基于五种功能纳米材料的电化学传感器的构置及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发新型功能纳米材料和复合材料并将其用于构置高灵敏、高选择性的电化学传感器及其应用的研究是当今分析化学的热点研究方向之一。本论文采用电化学方法制备了五种功能纳米材料和复合材料并利用其构置了新型的电化学传感器,研究了传感器的电化学行为,建立了H202、HCHO和N2H4等六种物质的伏安分析新方法。该研究为研制高灵敏、高选择性的电化学传感器提供了新材料、新思路,拓展了纳米材料及其复合材料的应用范围。全文共分五章,作者的主要贡献如下:
     1、构置了基于AgPd合金纳米粒子的新型甲醛传感器和基于PdNi合金纳米粒子的新型肼传感器,研究了其电化学和电催化特性,建立了HCHO和N2H4的伏安分析新方法。结果表明,前者实现了对甲醛的灵敏测定,线性范围为0.060mM-20mM,检出限为0.022mM。后者实现了对肼的灵敏测定,线性范围为1μM-2.1 mM,检出限为0.32gM。构置的甲醛传感器具有灵敏度高、选择性好、抗CO中毒的特性;肼传感器具有灵敏度高、稳定性好的特点,尤其是大大降低了电催化氧化N2H4的过电位。
     2、采用脉冲电沉积法制备了Ag NPs/ZnO复合物,研究了Ag NPs/ZnO复合物的电化学性质及其对H2O2的电催化作用;以离子液体(BMIM·PF6)为溶剂制备了PANI/SWCNTs复合物,研究了PANI/SWCNTs复合物的电化学性质及其对H2O2的电催化作用,并在此基础上构置了两种无酶H2O2传感器。结果表明,两者均实现了对H2O2的灵敏测定,前者的线性范围为2μM-5.5mM,检出限为0.42μM;后者的线性范围为5μM-1mM,检出限为1.2μM。前者具有灵敏度高的特点,后者具有选择性好的特点。
     3、构置了HRP-SWCNTs-HA/GCE和Hb-HAp-GE/GCE修饰电极,研究了HRP和Hb在复合膜修饰电极上的直接电化学行为和电催化性质,并建立了伏安法测定H202的新方法。研究表明,SWCNTs-HA复合膜和HAp-GE复合膜能实现HRP和Hb在电极表面的直接电子转移,且两种修饰电极对H202表现出良好的电催化作用。可见,HAp-GE和SWCNTs-HA纳米复合材料能够显著提高氧化还原蛋白质(酶)的直接电子传递速率且具有良好的生物相容性。
     4、构置了基于AgHCF-PEDOT-GE三元纳米复合物的新型多功能的电化学传感器,研究了其电化学和电催化特性,建立了同时测定AA.DA和UA的伏安分析新方法。研究表明,AgHCF-PEDOT-GE三元纳米复合物对AA.DA和UA具有良好的电催化活性,测定AA.DA和UA的线性范围分别为1-2000μM、2-500μM和0.8-500μM,灵敏度分别为0.13、0.60和0.28μAμM-1,检出限分别为0.25μM、0.1μM和0.08μM。该传感器的线性范围宽且能提供低电位检测。
Using new materials, including nanomaterials, and composite materials in construction of high sensitive and selective electrochemical sensor has already been active area of modern analytical chemistry study. In this thesis, five kinds of new electrochemical sensors based on nanomaterials and composite materials are fabricated, after which the electrochemical behaviors are studied in details. The new voltammetric analytical methods for H2O2, HCHO, N2H4, AA, DA and UA are set up. These studies may provide new thoughts for the construction of high sensitive and selective electrochemical sensor and broadens the application range of nanomaterials and composite materials. The thesis consists of five chapters and the author's main contributions are as follows:
     1. Two electrochemical sensor ultalizing alloy nanoparticles are proposed. The former is based on the electrodeposition of AgPd alloy nanoparticles on chitosan(Ch)-ionic liquid gel film. The latter is based on the electrodeposition of PdNi alloy nanoparticles on chitosan(PEDOT)-graphene (GE) composite film. The electrochemistry and electrocatalysis of two sensors are investigated, and then new methods for HCHO and N2H4 determination are established. The research shows that the former exhibits a significant electrocatalytic activity toward HCHO. The oxidation peak current is linear with the concentration of formaldehyde in the range of 0.060 mM-20 mM with a detection limit of 0.022 mM. The latter exhibits a significant electrocatalytic activity toward N2H4. The oxidation peak current is linear with the concentration of f N2H4 in the range of 1μM-2.1 mM with a detection limit of 0.32μM. The HCHO sensor is shown to possess remarkable catalytic activity, good tolerance to CO poisoning and enhanced selectivity for the electrochemical oxidation of formaldehyde. The N2H4 sensor exhibits high sensitivity, good stability, fast response and low overpotential.
     2. Potentiostatic double-pulse method is used to prepare the Ag NPs/ZnO nannocomposites, and the electrochemistry and electrocatalysis of Ag NPs/ZnO are investigated. The PANI-SWCNTs composite film is synthesized in ionic liquid, and the electrochemistry and electrocatalysis of PANI-SWCNTs composite are investigated. Two nonenzymatic H2O2 sensors are proposed on the basis of the effective electrocatalytic activity of the Ag NPs/ZnO composite and PANI-SWCNTs composite towards reduction of H2O2. The former exhibits good linear behavior in the concentration range from 2μM to 5.5 mM for the quantitative analysis of H2O2 with a detection limit of 0.42μM. The latter exhibits good linear behavior in the concentration range from 5μM to 1 mM for the quantitative analysis of H2O2 with a detection limit of 1.2μM. The former is shown to possess superior properties of high sensitivity. The latter is shown to possess superior properties of good selectivity.
     3. HRP-SWCNTs-HA/GCE and HAp-GE-Hb/GCE chemically modified electrodes are fabricated, and the electrochemistry and electrocatalysis of HRP and Hb are investigated, and then new methods for H2O2 determination are established. The research shows that HRP and Hb molecules in the composite films retain their native structures and achieve their direct electrochemistry. The chemically modified electrodes show excellent electrocatalytic activity toward H2O2. The above studies indicate that novel nanocomposite can not only accelerate the direct electron transfer of redox proteins (enzymes) but also show excellent biocompatibility.
     4. A multifunctional electrochemical sensor based on AgHCF-PEDOT-GE ternary nanocomposite film modified electrodes is proposed. Electrochemical behavior of AA, DA, and UA is investigated at the modified electrode, and a differential pulse voltammetry method for simultaneous determination of AA, DA and UA is set up. The reults show that the chemically modified electrode shows excellent electrocatalytic activity toward AA, DA and UA. Shown by the results of differential pulse voltammetry, it has a good linearity of 1-2000μM,2-500μM and 0.8-500μM for AA, DA and UA, respectively. The sensor exhibits wide linear range and low overpotential.
引文
[1]Reetz M. T., Helbig W., Size-selective synthesis of nanostructured transition metal clusters[J]. J. Am. Chem. Soc,1994,116:7401-7402
    [2]Reetz M. T., Winter M., Breinbauer R., et al. Size-selective electrochemical Preparation of surfactant-stabilized Pd, Ni and Pt/Pd colloids[J]. Chemistry-A European Journal,2001,7: 1084-1094
    [3]Rodriguez-Sachez L., Blanco M. C., Lpez-Quintela. M.A., Electrochemical synthesis of silver nanopartieles[J]. Journal of Physical Chemistry B,2000,104:9683-9688
    [4]Huang C. J., Chiu P. H., Wang Y. H., et al. Electroehemieally controlling the size of gold nanopartieles[J]. Journal of the Electrochemical Society,2006,153:D193-D198
    [5]Mei Y. F., Wu X. L., Shao X. F., et al. Formation mechanism of alumina nanotube array[J]. Physics Letters A,2003,309(1-2):109-113
    [6]Tsuchiya H., Berger S., Maeak J. M., et al. A new route for the formation of self-organized anodie porous alumina in neutral electrolytes[J]. Electrochemistry Communications,2007,9(4):545-550
    [7]Tsuehiya H., Maeak J. M., Taveira L., et al. Fabrieation and characterization of smooth high aspect ratio zireonia nanotubes[J]. Chemical Physics Letters,2005,410(4-6):188-191
    [8]Tsuchiya H., Maeak J. M., Ghieov A., et al. Self-organized Porous TiO2 and ZrO2 produced by anodization[J]. Corrosion Science,2005,47(2):3324-3335
    [9]Tsuchiya H., Maeak J. M., Sieber I., et al. Self-organized porous WO3 formed in NaF electrolytes[J]. Electrochemistry Communications,2005,7(3):295-295
    [10]Tsuchiya H., Schlnuki P. Self-organized high aspect ratio Porous hafnium oxide prepared by electrochemical anodization[J]. Electrochemistry Communications,2005,7(1):49-52
    [11]Choi J., Lim J. H., Lee J., et al. Porous niobium oxide films prepared by anodization annealing anodization[J]. Nanotechnology,2007,18(5):055603
    [12]Sieber I., Schmuki P., Porous tantalum oxide prepared by electrochemical anodic oxidation[J]. Journal of the Electrochemical Society,2005,152(9):639-644
    [13]Wei W., Macak J. M., Sehmuki P. High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta[J]. Electrochemistry Communications,2008,10(3):428-432
    [14]Prakasam H. E., Varghese O. K., Paulose M, et al. Sythesis and photoelectrochemical properties of nanoporous iron(111) oxide by potentiostatic anodization[J]. Nanotechnology,2006,17(17): 4285-4291
    [15]Han W. Q., Zhou G., Li J. S., et al. Fabrication of Ti dioxide nanotubes by anodic oxidation[J]. Journal of Inorganic Materials,2007,22(3):395-399
    [16]Tsuchiya H., Hueppe M., Djenizian T., et al. Morphological characterization of porous InP superlattices[J]. Science Technology Advanced Materials,2003,5(1-2):119-123
    [17]Yasuda K., Schmuki P., Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes[J], Electrochimica Acta,2007,52(12): 4053-4061
    [18]Habazaki H., OikawaY., Fushimi K., et al. Formation of porous anodic films on Ti-Si alloys in hot phosphate-glyceroelelectrolyte[J]. Electrochimica Acta,2007,53(4):1775-1781
    [19]Maeak J. M., Tsuchiya H., Taveira L., et al. Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions[J]. Journal of Biomedial Materials Research,2005,75A(4):928-933
    [20]Luo B. M., Yang H. B., Liu S. K., et al. Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti-6A1-4V alloy[J]. Materials Letters,2008, 62(30):4512-4515
    [21]Tsuchiya H., Berger S., Maeak J. M., et al. Self-organized porous and tubular oxide layers on TiAl alloys[J]. Electrochemistry Communications,2007,9(9):2397-2402
