TiO_2及TiO_2-碳质材料复合物的制备及其催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高比表面积、优良的光致催化活性以及良好的生物兼容性,TiO2纳米材料在酶固载、光催化和光伏领域中受到极大的关注。然而,目前对于具有高电化学活性的特殊纳米结构TiO2薄膜及其酶固载几乎没有报道。另外,当TiO2纳米材料作为光催化剂使用时,其光催化效率较低,并且纳米TiO2粉体也难以回收。针对这些问题,我们采用液相沉积法分别制备了SDS掺杂的TiO2薄膜、CNTs-TiO2复合薄膜及氧化石墨烯-TiO2复合物,并研究其电催化和光催化性能。
     以表面活性剂十二烷基磺酸钠(SDS)同时作为掺杂剂和结构诱导剂,以(NH4)2TiF6为TiO2前躯体,采用液相沉积方法,在室温下制备SDS掺杂的TiO2薄膜。SEM分析表明:该薄膜由底层的TiO2纳米颗粒层和上层的TiO2纳米片层组成,上层的TiO2纳米片垂直于基底表面,且自组装成花状结构。SDS的浓度对TiO2形状的转换起到了关键作用。低浓度SDS时,基底表面只有TiO2颗粒产生;高浓度的SDS有利于TiO2纳米片的形成。制备TiO2纳米片的最佳温度为308℃。SDS掺杂后,TiO2的循环伏安图中羟基化的Ti(Ⅳ)的还原峰明显增强。此外,SDS-TiO2薄膜可以作为良好的载体用于固定血红蛋白(Hb),并且该电极对H2O2有良好的电催化还原活性。作为分析H2O2的电化学传感器,固定Hb的薄膜电极对0.003至1.5 mM范围内的H2O2具有良好的线性关系,检出限为1.0μM。
     采用浸渍-提拉和液相沉积两步法制备了碳纳米管(CNTs)和TiO2的复合物薄膜,并通过甲基橙的降解研究了复合薄膜的光电催化性质。结果表明,CNTs能够显著减小TiO2薄膜的电荷转移电阻,提高薄膜在紫外光照时的光电流响应。CNTs-TiO2复合薄膜的光电催化性能可以通控制制备时的沉积时间、煅烧温度等参数调节。沉积时间和煅烧温度分别为1 h和450℃,复合薄膜的光电催化活性最高。此时,复合薄膜在90 min内可将10 mg/L甲基橙降解95%,远高于单纯TiO2薄膜60%的降解率。
     基于液相沉积法提出了一种在氧化石墨烯表面原位沉积TiO2纳米粒子制备高效光催化剂的简单方法。本方法的最主要的优点在于:纳米TiO2颗粒在氧化石墨烯片表面组装得到微米尺寸的光催化剂,该催化剂可以通过简单过滤而分离。SEM和BET等表征表明:二维多孔结构的氧化石墨烯-Ti02复合物比表面积为80 m2/g,明显高于P25和相同方法制备的Ti02。氧化石墨烯-Ti02极高的光催化受煅烧温度、氧化石墨烯含量以及溶液pH的影响。在最优条件下(氧化石墨加入浓度为75 mg/L,200℃煅烧),复合物光催化氧化甲基橙和光催化还原的Cr(Ⅵ)的速率分别是P25的7.4倍和5.4倍。氧化石墨烯能显著增强Ti02光催化活性是因为复合物中热处理后的氧化石墨烯独特的二维片状结构、大的比表面积和增强的吸附能力、以及强的电荷转移能力。
TiO2 nanomaterials have attracted particular attention due to its fascinating properties, such as high surface area, photoinduced activities and good biocompatibility for their uses in the fields such as in enzyme immobilization, photocatalysis and photovoltaics. Nevertheless, few papers involved the improved electrochemical activity of TiO2 film with special nanostructure and the immobilization of enzyme on it have been reported. On the other hand, when TiO2 nanomaterial was used as a photocatalyst, its photocatalyic efficiency is usually very low and easily subjected to the loss of TiO2 nanomaterial and the difficulty in the recovery of TiO2.Based on these problems, we have prepared SDS-doped TiO2 film、CNTs-TiO2 and graphene oxide-TiO2 composite with the liquid phase deposition and applied these composite in the field of electrocatalysis and phtotocatalysis.
     With the surfactant sodium dodecyl sulfonate (SDS) as a dopant and structure director and (NH4)2TiF6 as the TiO2precursor, SDS-doped TiO2 film has been fabricated at room temperature. The SEM characterization showed that the TiO2 film was composed of two layers:the bottom layer with TiO2 grains and the top layer consisted of nanosheets, which are aggregated to a flower-like shape. The SDS concentration played a key role on the shape evolution of TiO2:a lower SDS concentration resulted in the formation of only TiO2 grains, and a higher SDS concentration was favorable to the growth of TiO2 nanosheets. And the optimum temperature was found to be 30 (?) for the growth of TiO2 nanosheets. After being doped with SDS, the reduction peak, being attributed to the reduction of hydroxylated titanium(Ⅳ) species, in the cyclic voltammograms of TiO2 films was siglifictantly enhanced. The varied surface structure of the SDS-doped TiO2 film provided a biocompatible platform for immobilizing hemoglobin, and the hemoglobin-immobilized film electrode exhibited good electrocatalytic activity to the reduction of H2O2. As a sensor for the determination of H2O2, the hemoglobin-immobilized film electrode yielded an excellently linear range from 0.003 to 1.5 mM H2O2 in the correlation between reduction peak current and H2O2 concentration, with a low detection limit of 1.0μM.
     Composite films of TiO2 and carbon nanotubes (CNTs) were prepared on titanium sheets with a dip-coating and liquid phased deposition and the photoelectrocatalytic (PEC) properties of the films were investigated through the degradation of methyl orange. It was demonstrated that CNTs in the TiO2 film significantly decreased the charge transfer resistance and increased the anodic photocurrent response of the film under UV light irradiation. The PEC performance of the CNTs-based composite film could be tuned by controlling the preparation parameters including the deposition time and calcination temperature. The deposition time and calcination temperature were optimized at 1 h and 450 (?), respectively. On the TiO2/CNT film prepared under the optimized conditions, 95% of the initial 10 mg/L methyl orange was degraded within 90 min, which was much higher than the 60% removal seen on the pure TiO2 films.
