显微镜、透射电子显微镜对所制得各向同性热解炭的石墨化度、断口形貌及微观组织结构进行了系统研究。结果表明,材料的石墨化度小于20%,其在偏振光下材料无任何光学活性和生长特征,符合各向同性热解炭的特征;材料存在径不等的微小隙,且随着材料密度的提高,隙形貌更加均匀、径更小。断口形貌表明,各向同性热解炭由直径100nm~3μm的球形或近球形颗粒状热解炭组成,且颗粒之间发生融并现象,融并范围随材料密度提高而增大。此外,考察了材料的显微硬度及抗弯和抗压强度。结果表明,材料的显微硬度、抗弯强度、抗压强度随材料的密度增大而增大。
     对影响各向同性热解炭沉积的关键参数—沉积温度和碳源气体浓度进行了考察,结合材料的微观结构分析及力学性能分析结果,得到微正压及负压工艺制备各向同性热解炭的优化工艺参数:微正压化学气相沉积工艺采用温度1300℃、丙烯流量0.2 L/min、氮气流量4 L/min、氢气流量0.6 L/min的工艺参数时,制备的材料密度达到1.76g/cm3,隙率为6.3%;负压化学气相沉积工艺采用温度1300℃、丙烯流量0.2 L/min、氮气流量0.3 L/min、氢气流量0.2 L/min的工艺参数时,制备的材料密度可达1.72g/cm3,隙率为5.5%。
     论文结合实验结果探讨了电磁场流态化制备各向同性热解炭的沉积原理,认为电磁场的存在促进了各向同性热解炭的沉积。
The micro-positive pressure Chemical Vapor Deposition (CVD) and negative pressure CVD methods were proposed and employed for preparation of high density and bulk isotropic pyrocarbon on the basis of the principle of CVD in electromagnetic field which was proposed in the early research by our lab for the first time. With self-designed CVD furnace, using graphite as substrate, propylene as carbon source gas, nitrogen and hydrogen as carrier gas and dilution gas, the isotropic pyrocarbon products with average density from 1.03~1.76 g/cm3 and thickness from 5~22mm were fabricated, and the deposition conditions are as following:deposition temperature 1000~1400℃for 20~40h, propylene flow from 0.1~1.0 L/min, hydrogen flow from 0~0.6 L/min, and nitrogen flow from 0~15 L/min.
     The degree of graphitization, microstructure and surface morphology as well as fracture characteristics of pyrocarbon were studied by X-ray diffraction (XRD), polarized light microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results reveal that as-prepared pyrocarbon is optically isotropic and has no growth charaterization when its degree of graphitization is less than 20%. Pores with a variety of pore size distribute in the isotropic pyrocarbon. Moreover, the pore morphology gets more well-distributed and the pore diameter get smaller with the density of materials increasing. The fracture characteristics of isotropic pyrocarbon show that the isotropic pyrocarbon are mainly composed of the spherical pyrocarbon granules with diameter from 100nm~3μm, and spherical pyrocarbon granules more or less conglutinated with each other. With the increase of material's density, the conglutinated area gets larger. The microhardness, flexural strength and compression strength of materials were also researched. It shows that the microhardness, flexural strength and compression strength of the products all get huger with the increase of material's density.
     Deposition temperature and carbon source gas concentration which strongly influence the deposition of isotropic pyrocarbon were studied. And the optimization parameters for CVD isotropic pyrocarbon were obtained. While the deposition temperature was 1300℃, propylene flow 0.2L/min, hydrogen flow 0.6L/min and nitrogen flow 4L/min, the density of isotropic pyrocarbon fabricated by micro-positive pressure CVD method was 1.76 g/cm3. In contrast to micro-positive pressure CVD method, the isotropic pyrocarbon with the density 1.72 g/cm3 and the lowest porosity was obtained by negative CVD method under the conditions of the deposition temperature 1300℃, propylene flow 0.2 L/min, hydrogen flow 0.2 L/min and nitrogen flow 0.3 L/min.
     Combining the experimental results, a new deposition mechanism of isotropic pyrocarbon -electromagnetic field fluidization deposition mechanism was discussed. The presence of electromagnetic fields is considered to promote the deposition of isotropic pyrocarbon.