    [22]Liu S. K., Fu W. Y, Yang H. B., et al. Synthesis and characterization of self-organized oxide nanotube arrays via a facile electrochemical anodization[J]. Journal of Physical Chemistry C,2008, 112(50):19852-19859
    [23]Mohapatra S. K, Raja K. S., Misra M., et al. Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy[J]. Electrochimica Acta,2007,53(2):590-597
    [24]Nagaraju D. H., Lakshminarayanan V. Electrochemical synthesis of thiol-monolayer-protected clusters of gold[J]. Langmuir,2008,24:13855-13857
    [25]Deng Y. P., Huang W., Chen X., et al. Facile fabrication of nanoporous gold film electrodes[J]. Electrochemistry Communications,2008,10:810-813
    [26]Zhao Q. L., Zhang Z.L., Huang B. H., et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J].Chem. Commun.,2008,41:5116-5118
    [27]Lee K., Tang Y., Ouyang M., Self-ordered, Controlled structure nanoporous membranes using constant current anodization[J].Nano Letters,2008,8:4624-4629
    [28]S. Singh, Barden W. R. T., Kruse P., Nanopattening of transition metal surfaces via electrochemical dimple array formation[J].ACS Nano,2008,2:2453-2464
    [29]Wei W., Maeak J. M., Schmuki P., High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta[J]. Electrochemistry Communications,2008,10:428-432
    [30]Masuda H., Fukuda K., Ordered metal nanohole arrays made by a two step replication of honeycomb structures of anodic alumina[J]. Science,1995,268(5216):1466-1468
    [31]Gong D. W., Grimes C. A., Varghese O K., Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research,2001,16(12):3331-3334
    [32]Kortenaar M. V., Kolar Z. I., Tichelaar F. D., Formation of long-lived silver clusters in aqueous solution by anodic dispersion[J]. Journal of Physical Chemistry B,1999,103:2054-2060
    [33]Murry B. J., Li Q., Newberg J. T., et al. Shape-and size-selective electrochemical synthesis of dispersed silver(Ⅰ) oxide colloids[J]. Nano Letters,2005,5(11):2319-2324
    [34][34] Singh D. P., Neti N. R., Sinha A. S. K., et al. Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper[J]. Journal of Physical Chemistry C,2007,111:1638-1645
    [35]Sreekantan S., Gee L. R., Lockman Z., Room temperature anodic deposition and shape control of one-dimensional nanostructured zine oxide[J]. Journal of Alloys and Compounds,2009,476(1-2): 513-518
    [36]Martin C. R., Template synthesis of polymeric and metal microtubules[J]. Journal of Advanced Materials,1991,3:960-966
    [37]Wang Q. T., Wang G.. Z., Xu B., et al. Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane[J]. Journal of Materials letters,2005,59(11):1378-1382
    [38]Hulteen J. C., Martin C. R., A general template-based method for the preparation of nanomaterials[J]. Journal of Materials Chemistry,1997,7(7):1075-1087
    [39]Fleisher R. L., Price P. B., Walker R. M., Nuclear Tracks in Solids[M]. Berkeley University of California Press,1975:22-26
    [40]Possin G. E., A Method for Forming Very Small Diameter Wires[J]. Review of Scientific Instruments,1970,41:772-774
    [41]Tonucci R. J., Justus B. L., Campillo A. J., et al. Nanochannel Array Glass[J]. Seience,1992, 258(5083):783-785
    [42]Wu C. G., Bein T., Conducting Polyaniline Filaments in a Mesoporous Channel Host[J]. Seience, 1994,264(5166):1757-1759
    [43]Fan S. S., Chapline M. G., Franklin N. R., et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Seience,1999,283(5401):512-514
    [44]Guerret-piecourt C., Y. Lebouar, et al. Relation between Metal Electronic-Struerure and Morphology of Metal-Compounds inside Carbon Nanotubes[J]. Nature,1994,372(6508):761-765
    [45]Enzel P., Zoller J. J., Intrazeolite Assembly and Pyrolysis of Polyacrylonitrile[J]. Chemical Communications,1992, (8):633-635
    [46]Braun B, Eichen, Sivan U, et al. DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire [J]. Nature,1998,391:775-778
    [47]Martin C. R., Nishizawa M., Jirage K. B., et al. Investigations of the transport properties of gold nanotubule membranes[J]. Journal of Physical Chemistry B,2001,105:1925-1934
    [48]Martin C R., Nanomaterials-a membrane-based synthetic approach[J]. Science 1994, 266:1961-1966
    [49]Che G. L., Lakshmi B. B., Fisher E. R., et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature,1998,393:346-349
    [50]Kim K., Kim M., Cho S. M., Pulsed electrodeposition of palladium nanowire arrays using AAO template[J]. Materials Chemistry and Physics,2006,96(2-3):278-282
    [51]Nicewarner Pena S. R., Freeman R. G., Reiss B. D., et al. Submicrometer Metallic Barcodes[J].Science,2001,294(5540):137-141.
    [52]Guo Y. G., Wan L. J., Zhu C. F., et al. Ordered Ni-Cu nanowire array with enhanced coercivity[J]. Chemistry of Materials,2003,15(3):664-667
    [53]Pena, D. J., Mbindyo J. K. N., Carado A. J., et al. Template growth of photoconductive Metal-CdSe-metal nanowires[J]. Journal of Physical Chemistry B,2002,106(30):7458-7462
    [54]Park, S., Lim J. H., Chung S. W., et al. Self-assembly of mesoscopie metal-polymer amphiphiles[J]. Science,2004,303(5656):348-351
    [55]Jin C.G., Xiang X. Q., C. Jia., et al. Electrochemical fabrication of large-Area, Ordered Bi2Te3 nanowire arrays[J]. Journal of Physical Chemistry B,2004,108:1844-1847
    [56]Singh A., Shirolkar M., Lalla N. P., et al. Room temperature, water-based, microreactor synthesis of gold and silver nanoparticles[J]. International Journal of Nanotechnology,2009,6(5-6):541-551
    [57]Araki H., Fukuoka A., Sakamoto Y., Template synthesis and characterization of gold nano-wires and-particles in mesoporous channels of FSM-16 [J]. Journal of Molecular Catalysis A:Chemical,2003, 199(1-2):95-102
    [58]Cai L. T., Skulason H., GKushmeriek J., et al. Nanowire-Based Molecular Monolayer Junctions: Synthesis, Assembly, and Electrical Characterization[J]. Journal of Physical Chemistry B,2004, 108(9):2827-2832
    [59]Xiao Z. L., C. Y. Han, Kwok W. K., et al. Tuning the architecture of mesostructures by electrodeposition[J]. Journal of the American Chemical Society,2004,126(8):2316-2317
    [60]Huang L. M., Wang H. T., Wang Z. B., et al. Nanowire arrays electrodeposited from liquid cyrstalline phases[J]. Advanced Materials,2002,14(1):61-64
    [61]Siegfried M. J., Choi K. S., Directing the architecture of cuprous oxide crystals electrochemical growth[J]. Angewandte Chemie-International Edition 2005,44(21):3218-3223
    [62]Yu Y. Y., Chang S. S., Lee C. L., et al. Gold Nanorods:Electrochemical Synthesis and Optical Properties[J]. Journal of Physical Chemistry B,1997,101(34):6661-6664
    [63]Chang S. S., Shih C. W., Chen C. D., et al. The Shape Transition of Gold Nanorods[J]. Langmuir, 1999,15(3):701-709
    [64]Zang J., Li C. M., Bao S. J., et al. Template-Free Electrochemical Synthesis of Superhydrophilic Polypyrrole Nanofiber Network[J]. Macromolecules,2008,41(19),7053-7057
    [65]Pradhan D., Sindhwani S., Leung K. T. Template-Free Electrochemical Growth of Single-Crystalline Zinc Nanowires at an Anomalously Low Temperature[J]. Journal of Physical Chemistry C,2009,113(36):15788-15791
    [66]She G., Zhang X., Shi W., et al. Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons[J]. Crystal Growth and Design,2008,8(6),1789-1791
    [67]Ghahremaninezhad A., Asselin E., Dixon D. G. One-step template-free electrosynthesis of 300 μm long copper sulfide nanowires[J]. Electrochemistry Communications,2011,13:12-15
    [68]Zhang H., Zhou W., Du Y., et al. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation[J]. Electrochemistry Communications, 2010,12:882-885
    [69]Qiu X. E, Burda C., Fu R. L., et al. Heterostructured Bi2Se3 nanowires with periodic phase boundaries[J]. Journal of the American Chemical Society,2004,126,16276-16277
    [70]Zheng X. J., Jiang Z.Y., Xie Z. X. et al. Growth of silver nanowires by an unconventional electrodeposition without template[J]. Electrochemistry Communications,2007,9:629-632
    [71]Penner R. M., Mesoscopic metal particles and wires by electrodeposition[J]. Journal of Physical Chemistry B,2002,106:3339-3353
    [72]Li Q., Newberg J. T., Walter E. C, et al. Polycrystalline Molybdenum Disulfide (2H-MoS2) Nano-and Microribbons by Electrochemical/Chemical Synthesis[J]. Nano Letters,2004,4(2):277-281
    [73]Walter E.C., B. J. Murray, Favier F. et al. "Beaded" bimetallic nanowires:Wiring nanoparticles of metal 1 using nano wires of metal 2[J]. Advanced Materials,2003,15(5):396-399
    [74]Bai A., Hu C.C., Iron-Cobalt and Iron-Cobalt-Nickel Nanowires Deposited by Means of Cyclic Voltammetry and Pulse-Reverse Electroplating[J]. Electrochemistry Communications,2003,5(1): 78-82
    [75]Suryavanshi A. P.,Yu M. E, Probe-based electrochemical fabrication of freestanding Cu nanowire array[J]. Applied Physics Letters,2006,88:083103
    [76]Xiao Y. K.,Yu G, Yuan J., et al. Fabrication of Pd-Ni Alloy Nanowire Arrays on Hopg Surface by Electrodeposition[J]. Electrochimica Acta,2006,51(20),4218-4227
    [77]Cui J. B.,Gibson U. J., Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays[J]. Applied Physics Letters,2005,87:133108