     Based on liquid phased depositon, a simple method to synthesize graphene oxide/TiO2 composites as a highly efficient photocatalyst by in situ depositing TiO2 nanoparticles on graphene oxide nano-sheets was developed. There are several advantages for this method. TiO2 nanoparticles are assembled onto the graphene oxide sheet to form larger particle s in the microscale, which could be easily separated by the filtration. Additionally, SEM and BET characterization showed the two-dimensional porous graphene oxide/TiO2 composites had specific surface area of 80 m2 g"1 being considerably larger than that of P25 and the similarly prepared neat TiO2 particles without using graphene oxide. The composites exhibited excellent photocatalytic activity, being influenced by post-calcination temperature, graphene oxide content and solution pH. Under optimal conditions (the concentration of graphite oxide was 75 mg/mL and calcination temperature was 200 (?)), the photo-oxidative degradation rate of methyl orange and the photo-reductive conversion rate of Cr(Ⅵ) over the composites were as high as 7.4 and 5.4 times that over P25, respectively. The excellent enhancing effect of graphene oxide nano-sheets on the photocatalytic properties of TiO2 was attributed to a thin two-dimensional sheet support, a large surface area and much increased adsorption capacity, and the strong electron transfer ability of the thermally treated graphene oxide in the composite.
引文
[1]Honda K, Fujishima A. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972,238:37-38.
    [2]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353(6346):737-740.
    [3]Hu X, Li G, Yu J C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications. Langmuir 2010,26(5):3031-3039.
    [4]Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.2007,107(7):2891-2959.
    [5]Zhang H, Chen G, Bahnemann D W. Photoelectrocatalytic materials for environmental applications. J. Mater. Chem.2009,19(29):5089-5121.
    [6]Oskam G, Nellore A, Penn R L, et al. The growth kinetics of TiO2 nanoparticles from titanium(iv) alkoxide at high water/titanium ratio. J. Phys. Chem. B 2003,107(8): 1734-1738.
    [7]Attar A S, Ghamsari M S, Hajiesmaeilbaigi F, et al. Sol-gel template synthesis and characterization of aligned anatase-TiO2 nanorod arrays with different diameter. Mater. Chem. Phys.2009,113(2-3):856-860.
    [8]Chen L, Tsai F, Fang S, et al. Properties of sol-gel SnO2/TiO2 electrodes and their photoelectrocatalytic activities under UV and visible light illumination. Electrochim. Acta 2009,54(4):1304-1311.
    [9]Wang H, Wang H, Jiang W, et al. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res.2009,43(1):204-210.
    [10]Barringer E A, Bowen H K. High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide.1. Synthesis and physical properties. Langmuir 1985,1(4): 414-420.
    [11]Moritz T, Reiss J, Diesner K, et al. Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units. J. Phys. Chem. B 1997,101(41):8052-8053.
    [12]Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control. J. Colloid Interface Sci.2003,259(1):53-61.
    [13]Sugimoto T, Zhou X, Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. formation process and size control. J. Colloid Interface Sci. 2003,259(1):43-52.
    [14]Sugimoto T, Zhou X. Synthesis of uniform anatase TiO2 nanoparticles by the gel-sol method. J. Colloid Interface Sci.2002,252(2):347-353.
    [15]Hu S, Wang A, Li X, et al. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light. Chem Asian J.2010,5(5):1171-1177.
    [16]Liao J, Lei B, Wang Y, et al. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells. Chem. Eur. J.2011,17(4):1352-1357, S1351-S1352.
    [17]Prado A G S, Costa L L. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes. J. Hazard. Mater.2009,169(1-3):297-301.
    [18]Wang C, Yin L, Zhang L, et al. Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 2010,26(15): 12841-12848.
    [19]Zhang J, Xiao X, Nan J. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure. J. Hazard. Mater. 2010,176(1-3):617-622.
    [20]Peng T, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. B 2005, 109(11):4947-4952.
    [21]Zhang Q, Gao L. Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method:insights from rutile TiO2. Langmuir 2003,19(3): 967-971.
    [22]Yang S, Gao L. Low-temperature synthesis of crystalline TiO2 nanorods:mass production assisted by surfactant. Chem. Lett.2005,34(7):964-965.
    [23]Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater.2005,17(7):862-865.
    [24]Bavykin D V, Milsom E V, Marken F, et al. A novel cation-binding TiO2 nanotube substrate for electro-and bioelectrocatalysis. Electrochem. Commun.2005,7(10): 1050-1058.
    [25]Bavykin D V, Gordeev S N, Moskalenko A V, et al. Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence. J. Phys. Chem. B 2005,109(18):8565-8569.
    [26]Lan Y, Gao X, Zhu H, et al. Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater.2005,15(8):1310-1318.
    [27]Wang M, Guo D, Li H. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem.2005,178(6):1996-2000.
    [28]Li J, Zhou Z, Zhu L, et al. Salt effects on crystallization of titanate and the tailoring of its nanostructures. J. Phys. Chem. C 2007,111(45):16768-16773.
    [29]Lafond V, Mutin P H, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chem. Mater.2004,16(25):5380-5386.
    [30]Cozzoli P D, Fanizza E, Comparelli R, et al. Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J. Phys. Chem. B 2004, 108(28):9623-9630.
    [31]Cozzoli P D, Kornowski A, Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc.2003,125(47): 14539-14548.
    [32]Kim C, Moon B K, Park J, et al. Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. J. Cryst. Growth 2003,254(3-4):405-410.
    [33]Li G, Gray K A. Preparation of mixed-phase titanium dioxide nanocomposites via solvothermal processing. Chem. Mater.2007,19(5):1143-1146.
    [34]Kim C, Moon B K, Park J, et al. Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant. J. Cryst. Growth 2003,257(3-4):309-315.
    [35]Li X, Peng Q, Yi J, et al. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J.2006,12(8):2383-2391.
    [36]Wen B, Liu C, Liu Y. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires. New J. Chem.2005,29(7):969-971.
    [37]Wang H, Liu P G, Cheng X S, et al. Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method. Powder Technol.2008,188(1): 52-54.
    [38]Liu S H, Sun X D, Li J G, et al. Synthesis of dispersed anatase microspheres with hierarchical structures via homogeneous precipitation. Eur. J. Inorg. Chem.2009(9): 1214-1218.