引文
[1]Oberlin A. Pyrocarbons[J]. Carbon,2002,40(1):7-24
    [2]黄启忠等.高性能炭炭复合材料的制备、结构与应用[M].长沙:中南大学出版社,2011
    [3]Bokros J C. In:Walker Jr. P L, editor.Chemistry and Physics of Carbon.Vol.5[M]. New York:Dekker,1969,1-118
    [4]Fiter E. The future of carbon-carbon composite[J]. Carbon,1987,25(2):163-190
    [5]徐世江.热解炭在核能技术领域中的应用[J].新型碳材料,1995,(3):11-14
    [6]杨宝林,饶永生.低温各向同性热解炭的沉积工艺[J].新型碳材料,1991,38(3):147-154
    [7]吴峻峰,白朔,刘树和,等.块体各向同性热解炭材料的制备与表征[J].新型炭材料,2006,21(2):119-123
    [8]白朔,吴峻峰,刘树和,等.各向同性热解炭干态摩擦磨损行为[J].第八届全国新型炭材料学术研讨会论文集.桂林:中科院山西煤化所,2007,68-72
    [9]Lei Liao, Xiangfeng Duan. Graphene-dielectric integration for graphene transistors[J]. Materials Science and Engineering:R:Reports,2006,70(3-7): 354-370
    [10]Xavier Bourrat, Francis Langlais, Georges Chollon et al. Low temperature pyrocarbons:a review[J]. Journal of the Brazilian Chemical Society,2006,17(6): 258-563
    [11]李伟,陈振华,张明,等.炭/炭复合材料致密化工艺研究进展[J].炭素,2007,(4):14-18
    [12]王茂章,杨全红,成会明.炭的结构及其同素异形体[J].炭素技术,2001,(1):23-28
    [13]廖寄乔.热解炭微观结构对C/C复合材料性能影响的研究[D],长沙:2003
    [14]张伟刚.化学气相沉积—从烃类气体到固体碳[M].北京:科学出版社,2007
    [15]胡鸿雁.天然石墨改性及其电化学腐蚀性能研究[D].武汉:武汉理工大学,2009:1-4
    [16]闫翠霞.金刚石半导体电子性质研究:[D].济南:山东大学,2009:1-6
    [17]谈耀麟.工业金刚石技术发展水平与发展趋势[J].超硬材料与宝石,2002,14(4):35-38
    [18]沈曾民.新型碳材料[M].北京:化学工业出版社,2003
    [19]胡耀娟,金娟,张卉,等.石墨烯的制备、功能化及在化学中的应用[J].物理化学学报,2010,26(8):2073-2086
    [20]Geim A K, Novoselov K S. The rise of grapheme[J]. Nature Mater,2007,(6):183
    [21]史永胜,李雪红,宁青菊,等.石墨烯的制备及表征研究进展[J].电子元件与材料,2010,29(12):59-63
    [22]代波,邵晓萍,马拥军,等.新型碳材料—石墨烯的研究进展[J].材料导报,2010,24(2):17-21
    [23]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,(354):56-58
    [24]李峰,白朔,成会明.纳米碳管[J].新型炭材料,2000,15(3):79-81
    [25]陈刚.双壁纳米碳管的电弧法制备、表征及应用[D].大连:大连理工大学,2007
    [26]杨洪润,刘吉平.纳米碳管吸附储氢[J].炭素,2004,(1):17-20
    [27]白银石.纳米碳管的制备及其作为催化剂载体的初步研究[D].天津:天津大学,2007
    [28]王茂章,李峰,杨全红,等.由不同碳源合成及制备纳米碳管的进展[J].新型炭材料,2003,18(4):251-260
    [29]罗瑞盈.航空刹车及发动机用炭/炭复合材料的研究应用现状[J].炭素技术,2001,(4):27-29
    [30]黄伯云,熊翔.高性能炭/炭航空制动材料的制备技术[M].长沙:湖南科学技术出版社,2007
    [31]毕燕洪,罗瑞盈,章劲草.炭/炭复合材料快速制备工艺研究进展[J].航空精密制造技术,2008,44(5):32-35
    [32]Hoffman W P, Vastola F J, Walker P L. Pyrolysis of propylene over carbon active sites-Ⅰ:kinetics[J]. Carbon,1985,23(2):151-158
    [33]Bokros J C. Carbon biomedical devices[J].Carbon,1977,(15):355-371