    [78]Hang T., Hu A., Ling H., et al. Super-hydrophobic Nickel films with micro-nano hierarchical structure prepared by electrodeposition[J]. Applied Surface Science,256(8):2400-2404
    [79]Ding Y., Chen M.W., Erlebacher J., Metallic Mesoporous Nanocomposites for Electrocatalysis[J]. Journal of the American Chemical Society,2004,126:6876-6877
    [80]Yin H. M., Zhou C. Q., Xu C. X., et al. Aerobic oxidation of d-glucose on support-free nanoporous gold[J]. Journal of Physical Chemistry C,2008,112:9673-9678
    [81]Zhang J. T., Liu P. P., Ma H.Y., et al. Nanostructured porous gold for methanol electro-oxidation[J]. Journal of Physical Chemistry C,2007,111:10382-10388
    [82]Kucheyev S. O., Hayes J. R., Biener J., et al. Surface-enhanced Raman scattering on nanoporous Au[J]. Applied Physics Letters,2006,89:053102
    [83]Qian L. H., Yan X.Q., Fujita T., et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancement[J]. Applied Physics Letters,2007,90:153120
    [84]Rintoul M.D., Torquato S., Yeong C., et al. Structure and transport properties of a porous magnetic gel via x-ray microtomography[J]. Physical Review E,996,54:2663-2669
    [85]Tierney M. J., Kim H. O. L., Electrochemical gas sensor with extremely fastresponse times[J]. Analytical Chemistry,1993,65:3435-3440
    [86]Hayes J. R., Hodge A. M., Biener J., et al. Monolithic nanoporous copper by dealloying Mn-Cu[J]. Journal of Materials Research,2006,21(10):2611-2616
    [87]Erlebacher J., Asiz M. J., Karma A. et al. Evolution of nanoporosity in dealloying[J], Nature,2001, 410:450-453
    [88]Forty A. J., Corrosion micromorphology of noble metal alloys and depletion gilding[J].Nature,1979, 282:597-598
    [89]Ding Y., Erlebacher J., Nanoporous metals with controlled multimodal pore size distribution[J]. Journal of the American Chemical Society,2003,125:7772-7773
    [90]Cattarin, S. Kramer D., Lui A., et al. Preparation and characterization of gold nanostructures of controlled dimension by electrochemical techniques[J]. Journal of the American Chemical Society, 2007,111:12643-12649
    [91]Ding Y., Kim Y. J., Erlebacher J., Nanoporous gold leaf:"ancient technology'/advanced material[J]. Advanced Materials,2007,16:1897-1900
    [92]Fritz J. D., Pickering H. W., Selective anodic dissolution of Cu-Au alloys:TEM and current transient study[J]. Journal of the Electrochemical Society,1991,138(11):3209-3218
    [93]Jia F. L., Yu C. F., Deng K. J., et al. Nanoporous metal(Cu, Ag, Au) films with high surface area: General fabrication and preliminary electrochemical performance[J]. Journal of Physical Chemistry C,2007,111:8424-843
    [94]Dong H., Cao X. D., Nanoporous gold thin film:fabrication, structureevolution, and electrocatalytic activity[J]. Journal of Physical Chemistry C.,2009,113:603-609
    [95]Pickering H. W., Kim Y. S., De-alloying at elevated temperatures and at 298 K-similarities and differences[J]. Corrosion Science,1982,22:621-635
    [96]Kim Y. S., Piekering H. W., Kineties of chlorination of Co and Co-10 at. pet Pt alloy by reaction with HCl gas[J]. Metallurgical Transactions,1982,13B:349-356
    [97]Simmonds M. C., Kheyrandish H., Colligon J. S., et al. The observation of a threshold in the de-alloying of sputter deposited PtxAl1-x alloy thin films[J]. Corrosion Science,1998,40:43-48
    [98]Thorp J. C., Sieradzki K., Tang L., et al. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1-x[J]. Applied Physics Letters,2006,88:033110
    [99]Jin H. J., Kramer D., Ivanisenko Y., et al. Macroscopically strong nanoporous Pt prepared by dealloying[J]. Advanced Engineering Materials,2007,9:849-854
    [100]Huang J. F., Sun I. W., Formation of nanoporous platinum by selective anodic dissolution of PtZn surface alloy in a lewis acidic zinc chloride-ethyl-3-methylimidazolium chloride ionic liquid[J], Chemistry of Materials,2004,16:1929-1931
    [101]Pugh D. V., Dursun A., Corcoran S. G., Electrochemical and morphological characterization of Pt-Cu dealloying[J]. Journal of the Electrochemical Society,2005,152:B455-B459
    [102]Pugh D. V., Dursun A., Corcoran S. G, Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt025[J].Journal of Materials Research,2003,18:216-221
    [103]Koh S., Strasser P., Electrocatalysis on bimetallic surfaces:modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society,2007, 129:12624-12625
    [104]Mani P., Srivastava R., Strasser P., Dealloyed Pt-Cu core-shell nanoparticle electrocatalysis for use in PEM fuel cell cathodes[J]. Journal of Physical Chemistry C,2008,112:2770-2778
    [105]Pickering H., W., Wagner C. J., Electrolytic Dissolution of Binary Alloys Containing a Noble Metal[J]. Journal of the Electrochemical Society,1967,114:698-706
    [106]Pryor M. J., Giam K. K., The Effect of Arsenic on the Dealloying of a-Brass[J]. Journal of the Electrochemical Society,1982,129:2157-2163
    [107]Smith A. J., Tran T., Wainwright M.S., Kinetics and mechanism of the preparation of Raney copper[J]. Applied Electrochemistry,1999,29:1085-1094
    [108]Pryor M. J., Fister J. C., The mechanism of dealloying of copper solid solutions and intennetallic phases[J]. Journal of the Electrochemical Society,1984,131:1230-1235
    [109]Hayes J. R., Hodge A. M., Biener J., et al. Monolithic nanoporous copper by Alloying Mn-Cu[J]. Journal of Materials Research,2006,21:2611-2616
    [110]Lu H. B., Li Y., Wang F. H., Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying[J]. Scripta Materialia,2007,56:165-168
    [111]Rambert S., Landolt D., Anodic dissolution of binary single Phase alloys-I. surface composition changes on AgPd studied by auger electron spectroscopy[J]. Electrochimica Acta,1986, 31:1421-1431
    [112]S. Rambert, D. Landolt. Anodic dissoluton of binary single Phase alloys-Ⅱ.behavior of CuPd, NiPd and AgAu in LiCl[J]. Electrochimica Acta,1986,31:1433-1441
    [113]Gniewek J., Pezy J., Baker B. G., et al. The effect of noble metal additions upon the corrosion of copper:an auger-spectroscopic study[J]. Journal of the Electrochemical Society,1978,125:17-23
    [114]Sun L., Chien C. L., Searson P. C., Fabrication of Nanoporous Nickel by Electrochemical Dealloying[J]. Chemistry of Materials,2004,16:3125-3129
    [115]Fukumizu T., Kotani F., Yoshida A., Electrochemical Formation of Porous Nickel in Zinc Chloride-Alkali Chloride Melts[J]. Journal of the Electrochemical Society,2006,153:C629-C633
    [116]Yeh F. H., Tai C. C., Huang J. F., et al. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-l-ethyl-3-methyl imidazolium chloride ionic liquid[J]. Journal of Physical Chemistry B,2006,110:5215-5222
    [117]Gardiazbal J. I., Galvele J. R., Selective Dissolution of Cd-Mg Alloys 1. static samples[J]. Journal of the Electrochemical Society,1980,127:255-258
    [118]Colletti L. P., Strckney J. L., Optimization of the growth of CdTe thin films formed by electrochemical atomic layer epitaxy in an automated deposition system [J]. Journal of the Electrochemical Society,1998,145:3594-3602
    [119]Gregory B. W., Stiekney J. L., Electrochemical Atomic Layer Epitaxy (ECALE) [J]. Journal of Electroanalytical chemistry,1991,300:543-561
    [120]Villegas I., Stiekney J. L., Preliminary Studies of GaAs Deposition on Au(100), (110), and (111) Surfaces by Electrochemical Atomic Layer Epitaxy[J]. Journal of the Electrochemical Society,1992, 139:686-694
    [121]Villegas I, Stickney J. L., GaAs deposition on the (100) and (110) planes of gold by electrochemical atomic layer epitaxy:A low-energy electron diffraction, Auger electron spectroscopy, and scanning tunneling microscopy study [J]. A Journal of Vacuum Science and Technology A,1992,10: 3032-3034
    [122]Lay M. D., Stickney J. L., EC-STM Studies of Te and CdTe Atomic Layer Formation from a Basic Te Solution[J]. Journal of the Electrochemical Society,2004,151:C431-C435
    [123]Muthuvel M., Stickney J. L., CdTe Electrodeposition on InP(100) via Electrochemical Atomic Layer Epitaxy(ECALE):Studies Using UHV-EC[J]. Lagmiur,2006,22:5504-5508
    [124]Venkatasamy V., Jayaraju N., Cox S.M., et al. Optimization of CdTe Nanofilm Formation by Electrochemical Atomic Layer Epitaxy (ECALE) [J]. Journal of applied electrochemistry 2006,36, 1223-1229
    [125]Varazo K., Lay M. D., Sorenson T. A., et al. Formation of the First Monolayers of CdTe on Au(111) by Electrochemical Aiomic Layer EPitaxy(ECALE):Studied by LEED, Auger, XPS, and in-situ STM[J]. Journal of Electroanalytical chemistry,2002,522:104-114
    [126]Loglio F., Innoeenti M., Pezzatini G, et al. Ternary Cadmium and Zinc Sulfides and Selenides: Electrodeposition by ECALE and Electrochemical Characterization[J]. Journal of Electroanalytical chemistry,2004,562:117-125
    [127]Pezzatini G, Caporali S., Innocenti M., et al.Formation of ZnSe on Ag(Ⅲ) by Electrochemical Atomic Layer Epitaxy[J]. Journal of Electroanalytical chemistry,1999,475,164-170