    [39]Ding Z, Hu X, Lu G Q, et al. Novel Silica gel supported TiO2 photocatalyst synthesized by CVD method. Langmuir 2000,16(15):6216-6222.
    [40]Matsuzawa S, Maneerat C, Hayata Y, et al. Immobilization of TiO2 nanoparticles on polymeric substrates by using electrostatic interaction in the aqueous phase. Appl. Catal., B 2008,83(1-2):39-45.
    [41]V P S M, V D K, M S. Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light. Chemosphere 2008,72(4): 644-651.
    [42]Wang L, Wang H, Wang A, et al. Surface modification of a magnetic SiO2 support and immobilization of a nano-TiO2 photocatalyst on it. Chinese J. Cataly.2009, 30(9):939-944.
    [43]Kaliwoh N, Zhang J Y, Boyd I W. Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps. Surf. Coat. Technol.2000,125(1-3): 424-427.
    [44]Li M, Li C. TiO2 film formed by ultrasonically spraying titania sol. Key Eng. Mater. 2002,206-213(1):495-498.
    [45]Oh S H, Kim D J, Hahn S H, et al. Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol-gel dip-coating. Mater. Lett.2003,57(26-27):4151-4155.
    [46]Nagayama H, Honda H, Kawahara H. A new process for silica coating. J. Electrochem. Soc.1988,135(8):2013-2016.
    [47]Deki S, Aoi Y, Asaoka Y, et al. Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance. J. Mater. Chem.1997,7(5):733-736.
    [48]Li S, Liu J, Cui C, et al. Effect of deposition conditions on TiO2 thin film on silica glass fibers by liquid phase deposition. Key Eng. Mater.2007,336-338(Pt.3, High-Performance Ceramics IV):1921-1923.
    [49]Girshevitz O, Nitzan Y, Sukenik C N. Solution-deposited amorphous titanium dioxide on silicone rubber:a conformal, crack-free antibacterial coating. Chem. Mater.2008,20(4):1390-1396.
    [50]Huang C J, Shih W C. Optimization of pretreatment for liquid-phase deposition of SiO2 on ARTON plastic substrate. J. Electron. Mater.2003,32(6):478-482.
    [51]刘成龙,杨大智,赵红.316L不锈钢表面液相沉积TiO2薄膜的耐蚀性研究.功能 材料2003,34(5):600-602.
    [52]Masuda Y, Kato K. Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution. Thin Solid Films 2008,516(9):2547-2552.
    [53]冯海涛,王芬,同小刚.微波液相沉积法制备二氧化钛薄膜.材料导报2006,20(S1):85-86.
    [54]任典君,王荣昌,夏四清.微波辅助液相沉积法制备TiO2薄膜光催化性能.稀有金属材料与工程2008,37(6):903-989.
    [55]周磊,赵文宽,方佑龄.液相沉积法制备光催化活性TiO2薄膜.应用化学2002,19(10):918-921.
    [56]赵文宽,方佑龄.光催化活性TiO2薄膜的低温制备.物理化学学报2002,18(4):368-371.
    [57]Pizem H, Sukenik C N, Sampathkumaran U, et al. Effects of substrate surface functionality on solution-deposited titania films. Chem. Mater.2002,14(6): 2476-2485.
    [58]Aoi Y, Kobayashi S, Kamijo E, et al. Fabrication of three-dimensional ordered macroporous titanium oxide by the liquid-phase deposition method using colloidal template. J. Mater. Sci.2005,40(20):5561-5563.
    [59]蒋武锋,苍大强,郝素菊,等.液相沉积法在铝板上制备TiO2纳米棒阵列薄膜.材料科学与工程学报2006,24(6):805-807.
    [60]张长远,张金龙.液相沉积法制备光催化TiO2-SiO2复合薄膜及其表征.感光科学与光化学2004,22(2):108.113.
    [61]Deki S, Aoi Y. Synthesis of metal oxide thin films by liquid-phase deposition method. J. Mater. Res.1998,13(4):883-890.
    [62]Ko H Y Y, Mizuhata M, Kajinami A, et al. Fabrication of high performance thin films from metal fluorocomplex aqueous solution by the liquid phase deposition. J. Fluorine Chem.2003,120(2):157-163.
    [63]Li L, Mizuhata M, Deki S. Preparation and characterization of alkyl sulfate and alkylbenzene sulfonate surfactants/TiO2 hybrid thin films by the liquid phase deposition (LPD) method. Appl. Surf. Sci.2005,239(3-4):292-301.
    [64]Li L, Mizuhata M, Kajinami A, et al. Different effects of alkyl sulfate and alkylbenzene sulfonate surfactants on the synthesis and properties of CuPc/TiO2 composite films by the liquid-phase deposition (LPD) method. Synth. Met.2004, 146(1):17-27.
    [65]Gutierrez-Tauste D, Domenech X, Casan-Pastor N, et al. Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method:Application for fabrication of light-activated colorimetric oxygen indicators. J. Photochem. Photobiol., A 2007,187(1):45-52.
    [66]Gutierrez-Tauste D, Domenech X, Domingo C, et al. Dopamine/TiO2 hybrid thin films prepared by the liquid phase deposition method. Thin Solid Films 2008, 516(12):3831-3835.
    [67]Zhang J, Ding Q, Wang R, et al. Liquid phase deposition of mesoporous TiO2/DNA hybrid film:Characterization and photoelectrochemical investigation. Electrochim. Acta 2010,55(11):3614-3620.
    [68]Jiang G, Lin Z, Zhu L, et al. Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films. Carbon 2010,48(12):3369-3375.
    [69]An H, Jang S, Vittal R, et al. Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells. Electrochim. Acta 2005,50(13):2713-2718.
    [70]Karuppuchamy S, Jeong J M. Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition. Mater. Chem. Phys.2005,93(2-3): 251-254.
    [71]Zhou Z, Zhu L, Li J, et al. Electrochemical preparation of TiO2/SiO2 composite film and its high activity toward the photoelectrocatalytic degradation of methyl orange. J. Appl. Electrochem.2009,39(10):1745-1753.
    [72]Chanmanee W, Watcharenwong A, Chenthamarakshan C R, et al. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J. Am. Chem. Soc.2008,130(3):965-974.