    [34]程永宏,罗瑞盈,王天民.化学气相沉积(CVD)炭/炭复合材料(C/C)研究现状[J].炭素技术,2002,122(5):26-32
    [35]谢志勇.多元耦合物理场CVI/CVD'快速制备热解炭材料及其结构、机理研究[D].长沙:中南大学,2005
    [36]刘文川,董林清.化学气相沉积炭/炭复合材料工艺参数、结构性能的研究[J].电碳技术,1981,(1):17-29
    [37]张守阳,李贺军,孙军.LT CVI工艺中的致密化效率研究[J].材料工程,2001,(9): 44-46
    [38]Pierson H O. Handbook of Chemical Vapor Deposition(CVD)[M].New Jersey, Noyes Publications,1999
    [39]杨西,杨玉华.化学气相沉积技术的研究与应用进展[J].甘肃水利水电技术, 2008,4(3):211-213
    [40]Sudarsan T S著,范玉殿等译.表面改性技术工程师指南[M].北京:清华大学出版社,1992
    [41]Savage G. Carbon/carbon composites[M]. Chapman & Hall,1993
    [42]Xie Zhi-yong, JIN Gu-yin, ZHANG Ming-yu, et al. Improved properties of carbon fiber paper as electrode for fuel cell by coating pyrocarbon via CVD method[J].Transactions of Nonferrous Metals Societyof China,2010,20(8): 2012-2017
    [43]Lopez-Honorato E, Meadows P J, Xiao P. Fluidized bed chemical vapor of deposition pyrolytic carbon-Ⅰ.Effect of deposition conditions on microstructure[J].Carbon,2009,47(2):396-410
    [44]Meadows P J, Lopez-Honorato E, Xiao P. Fluidized bed chemical vapor deposition of pyrolytic carbon-Ⅱ.Effect of deposition conditions on anisotropy[J].Carbon,2009,47(1):251-262
    [45]Lopez-Honorato E, Meadows P J, Xiao P, et al. Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition[J]. Nuclear Engineering and Design,2008,238(11):3121-3128
    [46]谢志勇,黄启忠,苏哲安,等.耦合物理场CVI制备炭/炭复合材料及其机理[J].无机材料学报,2005,20(5):1201-1207
    [47]谢志勇,黄启忠,苏哲安,等.耦合物理场CVI快速增密炭/炭复合材料及动力学探讨[J].复合材料学报,2005,22(4):47-52
    [48]张明瑜,黄启忠,苏哲安,等.多元耦合场CVI法炭/炭复合材料制备及结构分析[J].无机材料学报,2006,21(6):1373-1376
    [49]张明瑜,黄启忠,谢志勇,等.多元耦合场CVI法快速致密化炭/炭复合材料研究[J].功能材料,2006,37(10):1623-1626
    [50]Gray R J, Cathcart J V. Polarized light microscopy of politic carbon deposit[J]. J Nucl Mater,1966,(19):81-89
    [51]Lieberman M L, Pierson H O. Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites [J].Carbon,1974,12(3):233-241
    [52]Pierson H O, Lieberman M L. The chemical vapor deposition of carbon on carbon fibers [J].Carbon,1975,13(3):159-166
    [53]Granoff B, Pierson H O, Schuster D M. The effect of chemical vapor deposition conditions on the properties of carbon-carbon composites[J].Carbon,1973, 11(3):177-180
    [54]Reznik B, Huttinger K J. On the terminology for pyrolytic carbon[J]. Carbon,2002,40(4):621-624
    [55]张伟刚,赵俊国.低温热解炭微观结构的偏光显微镜研究[C].第七届全国新型炭材料学术研讨会论文集.西宁:《新型炭材料》编辑部,2005,38-42.