    [128]Tonrnoto T., Obayashi A., Kuwabata S., et al. Preparation of Size-Quantized ZnS Thin Films Using Electrochemical Atomic Layer Epitaxy and Their Photoelectrochemical Properties[J].Lagmuir,2000, 16,5820-5824
    [129]Innocenti M., Cattarin S., Loglio F., et al. Ternary admium and Zinc Sulfides:Composition, Morphology and Photo-electrochemistry[J]. Electrochimica Acta,2004,49:1327-1337
    [130]Gichuhi A., Boone E. B., Shannon C., Electrosynthesized CdS/HgS heterojunctions[J]. Lagmuir, 1998,15,763-766
    [131]Cordova R., Gomez H., Schrebler R., et al. Electrosynthesis and Electroehemical Charaeterization of a Thin Phase of CuxS(X→2) on ITO Electrode[J]. Lagmuir,1998,15:763-766
    [132]Lindroos S., Amlold A., Leskelam M., Growth of CuS Thin Films by the Successive Ionic Layer Adsorption and Reaction Method[J]. Applied Surface Science,2000,158:75-80
    [133]Oznuluer T., Erdogen I., Sisman I., et al. Electrochemical Atom-by-Atom Growth of PbS by Modified ECALE Method[J].Chemistry of Materials,2005,17:935-937
    [134]Vaidyanathan R., Stiekney J. L., Happek U., Quantum Confinement in PbSe Thin Films electrodeposited by Electrochemical Atomic Layer Epitaxy (ECALD)[J]. Electrochimica Acta,2008, 53:6988-6994
    [135]Banga D. O., Vaidyanathan R., Liang X., et al. Formation of PbTe Nanofilms by Electrochemical atomic Layer Deposition(ALD)[J].Electrochimica Acta,2008,53:6988-6994
    [136]Vaidyanathan R., Cox S. M., Happek U., et al. Preliminary Studies in the Electrodeposition of PbSe/PbTe Superlattice Thin Films via Electrochemical Atomic Layer Deposition (ALD)[J]. Langmuir,2006,22:10590-10595
    [137]Y. Gu, X. Su, Y. Du, et al. Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application[J]. Applied Surface Science,2010,256:5862-5866
    [138]Wade T. L., Ward L.C., Maddox C. B., et al. Electrodeposition of InAs[J]. Electrochemical and Solid-State Letter,1999,2:616-618
    [139]Tran C. A., Masut R. A., Atomic Layer Epitaxy of InP and InAs/InP Heterostruetures, IEEE fifth International Conference on Indium Phosphide and Related Materials,1993,111-114
    [140]Wade T. L, Vaidyanathan R., Happek U., et al. Electrochemical Formation of a Ⅲ-V Compound Semiconductor Superlattice:InAs/InSb[J]. Journal of Electroanalytical chemistry,2001,500: 322-332
    [141]Oznulue T., Demir U., Formation of Bi2S3Thin Films on Au(111) Electrochemical Atomic Layer Epitaxy:Kineties of Structural Changes in the Initial Monolayers[J]. Journal of Electroanalytical chemistry,2002,529:34-42
    [142]Jia F., Hu Y., Tang Y., et al. A general nonaqueous sonoelectrochemical approach to nanoporous Zn and Ni particles[J]. Powder Technology,2007,176:130-136
    [143]Mastai Y.,Polsky R.,Koltypin Y., et al. Pulsed sonoelectrochemical synthesis of cadmium selenide nanopartical[J]. Journal of the American Chemical Society,1999,121(43):10047-10052
    [144]Xiao F., Mo Z., Zhao F., et al. Ultrasonic-electrodeposition of gold-Platinum alloy nanoparticles on multi-walled carbon nanotubes-ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite[J]. Electrochemistry Communications,2008,10(11):1740-1743
    [145]Xiao F., Zhao F., Zhang Y., et al. Ultrasonic Electrodeposition of Gold-Platinum Alloy Nanoparticles on Ionic Liquid-Chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors[J]. Journal of Physical Chemistry C,2009,113:849-855
    [146]F. Xiao, F. Zhao, D. Mei, et al. Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film[J]. Biosensors and Bioelectronics,2009,24(12):3481-3486
    [147]Deplancke J. L., Dille J., Reises J., et al, Magnetic nanopowders:ultrasound-assisted electrochemical preparation and properties[J]. Chemistry of Materials,2000,12(4):946-955
    [148]Zhu J., Liu S., Palchik O., et al. A Novel Sonochemical Method for the Preparation of Nanophasic Sulfides:Synthesis of HgS and PbS Nanoparticles[J]. Journal of Solid State Chemistry,2000, 153(2):342-348
    [149]Zhu J., Aruna S. T., Koltypin Y., et al. A novel method for the preparation of Lead Selenide:pulse sonoelectrochemical synthesis of Lead Selenide nanoparticles[J]. Chemistry of Materials,2000,12: 143-147
    [150]Zhu J., Wang H., Xu S., et al. Sonochemical method for the preparation of monodisperse spherical and rectangular Lead Selenide nanoparticles[J]. Langmuir,2002,18:3306-3310
    [151]Zhu J., Liao X., Zhao X., et al. Preparation of silver nanorods by electrochemical methods[J]. Materials Letters,2001,49:91-95
    [152]Zhu J., Liao X., Chen H., Electrochemical preparation of silver dendrites in the presence of DNA[J]. Materials Research Bulletin,2001,36:1687-1692
    [153]Zhu J., Qiu Q., Wang H., et al. Synthesis of silver nanowires by a sonoelectrochemical method[J]. Inorganic Chemistry Communications,2002,4:242-244
    [154]Zhu J., Liu X., Palchik O., et al. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods[J]. Langmuir,2000,16:6396-6399
    [155]Welton T., Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis[J]. Chemical Reviews,1999,99(8):2071-2084
    [156]Denise A., Hussey C. L., Sedden K. R., et al. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes[J]. Nature,1986,323(16):615-616
    [157]Li X. H., Zhao D. B., Fei Z. F., et al. App lications of functionalized ionic liquids[J]. Science in China Series B, Chemistry,2006,49:385-401
    [158]Antonicti M., Kuang D. B., Smarsly B., et al. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures[J]. Angewandte Chemie International Edition,2004,43(38):4988-4992
    [159]Dupont J., Souza R. F., Suarez P. A. Z., Ionic liquid (Molten Salt) phase organometallic catalysis[J]. Chemical Reviews,2002,102:3667-3692
    [160]Zhu Y. J., Wang W. W., Qi R. J., et al. M icrowave-assisted synthesis of Single-crystalline tellurium nanorods and nanowires in ionic liquids[J]. Angew Chem Int Ed,2004,43:1410-1014
    [161]Antonietti M., Kuang D. B., Smarsly B., et al. Ionic liquids for the convenient synthes is of functional nanoparticles and other inorganic nanostructures[J]. Angewandte Chemie International Edition,2004,43:4988-4992
    [162]Zhang Y. J., Shen Y. F., Yuan J. H., et al. Design and synthesis of multi-Functional materials based on an ionic liquid backbone [J]. Angewandte Chemie International Edition,2006,45:5867-5870
    [163]Zhou Y.. Recent advances in ionic liquid s for synthes is of inorganic nanomaterials[J]. Current Nanoscience,2005,1:35-42
    [164]Fu C. P., Zhou H. H., Peng W. C., et al. Comparison of electrodeposition of silver in ionic liquid microemulsions[J]. Electrochemistry Communications,2008,10(5):806-809
    [165]Endres F., Ionic Liquids in Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures [J]. physical Chemistry Chemical Physics,2001,3(15):3165-3174
    [166]Endres F., Bukowski M., Hempelmann R., et al. Electrodeposition of Nanocrystalline Metals and Alloys from Ionic Liquids[J]. Angewandte Chcmie International Edition,2003,42(29):3428-3430
    [167]Abedin S. Z. E., Moustafa E. M., Hempelmann R., et al. Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid [J]. Electrochemistry Communications,2005,7(11):1111-1116,
    [168]Meng X. D., Al-Salman R., Zhao J. P., et al. Electrodeposition of 3D Ordered Macroporous Germanium from Ionic Liquids:A Feasible Method to Make Photonic Crystals with a High Dielectric Constant[J]. Angewandte Chemie International Edition,2009,48(15):2703-2707
    [169]Zhu Y. J., Wang W. W., Qi R. J., et al. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids[J]. Angewandte Chemie International Edition, 2004,43(11):1410-1414
    [170]Mu X. D., Meng J. Q., Li Z. C., et al. Rhodium Nanoparticles Stabilized by Ionic Copolymers in Ionic Liquids:Long Lifetime Nanocluster Catalysts for Benzene Hydrogenation[J]. Journal of the American Chemical Society, 2005,127(27):9694-9695
    [171]Mukhopadhyay I., Freyland W., Electrodeposition of Ti Nanowires on Highly Oriented Pyrolytic Graphite from an Ionic Liquid at Room Temperature[J]. langmuir,2003,19(6):1951-1953
    [172]He P., Liu H. T., Li Z. Y., et al. Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect [J]. Langmuir,2004,20(23): 10260-10267
    [173]Mallet J., Molinari M., Martineau F., et al. Growth of Silicon Nanowires of Controlled Diameters by Electrodeposition in Ionic Liquid at Room Temperature[J]. Nano Letters,2008,8(10): 3468-3474
    [174]Salman R. A., Mallet J., Molinari M., et al. Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid[J]. Physical Chemistry Chemical Physics,2008,10(41): 6233-6237
    [175]Wang J.,. Myung N. V, Yun M., et al. Monbouquette. Glucose oxidase entrapped in polypyrrole on high-surface-area Pt electrodes:a model platform for sensitive electroenzymatic biosensors[J]. Journal of Electroanalytical Chemistry,2005,575:139-146
    [176]Gong K., Dong Y., Xiong S., et al. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes[J]. Biosensors and Bioelectronics,2004,20: 253-259
    [177]Yeh J.I., Lazareck A., Kimc J. H., et al. Peptide nanowires for coordination and signal transduction of peroxidase biosensors to carbon nanotube electrode arrays[J]. Biosensors and Bioelectronics, 2007,23:568-574