    [73]Allam N K, Shankar K, Grimes C A. A general method for the anodic formation of crystalline metal oxide nanotube arrays without the use of thermal annealing. Adv. Mater.2008,20(20):3942-3946.
    [74]Wang J, Lin Z. Anodic formation of ordered TiO2 nanotube arrays:effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 2009,113(10): 4026-4030.
    [75]Wang D, Yu B, Wang C, et al. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater.2009,21(19):1964-1967.
    [76]Pradhan S K, Reucroft P J, Yang F, et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 2003,256(1-2):83-88.
    [77]Wu J, Yu C. Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 2004,108(11): 3377-3379.
    [78]Wu J, Shih H C, Wu W, et al. Thermal evaporation growth and the luminescence property of TiO2 nanowires. J. Cryst. Growth 2005,281(2-4):384-390.
    [79]Xiang B, Zhang Y, Wang Z, et al. Field-emission properties of TiO2 nanowire arrays. J. Phys. D 2005,38(8):1152-1155.
    [80]Graetzel M, Howe R F. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J. Phys. Chem.1990,94(6):2566-2572.
    [81]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem.1994,98(51):13669-13679.
    [82]Bessekhouad Y, Robert D, Weber J, et al. Effect of alkaline-doped TiO2 on photocatalytic efficiency. J. Photochem. Photobiol., A 2004,167(1):49-57.
    [83]Peng S, Li Y, Jiang F, et al. Effect of Be2+ doping TiO2 on its photocatalytic activity. Chem. Phys. Lett.2004,398(1-3):235-239.
    [84]Yu J, Yu H, Ao C H, et al. Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films 2006,496(2):273-280.
    [85]Yu J C, Yu J G, Ho W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater.2002,14(9): 3808-3816.
    [86]Bai Y, Li W, Liu C, et al. Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture. J. Mater. Chem. 2009,19(38):7055-7061.
    [87]Kozlova E A, Lyubina T P, Nasalevich M A, et al. Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catal. Commun.2011, 12(7):597-601.
    [88]Wang C, Yin L, Zhang L, et al. Platinum-nanoparticle-modified TiO2 nanowires with enhanced photocatalytic property. ACS Appl. Mater. Interfaces 2010,2(11): 3373-3377.
    [89]Yoo S J, Jeon T, Lee K, et al. Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO2 nanocatalysts. Chem. Commun.2010,46(5): 794-796.
    [90]Lee M, Amaratunga P, Kim J, et al. TiO2 nanoparticle photocatalysts modified with monolayer-protected gold clusters. J. Phys. Chem. C 2010,114(43):18366-18371.
    [91]Liu Y, Chen L, Hu J, et al. TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J. Phys. Chem. C 2010,114(3):1641-1645.
    [92]Wang X, Caruso R A. Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J. Mater. Chem.2011,21(1): 20-28.
    [93]Yogi C, Kojima K, Hashishin T, et al. Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J. Phys. Chem. C 2011,115(14):6554-6560.
    [94]Li X, Wang L, Lu X. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J. Hazard. Mater. 2010,177(1-3):639-647.
    [95]Xiong Z, Ma J, Ng W J, et al. Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Res.2011,45(5):2095-2103.
    [96]He X, Cai Y, Zhang H, et al. Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem.2011,21(2):475-480.
    [97]Okazaki K, Ichikawa S, Maeda Y, et al. Electronic structures of Au supported on TiO2. Appl. Catal., A 2005,291(1-2):45-54.
    [98]Shaogui Y, Xie Q, Xinyong L, et al. Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation. Phys. Chem. Chem. Phys.2004,6(3):659-664.
    [99]Choi H, Stathatos E, Dionysiou D D. Sol-gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl. Catal, B 2006,63(1-2):60-67.
    [100]Liao D L, Badour C A, Liao B Q. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol, A 2008,194(1):11-19.
    [101]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293(5528):269-271.
    [102]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 2003,107(23): 5483-5486.
    [103]Liu G, Zhao Y, Sun C, et al. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew. Chem. Int. Edit.2008,47(24): 4516-4520.
    [104]Mitoraj D, Kisch H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Edit.2008,47(51): 9975-9978.
    [105]Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts.2. optical characterization, photocatalysis, and potential application to air purification. Chem. Mater.2005,17(10):2596-2602.
    [106]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J. Phys. Chem. B 2004,108(19): 6004-6008.
    [107]Tian F, Liu C. DFT Description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J. Phys. Chem. B 2006,110(36): 17866-17871.
    [108]Sakthivel S, Kisch H. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem. Phys.Chem.2003,4(5):487-490.
    [109]Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun.2006(10):1115-1117.
    [110]Li Y, Hwang D, Lee N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst. Chem. Phys. Lett.2005, 404(1-3):25-29.
    [111]Li G, Zhang D, Yu J C. A new visible-light photocatalyst:CdS quantum dots embedded mesoporous TiO2. Environ. Sci. Technol.2009,43(18):7079-7085.
    [112]Lin C J, Yu Y H, Liou Y H. Free-standing TiO2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts. Appl. Catal., B 2009,93(1-2): 119-125.
    [113]Zyoud A H, Zaatar N, Saadeddin I, et al. CdS-sensitized TiO2 in phenazopyridine photo-degradation:Catalyst efficiency, stability and feasibility assessment. J. Hazard. Mater.2010,173(1-3):318-325.
    [114]Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc.2006,128(7):2385-2393.
    [115]Ho W, Yu J C, Lin J, et al. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004,20(14):5865-5869.
    [116]Zaban A, Micic O I, Gregg B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir 1998,14(12):3153-3156.
    [117]Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J. Mol. Catal. A 2006,247(1-2):268-274.
    [118]Kim W, Tachikawa T, Majima T, et al. Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3:enhanced activity for H2 production and dechlorination of CCl4. J. Phys. Chem. C 2009,113(24):10603-10609.
    [119]Sun Q, Xu Y. Sensitization of TiO2 with Aluminum phthalocyanine:factors influencing the efficiency for chlorophenol degradation in water under visible light. J. Phys. Chem. C 2009,113(28):12387-12394.
    [120]Vinu R, Polisetti S, Madras G. Dye sensitized visible light degradation of phenolic compounds. Chem. Eng. J.2010,165(3):784-797.