    [56]石荣,李贺军,杨峥,等.热解炭织构的研究进展[J].兵器材料科学与工程,1997,20(1):69-72
    [57]Hu Z J, Huttinger K J. Mechanisms of carbon deposition-a kinetic approach[J]. Carbon,2002,40(4):624-628
    [58]Kaae J L.The mechanism of the deposition of pyrolytic carbons[J]. Carbon,1985,23(6):665-673
    [59]Shi R, Li H J,Yang Z, et al.Deposition mechanism of pyrolytic carbons at temperature between 800-1200℃[J]. Carbon,1997,35(12):1789-1792
    [60]Wu X W, Luo R Y, Zhang J C, et al. Deposition mechanism and microstructure of pyrocarbon prepared by chemical vapor infiltration with kerosene as precursor[J]. Carbon,2009,47(6):1429-1435
    [61]李强,罗瑞盈,程永宏.热解炭的化学气相沉积机理和组织形貌[J].炭素技术,2003,(4):1-6
    [62]Jung H J,Jai-Young Lee. How is pyrolytic carbon formed? Transmission electron micrographs which can explain the change of its density with deposition temperature[J]. Carbon,1984,22(3):317-319
    [63]薛宁娟,苏君明,肖志超.炭/炭复合材料CVI致密化技术的研究与发展[J].炭素技术,2008,27(4):47-50
    [64]Bokros J C. The structure of pyrolytic carbon deposited in a fluidized bed[J]. Carbon,1965,3(1):17-20
    [65]Becker A, Huttinger K J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon-Ⅲ Pyrocarbon deposition from propylene and benzene in the low temperature regime[J]. Carbon,1998,36(3):201-211
    [66]Zhang W G, Huttinger K J. Chemical vapor infiltration of carbon fiber felt: Optimization of densification and carbon micro-structure[J]. Carbon,2002, 40(14):2529-2545
    [67]ZHANG Wei-gang, Huttinger K J. Texture formation of pyrolytic carbon in chemical vapor deposition and infiltration[J]. New Carbon Materials,2006, 21(2):186-191
    [68]Becker A, Huttinger K J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon-Ⅱ Pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime[J].Carbon,1998,36(3):177-199
    [69]陈寒玉,杜玲枝.高纯石墨镀炭铸锭结晶器制备工艺改进研究[J].炭素,2003,(3):35-37
    [70]Huschka H, Vygen P. Coated fuel particles:requirements and status of fabrication technology[J]. Nuclear Technology,1977,35:238-245
    [71]Olivier Antoine, Jan Augustynski. Photo-electrochemical behavior of glassy carbon[J]. Electrochemistry Communications,2001,(3):195-198
    [72]文越华,曹高萍,程杰等.纳米玻态炭—超级电热器的新型电极材料.固化温度对其结构和电容性能的影响[J].新型炭材料,2003,18(3):219-224
    [73]Arru P. A new pyrolytic carbon film for biomedical applications [J]. High-tech Ceramics,1987,2:117-126
    [74]Kaae J L. Relations between the structure and the mechanical properties of fluidized bed[J].Carbon,1965,3(1):17-20
    [75]Lackey W J. Liquid fluidized bed coating process[J]. Carbon,1996,34(10):1299-1300
    [76]King H K, Wilson K.S, Chiu. Open-air carbon coating on fused quartz by laser-induced chemical vapor deposition[J]. Carbon,2003,41(4):673-780
    [77]Lee J Y, Je H J, Ryu W S, et al. A study of the properties of the pyrolytic carbons deposited from propane in a tumbling and stationary bed between 900 and 1230℃[J].Carbon,1983,21(6)523-626