    [178]Ou C., Yuan R., Chai Y., et al. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface[J]. Analytica Chimica Acta,2007,603:205-213
    [179]常竹,祝宁宁,方禹之.聚苯胺纳米线修饰的DNA电化学传感器的研究[J].化学学报.2007,65(2):135-139
    [180]Lu G., Maragakis P., Kaxiras E., Carbon Nanotube Interaction with DNA[J]. Nano Letters,2005, 5(5):897-900
    [181]郑静,林莉,何品刚,方禹之等.基于核酸适配体和纳米材料的凝血酶蛋白特异性识别电化学生物传感器[J].中国科学B辑,2006,36(6):485-492
    [182]李金花,胡劲波,丁小勤,李启隆等.功能化纳米金放大的DNA电化学传感器研究[J].高等学校化学学报,2005,26(8):1432-1436
    [183]李金花,胡劲波.功能化纳米金增强的DNA电化学检测和序列分析[J].化学学报,2004,62(20):2081-2088
    [184]L. Liu, J. Song, P.fei, et al. A novel electrochemical sensing system for inosme and its application for inosine detennination in pharmaceuticals and human serum[J]. Electrochemistry Communications,2006,8:1521-1526
    [185]Y. Yan, W. Zheng, M. Zhang, et al. Bioelectrochemically Functional Nanohybrids through Co-Assembling of Proteins and Surfactants onto Carbon Nanotubes:Facilitated Electron Transfer of Assembled Proteins with Enhanced Faradic Response[J]. Langmuir,2005,21:6560-6566
    [1]Michael S., Nashner A., Frenkel I., et al. Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16[J]. Journal of the American Chemical Society,1997,119:7760-7771
    [2]Alain R., Jurgen S., Henri P., Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy[J]. Chemical Reviews,2002,102:3757-3778
    [3]Purgato F L. S., Olivi P., Leger J. M., et al. Hydrogen peroxide sensor based on horscradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film[J]. Journal of Electroanalytical Chemistry,2000,491:182-187
    [4]Shao M. H., Sasaki K., Adzic R. R., Pd-Fe nanoparticles as electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society,2006,128:3526-3527
    [5]Kim J., Park J. E., Momma T., et al. Synthesis of Pd-Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta,2009,54:3412-3418
    [6]Kadirgan F., Beyhan S., Atilan T., Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation[J]. International Journal of Hydrogen Energy,2009,34:4312-4320
    [7]Romanowski S., Bartczak W. M., Wesolkowski R., Density functional calculations of the hydrogen adsorption on transition metals and their Alloys[J]. Langmuir,1999,15:5773-5780
    [8]Jiang L., Hsu A., Chu D., et al. A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media[J]. Electrochimica Acta,2010,55:4506-4511
    [9]Mehrotra P., Verykios X. E., The oxidation of cthylene over silver-based alloy catalysts: Silver-palladium alloys[J]. Journal of Catalysis,1984,88:409-417
    [10]Khan N. A., Shaikhutdinov S., Freund H. J., Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model Catalysts[J]. Catalysis Letter,2006,108:159-164
    [11]Geng J., Bi Y., Lu G., Morphology-dependent activity of silver nanostructures towards the electro-oxidation of HCHO[J]. Electrochemistry Communications,2009,11:1255-1258
    [12]Nguyen S. T., Law H. M., Nguyen H. T., et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media[J]. Applied Catalysis B:Environmental,2009,91: 507-515
    [13]El-Deab M. S., Sotomura T., Ohsaka T., Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates[J]. Electrochimica Acta,2006,52:1792-1798
    [14]El-Deab M. S., Ohsaka T., Electrocatalysis by design:effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen[J]. Electrochimica Acta,2007,52:2166-2174
    [15]Bhatt A. I., Bond A. M., Emission based oxygen sensing approach with tris(2,20-bipyridyl)-ruthenium(II)chloride in green chemistry reagents:room temperature ionic liquids[J]. Journal of Electroanalytical Chemistry,2008,10:619-620
    [16]Yang L. X., Zhu Y. J., Wang W. W., et al. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid[J]. Journal of Physical Chemistry B,2006,110:6609-6614
    [17]Ragupathy D., Gopalan A. I., Lee K. P., Synergistic contributions of multiwall carbon nanortubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor[J]. Electrochemistry Communications,2009,11:397-401
    [18]Xiao F., Zhao F., Zhang Y., et al. Ultrasonic electrodeposition of Gold-Platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors[J]. Journal of Physical Chemistry B,2009,113:849-855
    [19]Zhuo L., Huang Y., Cheng M. S., et al. Nanoarray membrane sensor based on a multilayer design for sensing of water pollutants [J]. Journal of Analytical Chemistry,2010,82:4329-4332
    [20]Xiao Y., Weng B., Yu G., et al. Electrodeposition of Pd-Ag alloy nanowires on highly oriented pyrolytic graphite[J]. Journal of Applied Electrochemistry,2006,36:807-812
    [21]Zhao F., Xiao F., Zeng B., Electrodeposition of PtCo alloy nanoparticles on inclusion complex film of functionalized cyclodextrin-ionic liquid and their application in glucose sensing[J]. Electrochemistry Communications,2010,12:168-171
    [22]Qiu C, Shang R., Xie Y., et al. Electrocatalytic activity of bimetallic Pd-Ni thin films towards the oxidation of methanol and ethanol[J]. Materials Chemistry and Physics,2010,120:323-330
    [23]Zhao Y., Yang X., Tian J., et al. Methanol electro-oxidation on Ni-Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media[J]. International Journal of Hydrogen Energy,2010,35:3249-3257
    [24]Jiang L., Hsu A., Chu D., et al. A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media[J]. Electrochimica Acta,2010,55:4506-4511
    [25]Herschkovitz Y., Eshkenazi I., Campbell C. E., et al. An electrochemical biosensor for formaldehyde[J]. Journal of Electroanalytical Chemistry,2000,491:182-187
    [26]Dzyadevych S. V., Arkhypova V. N., Korpan Y. L., et al. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics [J]. Analytica Chimca Acta,2001,445: 47-55
    [27]Nikitina O., Shleev S., Gayda G., et al. Bienzyme biosensor based on NAD-and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay[J]. Sensors and Actuators B:Chemical,2007,125:1-9
    [28]Korpan Y. I., Soldatkin O. O., Sosovska O. F., et al. Formaldehyde-sensitive conductometric sensors based on commercial and recombinant formaldehyde dehydrogenase[J]. Mikrochimica Acta,2010, 170:337-344
    [29]Zhou Z. L., K T. F., Zhang Y., et al. Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode[J]. Mikrochimica Acta,2009,164: 133-138
    [30]Sun W., Sun G., Qin B., et al. A fuel-cell-type sensor for detection of formaldehyde in aqueous solution[J]. Sensors and Actuators B:Chemical,2007,128:19-198
    [31]Kost K. M., Bartak D. E., Kazee B., et al. Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications[J]. Journal of Analytical Chemistry,1988,60: 2379-2384
    [32]Kitani A., Akashi T., Sugimoto K., et al. Electrocatalytic oxidation of methanol on platinum modified polyaniline electrodes[J]. Synthetic Metals,2001,121:1301-1302
    [33]Kao W. H., Kuwana T., Electrocatalysis by electrodeposited spherical platinum microparticles dispersed in a polymeric film electrode[J]. Journal of the American Chemical Society,1984,106: 473-476
    [34]Ficicioglu F., Kadirgan F., Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect[J]. Journal of Electroanalytical Chemistry,1997,430: 179-182
    [35]Drelinkiewicz A., Hasik M., Kloc M., Pd/polyaniline as the catalysts for 2-ethylanthraquinone hydrogenation. The effect of palladium dispersion[J]. Catalysis Letters,2000,64:41-47
    [36]Kang E.T., Ting Y.P., Neoh K.G., et al. Electroless recovery of precious metals from acid solutions by N-containing electroactive polymers[J]. Synthetic Metals,1995,69:477-478
    [37]Hsiao Y. S., Whang W. T., Chen C. P., et al. High-conductivity poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) film for use in ITO-free polymer solar cells[J]. Journal of Materials Chemistry, 2008,18:5948-5955
    [38]Armstrong N.R., Carter C., Donley C., et al. Interface modification of ITO thin films:organic photovoltaic cells[J]. Thin Solid Films,2003,445:342-352
    [39]Andersen M., CarleJon E., Cruys-Bagger N., et al. Transparent anodes for polymer photovoltaics: oxygen permeability of PEDOT[J]. Solar Energy Materials and Solar Cells,2007,91:539-543
    [40]Choi K. S., Liu F., Jong S. C., et al. Fabrication of Free-Standing Multilayered Graphene and Poly(3,4-ethylenedioxythiophene) Composite Films with Enhanced Conductive and Mechanical Properties[J]. Langmuir,2010,26:12902-12908
    [41]Fan B. H., Mei X. G., Ouyang J. Y., Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films by Adding Anionic Surfactants into Polymer Solution[J]. Macromolecules,2008,41:5971-5973
    [42]Xu Y., Wang Y., Liang J., et al. A Hybrid Material of Graphene and Poly (3,4-ethyldioxythiophene) with High Conductivity, Flexibility, and Transparency[J]. Nano Research,2009,2:343-348
    [43]Nie M., Shen P. K., Wei Z., Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction[J]. Journal of Power Sources,2007,167:69-73
    [44]Song S., Wang Y., Tsiakaras P., et al. Direct alcohol fuel cells:A novel non-platinum and alcohol inert ORR electrocatalyst[J]. Applied Catalysis B:Environmental,2008,78:381-387