    [121]Park Y, Lee S, Kang S O, et al. Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light. Chem. Commun.2010,46(14): 2477-2479.
    [122]Li J, Zhu L, Wu Y, et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 2006,47(21):7361-7367.
    [123]Zhang H, Zong R, Zhao J, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 2008,42(10):3803-3807.
    [124]Li X, Wang D, Cheng G, et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal.,B 2008,81(3-4):267-273.
    [125]Liao G, Chen S, Quan X, et al. Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres. Appl. Catal.,B 2011,102(1-2):126-131.
    [126]Kajii Y, Nakagawa T, Suzuki S, et al. Transient absorption, lifetime, and relaxation of the carbon sixty-atom molecule in the triplet state. Chem. Phys. Lett.1991, 181(2-3):100-104.
    [127]Xie Q, Perez-Cordero E, Echegoyen L. Electrochemical detection of C606- and C706-: Enhanced stability of fullerides in solution. J. Am. Chem. Soc.1992,114(10): 3978-3980.
    [128]Kamat P V, Gevaert M, Vinodgopal K. Photochemistry on semiconductor surfaces. visible light induced oxidation of C60 on TiO2 particles. J. Phys. Chem. B 1997, 101(22):4422-4427.
    [129]Mohan H, Chiang L Y, Mittal J P. Radiation chemical investigations on aqueous solutions of C60(OH)18. Res. Chem. Intermed.1997,23(5):403-414.
    [130]Accorsi G, Armaroli N. Taking advantage of the electronic excited states of [60]-fullerenes. J. Phys. Chem. C 2010,114(3):1385-1403.
    [131]Krishna V, Noguchi N, Koopman B, et al. Enhancement of titanium dioxide photocatalysis by water-soluble fullerenes. J. Colloid Interface Sci.2006,304(1): 166-171.
    [132]Krishna V, Yanes D, Imaram W, et al. Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Appl. Catal, B 2008,79(4):376-381.
    [133]Lin J, Zong R, Zhou M, et al. Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal., B.2009,89(3-4):425-431.
    [134]Mu S, Long Y, Kang S, et al. Surface modification of TiO2 nanoparticles with a C6o derivative and enhanced photocatalytic activity for the reduction of aqueous Cr(VI) ions. Catal. Commun.2010,11(8):741-744.
    [135]Park Y, Singh N J, Kim K S, et al. Fullerol-titania charge-transfer-mediated photocatalysis working under visible light. Chem. Eur. J.2009,15(41):10843-10850, S10841-S10843.
    [136]Kuo C. Prevenient dye-degradation mechanisms using UV/TiO2/carbon nanotubes process. J. Hazard. Mater.2009,163(1):239-244.
    [137]Wang W, Serp P, Kalck P, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A 2005,235(1-2):194-199.
    [138]Yu Y, Yu J C, Chan C, et al. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal., B 2005, 61(1-2):1-11.
    [139]Xia X, Jia Z, Yu Y, et al. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45(4):717-721.
    [140]Akhavan O, Abdolahad M, Abdi Y, et al. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 2009,47(14):3280-3287.
    [141]Dai K, Peng T, Ke D, et al. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 2009,20(12):125601-125603.
    [142]Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J. Phys. Chem. C 2007,111(35): 12987-12991.
    [143]Yao Y, Li G, Ciston S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ. Sci. Technol.2008,42(13):4952-4957.
    [144]Gao B, Peng C, Chen G Z, et al. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl. Catal.,B 2008,85(1-2):17-23.
    [145]Gao B, Chen G Z, Li Puma G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl. Catal, B.2009,89(3-4): 503-509.
    [146]Baowan D, Triampo W, Triampo D. Encapsulation of TiO2 nanoparticles into single-walled carbon nanotubes. New J. Phys.2009,11(9):93011.
    [147]Wang W, Serp P, Kalck P, et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal., B 2005,56(4):305-312.
    [148]Lu X, Imae T. Dendrimer-mediated synthesis of water-dispersible carbon-nanotube-supported oxide nanoparticles. J. Phys. Chem. C 2007,111(24): 8459-8462.
    [149]Bandosz T J. Surface chemistry of carbon materials. Carbon materials for catalysis, Serp P, Figueiredo J, Hoboken:John Wiley and Sons,2009,45-92.
    [150]Sun J, Iwasa M, Gao L, et al. Single-walled carbon nanotubes coated with titania nanoparticles. Carbo.2004,42(4):895-899.
    [151]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater.2009,21(21):2233-2239.
    [152]Luo Y, Heng Y, Dai X, et al. Preparation and photocatalytic ability of highly defective carbon nanotubes. J. Solid State Chem.2009,182(9):2521-2525.
    [153]Ahmmad B, Kusumoto Y, Somekawa S, et al. Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catal. Commun.2008,9(6):1410-1413.
    [154]Yu Y, Yu J C, Yu J, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal., A 2005,289(2):186-196.
    [155]Graeme W, Brian S, V K P. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008,2(7):1487-1491.
    [156]Williams G, Kamat P V. Graphene-Semiconductor Nanocomposites:Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009, 25(24):13869-13873.
    [157]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett.2010,10(2):577-583.
    [158]Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010,4(1):380-386.
    [159]Liu J, Bai H, Wang Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater.2010,20(23):4175-4181.
    [160]Zhu C, Guo S, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem. Commun.2010,46(38):7148-7150.
    [161]Zhang J, Xiong Z, Zhao X S. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem.2011,21(11):3634-3640.
    [162]Liang Y, Wang H, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res.2010,3(10): 701-705.
    [163]Jiang G, Lin Z, Chen C, et al. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 2011, 49(8):2693-2701.
    [164]Wang Y, Shi R, Lin J, et al. Significant photocatalytic enhancement in Methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl. Catal., B 2010,100(1-2):179-183.
    [165]Chen C, Cai W, Long M, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n Heterojunction. ACSNano 2010,4(11):6425-6432.
    [166]Ng Y H, Lightcap I V, Goodwin K, et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films? J. Phys. Chem. Lett.2010,1(15):2222-2227.
    [167]Bell N J, Ng Y H, Du A, et al. Understanding the enhancement in photoelectrochemical properties of Photocatalytically prepared TiO2-reduced graphene oxide Composite. J. Phys. Chem. C 2011,115(13):6004-6009.