    [78]Chang Young-chul, Sohn Hun-joon, Ku Cha-hun, et al. Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphalene isotropic pitch[J]. Carbon,1999,37(8):1285-1297
    [79]Zhang Dong-sheng, Guo Ling-jun, Li Ke-zhi, et al. Isotropic pyrocarbon deposited at1250℃ by means of thermal gradient chemical vapor deposition[J]. Journal of Nuclear Matrials,2009,384(3):327-329
    [80]Lu Yonggen, Ling Li cheng, Liu Lang, et al. Preparation of high density isotropic carbons solid from mesocarbon microbeads [J]. New Carbon Materials, 1998,13(3):13-20
    [81]高燕,宋怀河,陈晓红,等.β树脂含量对高密度各向同性炭性能的影响[J].材料研究学报,2002,16(2):205-209
    [82]吴峻峰,白朔,成会明.热处理对各向同性热解炭材料微观结构和力学性能的影响[J].新型炭材料,2006,21(3):225-230
    [83]曹伟,李克智,张东生,等.CVD制备各向同性热解炭的微观结构表征及沉积机制研究[J].炭素技术,2010,29(4):21-24
    [84]郭领军,李贺军,张东生,等.块体各向同性热解炭的制备方法[P].中国专利:CN101306811A,2008.11.19
    [85]谢志勇,黄启忠,谭瑞轩,等.一种CVD热板法快速制备高密度各向同性炭的方法[P].中国专利:CN101705476A,2010.5.12
    [86]谢秋生,杨晓光,刘铁军,等.一种各向同性炭材料的制备方法及制得的炭材料[P].中国专利:CN101033064A,2007.9.12
    [87]张福勤,黄启忠,邹林华,等.CVD热解炭的结构、生长特征及可石墨化性[J].无机材料学报,2004,19(5):1118-1122
    [88]陈蔚然.石墨化过程的热力学和动力性分析[J].炭素,1982,(1):11-16
    [89]张福勤,黄启忠,黄伯云,等.C/C复合材料结构显微激光喇曼光谱研究[J].复合材料学报,2003,20(3):113-127
    [90]张福勤,黄启忠,黄伯云,等.C/C复合材料石墨化度的喇曼光谱表征[J].无机材料学报,2003,18(2):362-366
    [91]汤中华,周桂芝,熊杰,等.炭/炭复合材料石墨化度XRD均峰位法测定[J].中国有色金属学报,2003,13(6):1435-1440
    [92]Marie J, Mering J. Graphitization of soft carbon. In:Jr Walker P L. Chem. Phy. Carbon, Vol.6, New York:Marcel Dekker,127
    [93]李妙玲,齐乐华,李贺军,等.热解炭光学特性的消光角表征[J].航空学报,2008,29(6):1699-1704
    [94]马荣骏.原子力显微镜及其应用[J].矿冶工程,2005,25(4):62-65
    [95]Hu Z J, Zhang W G, Huttinger K J, et al. Influence of pressure, temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane[J].Carbon,2003,41(4):749-758
    [96]Hu Z J, Huttinger K J. Influence of the surface area/volume ratio on the chemistry of carbon deposition from methane[J]. Carbon,2003,41(8):1501-1508
    [97]Lieberman M L, Curlee R M, Braaten F H, et al. CVD/PAN felt carbon/carbon composites [J]. Composite Materials,1975,(9):337
    [98]Shiushichi Kimura, Euchi Yasuda, Nobuyuki Takase, et al. Fracture behavior of carbon-fiber/CVD carbon composites[J]. High Temperature -High pressures, 1981,(13):193
    [99]黄启忠,刘立海,谢志勇,等.碳源对微正压ICVI炭/炭复合材料的密度和结构的影响[J].中南大学学报,2010,39(6):1201-1205
    [100]谢志勇,黄启忠,张明瑜,等.CVI热解炭微观结构的参数控制研究[J].材料导报,2010,24(4):25-29
    [101]李晋,崔红,李瑞珍.影响C/C复合材料中热解炭结构的工艺参数[J].炭素,2008,134(2):11-17
    [102]Feron 0, Langlais F, Naslain R,et al. On kinetic and microstructural transitions in the CVD of pyrocarbon from propane[J].Carbon,1999,37(9):1343-1353
    [103]Norinaga Koyo, Deutschmann Olaf, Hiittinger K J. Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons[J].Carbon,2006,44(9):1790-1800
    [104]卢翠英,成来飞,张立同,等.丙烯化学气相沉积热解炭的原位动力学[J].复合材料学报,2008,25(6):152-155
    [105]大谷杉郎,真田雄三.炭化工学基础[M].兰州:兰州新华出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700