    [45]Liang J., Li Y, Huang Y., et al. Sodium borohydride hydrolysis on highly efficient Co-B/Pd catalysts[J]. International Journal of Hydrogen Energy,2008,339:4048-4054
    [46]Xu C. W., Wang H., Shen P. K., et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcoholfuel cells[J]. Advanced Materials,2007,19:4256-4259
    [47]Wei Y. C., Liu C. W., Chang Y. W., et al. The structure-activity relationship of Pd-Co/C electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy,2010,35: 1864-1871
    [48]Safavi A., Maleki N., Tajabadi F., et al. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode[J]. Electrochemistry Communications,2007,9: 1963-1968
    [49]Haan J. L., Stafford K. M., Masel R. I., Effects of the Addition of Antimony, Tin, and Lead to Palladium Catalyst Formulations for the Direct Formic Acid Fuel Cell[J]. Journal of Physical Chemistry C,2010,114:11665-11672
    [50]Bianchini C., Shen P. K., Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and inDirect Alcohol Fuel Cells[J]. Chemical Reviews,2009,109:4183-4206
    [51]Xu C. W., Tian Z. Q., Jiang S. P., et al. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media[J]. Electrochemistry Communications,2008,10:246-249
    [52]Miao F., Tao B., Sun L., et al. Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array[J]. Sensors and Actuators B:Chemical,2009,141: 338-342
    [53]Choudhary G., Hansen H., Human health prospective on environmental exposure to hydrazines:a review[J]. Chemosphere,1998,37:801-843
    [54]Safavi A., Ensafi A. A., Kinetic spectrophotometric determination of hydrazine[J]. Analytica Chimca Acta,1995,300:307-311
    [55]Zare A. R., Cloud point formation based on mixed micelle in the presence of electrolyte for extraction, preconcentration, and spectrophotometric determination of trace amounts of hydrazine in water and biological samples[J]. Analytical Biochemistry,2007,369:161-167
    [56]Chen X., Xiang Y., Li Z., et al. Sensitive and selective fluorescence determination of trace hydrazine in aqueous solution utilizing 5-chlorosalicylaldehyde[J]. Analytica Chimca Acta,2008,625:41-46
    [57]Mori M., Tanaka K., Xu Q. et al. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection[J]. Journal of Chromatography, A 2004,1039:135-139
    [58]Zheng J., Sheng Q., Li L., et al. Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine[J]. Journal of Electroanalytical Chemistry,2007,611:155-161
    [59]Abbaspour A., Khajehzadeh A., Ghaffarinejad A., Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode[J]. Journal of Electroanalytical Chemistry,2009,631:52-57
    [60]Perez E. F., Oliveira N. G., Tanaka A. A., et al. Electrochemical sensor for hydrazine based on silica modified with nickel tetrasulfonated phthalocyanine[J]. Electroanalysis,1998,10:111-115
    [61]Ardiles P., Trollund E., Isaacs M., et al. Electrocataltyic oxidation of hydrazine at polymeric iron-tetraaminophthalocyanine modified electrodes[J]. Journal of Molecular Catalysis A:Chemical, 2001,165:169-175
    [62]Hummers W. S., Offeman R. E., Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society 1958,80:1339-1339
    [63]Xiao Y., Yu G., Yuan J., et al. Fabrication of Pd-Ni alloy nanowire arrays on HOPG surface by electrodeposition[J]. Electrochimica Acta,2006,51:4218-4227
    [64]Wang L., Wang E. K., Direct electron transfer between cytochrome c and a gold nanopartieles modified electrode[J]. Electrochemistry Communications,2004,6:49-54
    [65]Feng J. J., Zhao G., Xu J. J., et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan[J]. Analytical Biochemistry,2005,342: 280-286
    [66]Kuo C. W., Huang L. M., Wen T. C., et al. Enhanced electrocatalytic performance for methanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonic acid) electrode[J]. Journal of Power Sources,2006,160:65-72
    [67]Umar A., Rahman M. M., Kim S. H., et al. Zinc oxide nanonail based chemical sensor for hydrazine detection[J]. Chemical Communications,2008,2:166-168
    [68]Umar A., Rahman M. M., Hahn Y. B., Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO nanowires[J]. Talanta,2009,77:1376-1380
    [69]Li J., Lin X. Q., Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical,2007,126:527-535
    [70]Wang G. F., Gu A. X., Wang W., et al. Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection[J]. Electrochemistry Communications,2009,11: 631-634
    [71]O'Mullane A. P., Dale S. E., Macpherson J. V., et al. Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites[J]. Chemical Communications,2004,14:1606-1607
    [72]Bo X., Bai J., Ju J., et al. A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle[J]. Analytica Chimca Acta,2010, 675:29-35
    [73]Yang G. W., Gao G. Y., Wang C., et al. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation[J]. Carbon,2008,46:747-752
    [74]Tan C., Wang F., Liu J., et al. An easy route to prepare carbon black-silver hybrid catalyst for electrocatalytic oxidation of hydrazine[J]. Materials Letters,2009,63:969-971
    [75]Chakraborty S., Raj C. R., Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine[J]. Sensors and Actuators B:Chemical,2010,147:222-227
    [1]Lei W., Duerkop A., Lin Z., et al. Detection of Hydrogen Peroxide in River Water via a Microplate Luminescence Assay with Time-Resolved ("Gated") Detection[J]. Microchimica. Acta,2003,143: 269-274
    [2]Luo F., Yin J., Gao F., et al. A non-enzyme hydrogen peroxide sensor based on core/shell silica nanoparticles using synchronous fluorescence spectroscopy[J]. Microchimica. Acta,2009,165: 23-28
    [3]Westbroek P., Van Huate B., Temmerman E., Monitoring of high hydrogen peroxide concentrations by voltammetry[J]. Fresenius Journal of Analytical Chemistry,1996,354:405-409
    [4]Guo Z. X., Shen H. X., Li L., Spectrophotometric Determination of Hydrogen Peroxide and Glucose Based on Hemin Peroxidase-Like Catalyzed Oxidation of Bromopyrogallol Red[J]. Mikrochimica. Acta,1999,131:171-176
    [5]Albers A. E., Okreglak V. S., Chang C. J., A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide[J]. Journal of the American Chemical Society,2006,128: 9640-9641
    [6]Pinkernell U., Effkemann S., Karst U., Simultaneous HPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide[J]. Analytical Chemistry,1997,69:3623-3627
    [7]Evans S. A. G., Elliott J. M., Andrews L. M., et al. Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes[J]. Analytical Chemistry,2002,74:1322-1326
    [8]Gu T., Hasebe Y., DNA-Cu(II) poly(amine) complex membrane as novel catalytic layer for highly sensitive amperometric detennination of hydrogen peroxide[J]. Biosensors and Bioelectronics,2006, 21:2121-2126
    [9]Wang J., Electrochemical Glucose Biosensors[J]. Chemical Reviews,2008,108:814-825
    [10]Lai G. S., Zhang H. L., Han D. Y., Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase by carbon-coated iron nanoparticles in combination with chitosan and cross-linking of glutaraldehyde[J]. Microchimica. Acta,2009,165:159-165
    [11]Wang B., Li B., Wang Z., et al. Sol-Gel Thin-Film Immobilized Soybean Peroxidase Biosensor for the Amperometric Determination of Hydrogen Peroxide in Acid Medium[J]. Analytical Chemistry, 1999,71:1935-1939
    [12]Kang X. H., Mai Z. B., Zou X. Y., et al. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode[J]. Analytical Biochemistry,2007,363:143-150.
    [13]Mattos I. L., Gorton L., Ruzgas T., Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes[J]. Biosensors and Bioelectronics,2003,18:193-200
    [14]Zhang J., Gao L., Dispersion of multiwall carbon nanotubes by sodium dodecyl sulfate for preparation of modified electrodes toward detecting hydrogen peroxide[J]. Materials Letters,2007, 61:3571-3574
    [15]Hrapovic S., Liu Y., Male K. B., et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J].Analytical Chemistry,2004,76:1083-1088
    [16]Welch C. M., Banks C. E., Simm A. O., et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J], Analytical and Bioanalytical Chemistry,2005,382:12-21
    [17]Cui K., Song Y., Yao Y., Huang Z., Wang L., A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode[J]. Electrochemistry Communications,2008,10:663-667
    [18]Flatgen G., Wasle S., Lübke M., et al. Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte:experiments and simulations[J]. Electrochimica Acta,1999,44:4499-4506
    [19]Safavi A., Maleki N., Farjamia E., Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide[J]. Electroanalysis,2009,21:1533-1538
    [20]Andersson M., Pedersen J. S., Palmqvist A. E. C., Silver nanoparticle formation in microemulsions acting both as template and reducing agent[J]. Langmuir,2005,21:11387-11396
    [21]El-Deab M. S., Sotomura T., Ohsaka T., Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates[J]. Electrochimica Acta,2006,52:1792-1798
    [22]El-Deab M. S., Ohsaka T., Electrocatalysis by design:Effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen[J]. Electrochimica Acta,2007,52:2166-2174
    [23]Penner R. M., Mesoscopic metal particles and wires by electrodeposition[J]. Journal of Physical Chemistry B,2002,106:3339-3353.