    [168]Arana J, Dona-Rodriguez J M, Tello Rendon E, et al. TiO2 activation by using activated carbon as a support. Part Ⅰ. Surface characterization and decantability study. Appl. Catal.,B 2003,44(2):161-172.
    [169]Kubo M, Fukuda H, Chua X J, et al. Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon. Ind. Eng. Chem. Res.2007,46(3):699-704.
    [170]Tryba B, Morawski A W, Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl. Catal., B 2003,41(4):427-433.
    [171]Liu S X, Chen X Y, Chen X. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J. Hazard. Mater.2007, 143(1-2):257-263.
    [172]Wang X, Hu Z, Chen Y, et al. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci.2009, 255(7):3953-3958.
    [173]Zhang X, Zhou M, Lei L. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon 2005,43(8):1700-1708.
    [174]Zhang X, Zhou M, Lei L. TiO2 photocatalyst deposition by MOCVD on activated carbon. Carbon 2005,44(2):325-333.
    [175]Velasco L F, Parra J B, Ania C O. Role of activated carbon features on the photocatalytic degradation of phenol. Appl. Surf. Sci.2010,256(17):5254-5258.
    [176]Ao Y, Xu J, Fu D, et al. Low temperature preparation of anatase TiO2-coated activated carbon. Colloids Surf., A 2008,312(2-3):125-130.
    [177]Cordero T, Chovelon J, Duchamp C, et al. Surface nano-aggregation and photocatalytic activity of TiO2 on H-type activated carbons. Appl. Catal., B 2007, 73(3-4):227-235.
    [178]Ao Y, Xu J, Shen X, et al. Magnetically separable composite photocatalyst with enhanced photocatalytic activity. J. Hazard. Mater.2008,160(2-3):295-300.
    [179]Arana J, Dona-Rodriguez J M, Tello Rendon E, et al. TiO2 activation by using activated carbon as a support. Part Ⅱ. Photoreactivity and FTIR study. Appl. Catal., B 2003,44(2):153-160.
    [180]Guo T, Bai Z, Wu C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers:PCO rate and intermediates accumulation. Appl. Catal.,B 2008,79(2):171-178.
    [181]Shi J, Zheng J, Wu P, et al. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catal. Commun.2008,9(9):1846-1850.
    [1]Tsiafoulis C G, Trikalitis P N, Prodromidis M I. Synthesis, characterization and performance of vanadium hexacyanoferrate as electrocatalyst of H2O2. Electrochem. Commun.2005,7(12):1398-1404.
    [2]Notsu H, Tatsuma T, Fujishima A. Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. J. Electroanal. Chem.2002, 523(1-2):86-92.
    [3]Karyakin A A, Gitelmacher O V, Karyakina E E. Prussian blue-based first-generation biosensor. a sensitive amperometric electrode for glucose. Anal. Chem.1995,67(14): 2419-2423.
    [4]Luo W, Abbas M E, Zhu L, et al. Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal. Chim. Acta 2008,629(1-2):1-5.
    [5]Lobnik A, Cajlakovic M. Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sens. Actuators, B 2001, B74(1-3):194-199.
    [6]Zhang L, Wong G T F. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta 1999,48(5):1031-1038.
    [7]Shi G, Lu J, Xu F, et al. Liquid chromatography-electrochemical detector for the determination of glucose in rat brain combined with in vivo microdialysis. Anal. Chim. Acta.2000,413(1-2):131-136.
    [8]Pinkernell U, Effkemann S, Karst U. Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Anal. Chem.1997,69(17):3623-3627.
    [9]Rocha F R P, Rodenas-Torralba E, Reis B F, et al. A portable and low cost equipment for flow injection chemiluminescence measurements. Talanta 2005,67(4):673-677.
    [10]Lan D, Li B, Zhang Z. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron 2008,24(4):934-938.
    [11]Liu X, Xu Y, Ma X, et al. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100. Sens. Actuators, B 2005,106(1):284-288.
    [12]Song Z, Huang J, Wu B, et al. Amperometric aqueous sol-gel biosensor for low-potential stable choline detection at multi-wall carbon nanotube modified platinum electrode. Sens. Actuators, B 2006,115(2):626-633.
    [13]Zhang L, Jiang X, Wang E, et al. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron 2005,21(2):337-345.
    [14]Zhao G, Feng J, Xu J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film. Electrochem. Commun.2005, 7(7):724-729.
    [15]Liu H, Tian Z, Lu Z, et al. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens. Bioelectron 2004,20(2): 294-304.
    [16]Zhang L, Zhang Q, Li J. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic-organic hybrid film. Electrochem. Commun.2007,9(7):1530-1535.
    [17]Lu Q, Hu C, Cui R, et al. Direct electron transfer of hemoglobin founded on electron tunneling of CTAB monolayer. J. Phys. Chem. B 2007,111(33):9808-9813.
    [18]Shan D, Han E, Xue H, et al. Self-Assembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide. Biomacromolecules 2007,8(10):3041-3046.
    [19]Xia C, Wang N, Lidong L, et al. Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens. Actuators, B 2008,129(1):268-273.
    [20]Lai G, Zhang H, Han D. A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sens. Actuators, B 2008, B129(2):497-503.
    [21]Paddon C A, Marken F. Hemoglobin adsorption into TiO2 phytate multi-layer films: particle size and conductivity effects. Electrochem. Commun.2004,6(12): 1249-1253.
    [22]Zhou H, Gan X, Wang J, et al. Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal. Chem.2005,77(18): 6102-6104.
    [23]Milsom E V, Dash H A, Jenkins T A, et al. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films. Bioelectrochemistry 2007,70(2):221-227.
    [24]Jia N, Wen Y, Yang G, et al. Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix. Electrochem. Commun.2008,10(5):774-777.
    [25]Zheng W, Zheng Y, Jin K, et al. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta 2008,74(5):1414-1419.
    [26]Xiao X, Lu W, Yao X. Direct electron transfer and electrocatalysis of hemoglobin on chitosan-TiO2 nanorods-glass carbon electrode. Electroanal.2008,20(20): 2247-2252.
    [27]Khan R, Dhayal M. Electrochemical studies of novel chitosan/TiO2 bioactive electrode for biosensing application. Electrochem. Commun.2008,10(2):263-267.
    [28]Gutierrez-Tauste D, Domenech X, Casan-Pastor N, et al. Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method:application for fabrication of light-activated colorimetric oxygen indicators. J. Photochem. Photobiol., A 2007,187(1):45-52.
    [29]Li L, Mizuhata M, Deki S. Preparation and characterization of alkyl sulfate and alkylbenzene sulfonate surfactants/TiO2 hybrid thin films by the liquid phase deposition (LPD) method. Appl. Surf. Sci.2005,239(3-4):292-301.
    [30]Zhang J, Zheng Y, Jiang G, et al. Electrocatalytic evaluation of liquid phase deposited methylene blue/TiO2 hybrid films. Electrochem. Commun.2008,10(7): 1038-1040.
    [31]Zhang J, Yang C, Chang G, et al. Voltammetric behavior of TiO2 films on graphite electrodes prepared by liquid phase deposition. Mater. Chem. Phys.2004,88(2-3): 398-403.
    [32]方云,刘雪锋,夏咏梅,等.稳态荧光探针法测定临界胶束聚集数.物理化学学报2001,17(9):828-831.
    [33]Zhou L, Smyth-Boyle D, O'Brien P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc.2008, 130(4):1309-1320.
    [34]Bunker B C, Rieke P C, Tarasevich B J, et al. Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 1994,264(5155): 48-55.
    [35]Gao Y, Koumoto K. Bioinspired ceramic thin film processing:present status and future perspectives. Cryst. Growth Des.2005,5(5):1983-2017.
    [36]Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, et al. Cyclic Voltammetry studies of nanoporous semiconductors. capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J. Phys. Chem. B 2003, 107(3):758-768.
    [37]Wang H, He J, Boschloo G, et al. Electrochemical investigation of traps in a nanostructured TiO2 film. J. Phys. Chem. B 2001,105(13):2529-2533.
    [38]Berger T, Lana-Villarreal T, Monllor-Satoca D, et al. An electrochemical study on the nature of trap states in nanocrystalline rutile thin films. J. Phys. Chem. C 2007, 111(27):9936-9942.
    [39]Kavan L, Kratochvilova K, Graetzel M. Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem.1995,394(1-2):93-102.
    [40]Y O F, B A L, A M V, et al. Study of human serum albumin-TiO(2) nanocrystalline electrodes interaction by impedance electrochemical spectroscopy. Biophys. Chem. 2001,91(2):141-155.
    [41]Yang P, Yang M, Zou S, et al. Positive and negative TiO2 micropatterns on organic polymer substrates. J. Am. Chem. Soc.2007,129(6):1541-1552.
    [42]Yu S, Lee S B, Martin C R. Electrophoretic protein transport in gold nanotube membranes. Anal. Chem.2003,75(6):1239-1244.
    [43]Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase-catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res.1988,22(9):1109-1115.
    [1]Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications. Chem. Rev.2007,107(7):2891-2959.
    [2]Jang D S, Lee H Y, Lee J J. The effect of the H2 flow rate on the structure and optical properties of TiO2 films deposited by inductively coupled plasma assisted chemical vapor deposition. Thin Solid Films 2009,517(14):3967-3970.
    [3]Oja I, Mere A, Krunks M, et al. Structural and electrical characterization of TiO2 films grown by spray pyrolysis. Thin Solid Films 2006,515(2):674-677.
    [4]Kamada K, Mukai M, Matsumoto Y. Electrodeposition of titanium(Ⅳ) oxide film from sacrificial titanium anode in I2-added acetone bath. Electrochim. Acta 2002, 47(20):3309-3313.
    [5]Liu B, Zhao X, Zhao Q, et al. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Mater. Chem. Phys. 2005,90(1):207-212.
    [6]Penard A, Gacoin T, Boilot J. Functionalized Sol-Gel coatings for optical applications. Acc. Chem. Res.2007,40(9):895-902.
    [7]Herbig B, Lobmann P. TiO2 photocatalysts deposited on fiber substrates by liquid phase deposition. J. Photochem. Photobiol, A 2004,163(3):359-365.
    [8]Zhang L, Wang X, Liu P, et al. Photocatalytic activity of anatase thin films coated cotton fibers prepared via a microwave assisted liquid phase deposition process. Surf. Coat. Technol.2007,201(18):7607-7614.
    [9]Kishimoto H, Takahama K, Hashimoto N, et al. Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). J. Mater. Chem.1998,8(9): 2019-2024.
    [10]Begum N S, Farveez Ahmed H M, Gunashekar K R. Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull. Mater. Sci.2008,31(5):747-751.
    [11]Begum N S, Farveez Ahmed H M, Hussain O M. Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique. Bull. Mater. Sci.2008,31(5):741-745.
    [12]He C, Li X Z, Graham N, et al. Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl. Catal, A 2006,305(1): 54-63.
    [13]Li J, Li L, Zheng L, et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method. Electrochim. Acta 2006, 51(23):4942-4949.
    [14]G W, M P, R B, et al. Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere 2003,50(8):989-998.
    [15]Wang W, Serp P, Kalck P, et al. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Appl. Catal., B 2005,56(4):305-312.
    [16]Yao Y, Li G, Ciston S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ. Sci. Technol.2008,42(13):4952-4957.
    [17]Wang H, Wang H, Jiang W, et al. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Res.2009,43(1):204-210.
    [18]Gao B, Chen G Z, Li Puma G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl. Catal., B 2009,89(3-4): 503-509.
    [19]Ou Y, Lin J, Fang S, et al. MWNT-TiO2:Ni composite catalyst:A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chem. Phys. Lett.2006,429(1-3):199-203.
    [20]Xia X, Jia Z, Yu Y, et al. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45(4):717-721.
    [21]Brown P, Takechi K, Kamat P V. Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J. Phys. Chem. C.2008,112(12):4776-4782.
    [22]Yen C, Lin Y, Liao S, et al. Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology 2008, 19(37):375301-375305.
    [23]Sanchez M, Rincon M E. Sensor response of sol-gel multiwalled carbon nanotubes-TiO2 composites deposited by screen-printing and dip-coating techniques. Sens. Actuators, B 2009, B 140(1):17-23.
    [24]Gao B, Peng C, Chen G Z, et al. Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method. Appl. Catal., B 2008,85(1-2):17-23.