    [24]Beydoun D., Amal R., Low G., et al. Role of nanoparticles in photocatalysis[J]. Journal of Nanoparticle Research,1999,1:439-458
    [25]Daniel M. C., Astruc D., Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104:293-346
    [26]Li D., Haneda H. J., Morphologies of zinc oxide particles and their effects on photocatalysis[J]. Chemosphere,2003,51:129-137
    [27]Comini E., Faglia G., Sberveglieri G., et al. Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films:A method to develop parts per billion level gas sensors[J]. Applied Physics Letters,2002,81:1869-1871
    [28]Arnold M. S., Avouris P., Pan Z. W., et al. Field-effect transistors based on single semiconducting oxide nanobelts[J]. Journal of Physical Chemistry B,2003,107:659-663
    [29]Kumar S. A., Cheng H. W., Chen S. M., et al. Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing[J]. Materials Science and Engineering C,2010,30:86-91
    [30]Pal U., Segura G. C., Corona O. Z., Preparation of Ge/ZnO nanocomposites by radio frequency alternate sputtering[J]. Solar Energy Materials and Solar Cells,2003,76:305-312
    [31]Xu J., Yang H., Fu W., et al. Synthesis and characterization of nickel coated by zinc oxide: Bifunctional magnetic-optical nanocomposites[J]. Journal of Alloys and Compounds,2008,458: 119-122
    [32]Zhao W., Wang H., Qin X., et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode[J]. Talanta, 2009,80:1029-1033
    [33]Tao W. Y., Pan D. W., Liu Y. J., et al. An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly (o-aminophenol) film at iron-cobalt hexacyanoferrate-modified gold electrode[J]. Analytical Biochemistry,2005,338:332-340
    [34]Wang L., Wang E. K., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode[J]. Electrochemistry Communications,2004,6: 225-229
    [35]Lei C., Hua S., Shen G., et al. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide[J]. Talanta,2003,59:981-988
    [36]Yang T., Zhou N., Zhang Y., et al. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites[J]. Biosensors and Bioelectronics,2009,24:2165-2170
    [37]Ghosh P., Siddhanta S. K., Chakrabarti A., Characterization of poly(vinyl pyrrolidone) modified polyaniline prepared in stable aqueous medium[J]. European Polymer Journal,1999,35:699-710
    [38]Langer K., Barczynski P., Baksalary K., et al. A fast and sensitive continuous flow nanobiodetector based on polyaniline nanofibrils[J]. Microchimica. Acta,2007,159:201-206
    [39]Lu W., Fadeev A. G., Qi B. H., S et al. Use of Ionic Liquids for For Ⅱ-Conjugated Polymer Electrochemical Devices[J]. Science,2002,297:983-987
    [40]Li M. C, Ma C. A., Liu B. Y., et al. A novel electrolyte 1-ethylimidazolium trifluoroacetate used for electropolymerization of aniline[J]. Electrochemistry Communications,2005,7:209-212
    [41]Naudin E., Ho H. A., Branchaud S., et al. electrochemical Polymerization and Characterization of Poly(3-(4-fluorophenyl)thiophene) in Pure Ionic Liquids[J]. Journal of Physical Chemistry B,2002, 106:10585-10593
    [42]Sekiguchi K., Atobe M., Fuchigami T., Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid[J]. Journal of Electroanalytical Chemistry,2003,557:1-7
    [43]Innis P. C., Mazurkiewicz J., Nguyen T., et al. Enhanced electrochemical stability of polyaniline in ionic liquids[J]. Current Applied Physics,2004,4:389-393
    [44]Wei D., Kvarnstrom C., Lindfors T., et al. Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids[J]. Electrochemistry Communications,2007,9:206-210
    [45]Wang Z., Zhu Z. Z., Shi J., et al. Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film[J]. Applied Surface Science,2007,253:8811-9046
    [46]Chen C., Sun C., Gao Y., Amperometric sensor for hydrogen peroxide based on poly(aniline-co-p-aminophenol)[J]. Electrochemistry Communications,2009,11:450-453
    [47]Santhosh P., Manesh K. M., Gopalan A., et al. Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide[J]. Analytica Chimica Acta,2006,575:32-38
    [48]Tao W. Y., Pan D. W., Liu Y. J., et al. An amperometric hydrogen peroxide sensor based on immobilization of hemoglobin in poly(o-aminophenol) film at iron-cobalt hexacyanoferrate-modified gold electrode[J]. Analytical Biochemistry,2005,338:332-340
    [49]Wang L., Wang E. K., A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode[J]. Electrochemistry Communications,2004,6: 225-229
    [50]Lei C. X., Hu S. Q., Gao N., et al. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode[J]. Bioelectrochemistry,2004,65:33-39
    [51]Kan J., Pan X., Chen C., Polyaniline-uricase biosensor prepared with template process[J]. Biosensors and Bioelectronics,2004,19:1635-1640
    [52]Jiang Y., Wang A., Kan J., Selective uricase biosensor based on polyaniline synthesized in ionic liquids[J]. Sensors and Actuators, B 2007,124:529-534
    [1]Wang J., Musameh M., Carbon nanotube/Teflon composite electrochemical sensors and biosensors[J]. Analytical Chemistry,2003,75:2075-2079
    [2]Wang J., Pamidi P. V. A., Rogers K. R., Sol-gel-derived thick-film amperometric immunosensors[J]. Analytical Chemistry,1998,70:1171-1175
    [3]Iijima, S. Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58
    [4]Wang J., Li M., Shi Z., et al. Direct electrochemistry of cytochrome C at a glassy carbon electrode modified with single-wall carbon nanotubes[J]. Analytical Chemistry,2002,74:1993-1997
    [5]Sapurina I., Stejskal J., Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis[J]. Chemical Papers,2009, 63:579-585
    [6]Wang M., Zhao F., Liu Y., et al. Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes[J]. Biosensors and Bioelectronics,2005,21:159-166
    [7]Goyal R. N., Tyagi A., Bachheti N., et al. Voltammetric determination of bisoprolol fumarate in pharmaceutical fonnulations and urine using single-wall carbon nanotubes modified glassy carbon electrode[J]. Electrochimca Acta,2008,53:2802-2808
    [8]Lee H., Mijovic J., Bio-nano complexes:DNA/surfactant/single-walled carbon nanotube interactions in electric field[J]. Polymer,2009,50:881-890
    [9]Du D., Huang X., Cai J., et al. Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix[J]. Sensors and Actuators B:Chemical,2007,127:531-535
    [10]Ma L., Tian Y., Rong Z., Direct electrochemistry of hemoglobin in the hyaluronic acid films[J]. Journal of Biochemical and Biophysical Methods,2007,70:657-662
    [11]Liu H., Hu N., Interaction between myoglobin and hyaluronic acid in their layer-by-layer assembly: Quartz crystal microbalance and cyclic voltammetry studies[J]. The Journal of Physical Chemistry B,2006,110:14494-14502
    [12]Zhang Y., Zheng J., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film[J]. Electrochemistry Communications,2008,10:1400-1403
    [13]Gao R., Shangguan X., Qiao G., et al. Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid[J]. Electroanalysis,2008,20: 2537-2542
    [14]Nassar A. E. F., Rusling J. F., Kumosinski T. F. Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant[J]. Biophysical Chemistry,1997,67: 107-116
    [15]Zhu Y., Cheng G., Dong S., Structural electrochemical study of hemoglobin by in situ circular dichroism thin layer spectroelectrochemistry[J]. Biophysical Chemistry,2002,97:129-138
    [16]Zhu Y., Cao H., Tang L., et al. Immobilization of horseradish peroxidase in three-dimensional macroporous TiO2 matrices for biosensor applications[J]. Electrochimica Acta,2009,54: 2823-2827
    [17]Teng Y. J., Zuo S. H., Lan M. B., Direct electron transfer of Horseradish peroxidase on porous structure of screen-printed electrode[J]. Biosensors and Bioelectronics,2009,24:1353-1357
    [18]Laviron E., The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes[J]. Journal of Electroanalytical Chemistry,1979,100:263-270
    [19]Chen X., Ruan C., Kong J., et al. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode. Analytica Chimica Acta,2000,412:89-98
    [20]Ruzgas T., Gorton L., Emneus J., et al. Kinetic models of horseradish peroxidase action on a graphite electrode[J]. Journal of Electroanalytical Chemistry,1995,391:41-49
    [21]Bard A. J., Faulkner L. R. Electrochemical methods[M]. New York, USA:Wiley,1980,439-442
    [22]Liu G., Gooding J. J., An interface comprising molecular wires and poly(ethylene glycol) spacer units self-assembled on carbon electrodes for studies of protein electrochemistry[J]. Langmuir,2006, 22:7421-7430
    [23]Huang H., Hu N., Zeng Y., et al. Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films[J]. Analytical Biochemistry,2002,308:141-151
    [24]Zhao X., Mai Z., Kang X., et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite[J]. Biosensors and Bioelectronics,2008,23:1032-1038
    [25]Zhang Y., He P., Hu N., Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis[J]. Electrochimca Acta,2004,49: 1981-1988
    [26]ElKaoutit M., Naranjo-Rodriguez I., Dominguez M., et al. A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carbon composite[J]. Electrochimca Acta,2008,53:7131-7137
    [27]Chikkaveeraiah B. V., Liu H., Mani V., et al. A microfluidic electrochemical device for high sensitivity biosensing:Detection of nanomolar hydrogen peroxide[J]. Electrochemistry Communications,2009,11:819-822
    [28]Kang X., Wang J., Tang Z., et al. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes[J]. Talanta,2009,78:120-125
    [29]Lee C., Wei X. D., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321:385-388
    [30]Stoller M. D., Park S. J., Zhu Y. W., Graphene-Based Ultracapacitors[J]. Nano Letters,2008,8: 3498-3502
    [31]Balandin A. A.,Ghosh S., Bao W. Z., et al. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Letters,2008,8:902-907
    [32]Bolotin K. I., Sikes K. J., Jiang Z., Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun.,2008,146:351-355
    [33]Dikin D. A., Stankovich S., Zimney E. J., et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448:457-460
    [34]Park S., Lee K., Bozoklu G., et al. Graphene oxide papers modified by divalentions Enhancing mechanical propertiesvia chemical cross linking[J]. ACS Nano,2008,2:572-578
    [35]Blake P., Brimicombe P. D., Nair R. R., et al. Graphene based liquid crystal device[J]. Nano Letters,2008,8:1704-1708
    [36]Bunch J. S., Zande A. M., Verbridge S. S., et al. Elect romechanical resonators from graphene sheets[J]. Science,2008,315:490-493
    [37]Stankovich S., Dikin D. A., Dommett G. H. B., et al. Graphene-Based Composite Materials[J]. Nature,2006,442(7100):282-286
    [38]Weiner, S., Addadi, L. J., Design strategies in mineralized biological materials[J].Materials. Chemistry,1997,7:689-702
    [39]Kawasaki, T., Takahashi, S., Ikeda K., A novel electrosynthesized polymer applied to molecular imprinting technology[J]. European Journal of Biochemistry,1985,152:361-363
    [40]Yamaguchi, K., Mori, K., Mizugaki, T., Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation[J]. Journal of the American Chemical Society,2000,122:7144-7145
    [41]Tsutomu K., Hydroxyapatite as a liquid chromatographic packing[J]. Journal of Chromatography A, 1991,544(17):147-184
    [42]Qin Y. H., Zhang Y. J., Xu X. D., et al. Direct electrochemistry of cytochrome c at hydroxyapatite modified glassy carbon electrodes[J]. Acta Chimica Sinica,2004,62(9):860-863
    [43]Shi C. G., Xu J. J., Chen H. Y., Electrogenerated chemiluminescence and electrochemical bi-functional sensors for H2O2 based on CdS nanocrystals/hemoglobin multilayers[J]. Journal of Electroanalytical Chemistry,2007,610:186-192
    [44]Xu Y., Hu C., Hu S., A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb-Ag sol films[J]. Sensors and Actuators B,2008,130:816-822
    [45]Shan D., Wang S., Zhu D., et al. Studies on direct electron transfer and biocatalytic properties of hemoglobin in polyacrylonitrile matrix[J]. Bioelectrochemistry,2007,71:198-203
    [46]Wu Y., Shen Q., Hu S., Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film[J]. Analytica Chimica Acta 2006,558:179-186
    [1]Nada F. A., Maher F. E., Ahmed G., Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly (N-methylpyrrole)/Pd-nanoclusters sensor[J]. Analytical Biochemistry,2010,400:78-88
    [2]Gao Z. Q., Huang H., Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathin film modified gold electrode[J]. Chemical Communications,1998,19:2107-2108
    [3]Chen P. Y., Vittal R., Nien P. C, Ho K. C., Intelligent Design for Neonatal Monitoring with Wearable Sensors[J]. Biosensors and Bioelectronics,2009,24:3504-3509
    [4]Gonon , Buda M., Cespuglio R., et al. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats:dopamine or DOPAC[J]. Nature,1980,286:902-904
    [5]Lane R. F., Blaha C. D., Detection of catecholamines in brain tissue:surface-modified electrodes enabling in vivo investigations of dopamine function[J]. Langmuir,1990,6:56-65
    [6]Revanasiddappa M., Gurukar S. S., Jose S. M., ct al. Simultaneous determination of ascorbic acid, dopamine a(?) uric acid using polys(?)rene s(?)lfonate wrapped multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique[J]. Sensors and Actuators, B 2010,145: 643-650
    [7]Yao H., Sun Y., Lin X., et al. Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid[J]. Electrochimica Acta,2007,52:6165-6171
    [8]Ensafi A. A., Taei M., Khayamian T., et al. Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo Ⅲ) modified glassy carbon electrode[J]. Sensors and Actuators, B 2010,147:213-221
    [9]Huang J. S., Liu Y., Hou H. Q., et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode[J]. Biosensors and Bioelectronics,2008,24:632-637
    [10]Shakkthivel P., Chen S. M., Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode[J]. Biosensors and Bioelectronics, 2007,22:1680-1687
    [11]Tang C. F., Kumar S. A., Chen S. M., Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules[J]. Analytical Biochemistry,2008,380: 174-183
    [12]Weng J., Xue J. M., Wang J., et al. Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes:Detection of dopamine in the presence of ascorbic acid and thiols[J]. Advanced Functional Materials,2005,15:639-647
    [13]Thiagarajan S., Tsai T. H., Chen S. M., Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Biosensors and Bioelectronics,2009,24:2712-2715
    [14]Silva R. P., Lima A. W. O., Serrano S. H. P., Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution[J]. Analytica Chimica Acta,2008,612:89-98
    [15]Prasad K. S., Muthuraman G., Zen J. M., The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid[J]. Electrochemistry Communications,2008,10:559-563
    [16]Safavi A., Maleki N., Moradlou O., et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode[J]. Analytical Biochemistry,2006,359:224-229
    [17]Zhu S. Y., Li H. J., Niu W. X., et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohom modified glassy carbon electrode[J]. Biosensors and Bioelectronics,2009,25:940-943
    [18]Deng C. Y., Chen J. H., Wang M. D., et al. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode[J]. Biosensors and Bioelectronics,2009,24(7):2091-2094
    [19]Liu C., Schrlau M. G., Bau H. H., Single bead-based-electrochemical biosensor[J]. Biosensors and Bioelectronics,2009,25 (4):809-814
    [20]Poh W. C., Loh K. P., Zhang W. D., et al. Biosensing Properties of Diamond and Carbon Nanotubes[J]. Langmuir,2004,20:5484-5492
    [21]Wang Z., Lin J., Liang Q., et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J]. Analyst,2002,127:653-658
    [22]Sheng Q. L., Yu H., Zheng J. B., Sol-gel derived carbon ceramic electrode for the investigation of the electrochemical behavior and electrocatalytic activity of neodymium hexacyanoferrate[J]. Electrochimica Acta,2007,52:4506-4512
    [23]Hosseinzadeh R., Sabzi R. E., Ghasemlu K., Effect of cetyltrimethyl ammonium bromide (CTAB) in deternination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate[J]. Colloids and Surfaces B,2009,68:213-217
    [24]Xun Z., Cai C., Xing W., et al. Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method[J], Journal of Electroanalytical Chemistry,2003,545:19-27
    [25]Zhou D. M., Ju H. X., Chen H. Y., Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion[J]. Journal of Electroanalytical Chemistry,1996,408:219-223
    [26]Pauliukaite R., Ghica M. E., Brett C. M. A., A new improved sensor for ascorbate determination at copper hexacyanoferrate modified carbon film electrodes[J]. Analytical and Bioanalytical Chemistry,2005,381:972-978
    [27]Noroozifar M., Motlagh M. K., Taheri A., Preparation of silver hexacyanoferrate nanoparticles and its application for the simultaneous determination of ascorbic acid, dopamine and uric acid[J]. Talanta,2010,80:1657-1664
    [28]Pei Q., Zuccarello G., Ahlskog M., et al. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue[J]. Polymer,1994,35:1347-1351
    [29]Jonas F., Heywang G., Technical applications for conductive polymers[J]. Electrochimica Acta, 1994,39:1345-1347
    [30]Halik M, H., Klauk H., Zschieschang U., et al. Fully patterned all-organic thin film transistors[J]. Applied Physics Letters,2002,81:289-291
    [31]Kumar S. S., Mathiyarasu J., Phani K. L., et al. Determination of uric acid in the presence of ascorbic acid using poly(3,4-ethylenedioxythiophene)-modified electrodes[J]. Electroanalysis,2005, 17:2281-2286
    [32]Ki S. C., Liu E., Jong S. C., et al. Fabrication of Free-Standing Multilayered Graphene and Poly(3,4-ethylenedioxythiophene) Composite Films with Enhanced Conductive and Mechanical Properties[J]. Langmuir,2010,26:12902-12908
    [33]Fan B. H., Mei X. G., Ouyang J. Y, Significant conductivity enhancement of conductive poly (3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films by adding anionic surfactants into polymer solution[J]. Macromolecules,2008,415971-5973.
    [34]Xu Y, Wang Y., Liang J., et al. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency[J]. Nano Research,2009,2:343-348
    [35]Rajesh A., Tarushee K., Devendra., Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications[J]. Sensors and Actuators, B 2009, 136:275-286
    [36]Lin K. C., Tsai T. H., Chen S. M., Perfonning enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film[J]. Biosensors and Bioelectronics, 2010,26:608-614
    [37]De Azevedo W. M., De Mattos I. L., Navarro M., et al. Preparation and characterization of conducting polymer/silver hexacyanoferrate nanocomposite[J]. Applied Surface Science,2008,255: 770-774
    [38]Kuo C. W., Huang L. M., Wen T. C., et al. Enhanced electrocatalytic performance for methanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) electrode[J]. Journal of Power Sources,2006,160:65-72
    [39]Xiao C., Chu X., Yang Y., et al. A simple mathematical model for electric cell-substrate impedance sensing with extended applications[J]. Biosensors and Bioelectronics,2010,25:1774-1780
    [40]Biuck H., Mohammad H. P., Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry[J]. Electrochimica Acta,2010,55:5492-5498
    [41]Jacqueline A., Victor L. L., Herica A. M., et al. Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode[J]. Electrochimica Acta,2008,54:560-565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700