    [25]Yu R, Chen L, Liu Q, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater.1998,10(3):718-722.
    [26]Lee Sw S W. Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem. Commun.2003,39:780-781.
    [27]Yu Y, Yu J C, Yu J, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal., A 2005,289(2):186-196.
    [28]Li J, Zheng L, Li L, et al. Fabrication of TiO2/Ti electrode by laser-assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. J. Hazard. Mater.2007,139(1):72-78.
    [29]Liu H, Cheng S, Wu M, et al. Photoelectrocatalytic Degradation of Sulfosalicylic Acid and Its Electrochemical Impedance Spectroscopy Investigation. J. Phys. Chem. A 2000,104(30):7016-7020.
    [30]Leng W H, Zhang Z, Zhang J Q, et al. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 2005, 109(31):15008-15023.
    [31]Lin J, Zong R, Zhou M, et al. Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal., B 2009,89(3-4):425-431.
    [32]Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J. Phys. Chem. C 2007,111(35): 12987-12991.
    [33]Yen C, Lin Y, Hung C, et al. The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/TiO2 nanocomposites. Nanotechnology 2008,19(4):45601-45604.
    [34]Jiang D, Zhang S, Zhao H. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/rutile phases. Environ. Sci. Technol.2007,41(1):303-308.
    [35]Yan M, Chen F, Zhang J, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem.B 2005,109(18):8673-8678.
    [36]Sharif Zein S H, Boccaccini A R. Synthesis and characterization of TiO2 coated multiwalled carbon nanotubes using a sol gel method. Ind. Eng. Chem. Res.2008, 47(17):6598-6606.
    [1]Zeng J, Liu S, Cai J, et al. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak uv light irradiation. J. Phys. Chem. C 2010, 114(17):7806-7811.
    [2]Hosseini S N, Borghei S M, Vossoughi M, et al. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl. Catal, B 2007,74(1-2): 53-62.
    [3]Tatsuda N, Itahara H, Setoyama N, et al. Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide. Carbon 2005,43(11): 2358-2365.
    [4]Liu S, Sun X, Li J, et al. Fluorine-and iron-modified hierarchical anatase microsphere photocatalyst for water cleaning:facile wet chemical synthesis and wavelength-sensitive photocatalytic reactivity. Langmuir 2010,26(6):4546-4553.
    [5]Yu H K, Yi G, Kang J, et al. Surfactant-assisted synthesis of uniform titania microspheres and their clusters. Chem. Mater.2008,20(8):2704-2710.
    [6]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science 2004,36(5696):666-669.
    [7]Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.2008,146(9-10):351-355.
    [8]K G A, S N K. The rise of graphene. Nat. Mater.2007,6(3):183-191.
    [9]Wang D, Choi D, Li J, et al. Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano 2009,3(4):907-914.
    [10]Paek S, Yoo E, Honma I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Lett.2009,9(1):72-75.
    [11]Seger B, Kamat P V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 2009,113(19): 7990-7995.
    [12]Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010,4(1):380-386.
    [13]Liu J, Bai H, Wang Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater.2010,20(23):4175-4181.
    [14]Wang Y, Shi R, Lin J, et al. Significant photocatalytic enhancement in Methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Appl. Catal., B 2010,100(1-2):179-183.
    [15]Liang Y, Wang H, Sanchez Casalongue H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res.2010,3(10): 701-705.
    [16]Yoo D, Cuong T V, Pham V H, et al. Enhanced photocatalytic activity of graphene oxide decorated on TiO2 films under UV and visible irradiation. Curr. Appl. Phys. 2011,11(3):805-808.
    [17]Zhu C, Guo S, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chem. Commun.2010,46(38):7148-7150.
    [18]Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009,113(47):20214-20220.
    [19]Zhang X, Li H, Cui X, et al. Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem.2010,20(14):2801-2806.
    [20]Tang Y, Lee C, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano 2010,4(6): 3482-3488.
    [21]Jiang G, Lin Z, Zhu L, et al. Preparation and photoelectrocatalytic properties of titania/carbon nanotube composite films. Carbon 2010,48(12):3369-3375.
    [22]Jiang G, Tang H, Zhu L, et al. Improving electrochemical properties of liquid phase deposited TiO2 thin films by doping sodium dodecylsulfonate and its application as bioelectrocatalytic sensor for hydrogen peroxide. Sens. Actuators, B 2009,138(2): 607-612.
    [23]Jr. Hummers W S, Offeman R E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958,80:1339.
    [24]Yu J, Yu H, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003,107(50):13871-13879.
    [25]Seredych M, Bandosz T J. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites. J. Phys. Chem. C 2010,114(34):14552-14560.
    [26]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev.B 2000,61(20):14095-14107.
    [27]Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett.2007,7(2):238-242.
    [28]Tuinstra F, Koenig J L. Raman spectrum of graphite. J. Chem. Phys.1970,53(3): 1126-1130.
    [29]Ferrari A C, Meyer J C, Scardaci V, et al. Raman Spectrum of graphene and graphene layers. Phys. Rev. Lett.2006,97(18):187401.
    [30]Cuong T V, Pham V H, Tran Q T, et al. Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide. Mater. Lett.2010, 64(3):399-401.
    [31]Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol 2009,4(1):25-29.
    [32]Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett.2008,8(1):36-41.
    [33]Calizo I, Balandin A A, Bao W, et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett.2007,7(9):2645-2649.
    [34]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J. Phys. Chem. B 2004,108(13):4086-4093.
    [35]Wang G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 2008,112(22):8192-8195.
    [36]Wang Z M, Hoshinoo K, Shishibori K, et al. Surfactant-mediated synthesis of a novel nanoporous carbon-silica composite. Chem. Mater.2003,15(15):2926-2935.
    [37]Yu J C, Yu J G, Ho W K, et al. Effects of F" doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater.2002,14(9): 3808-3816.
    [38]Xu C, Wang X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small 2009,5(19):2212-2217.
    [39]Sing K, Everett D H, Haul R, et al. Reporting physisorption data for gas/solid systems, with special reference to the determination of surface area and porosity. Pure Appl. Chem.1985,57(4):603-619.
    [40]Lambert T N, Chavez C A, Hernandez-Sanchez B, et al. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 2009, 113(46):19812-19823.
    [41]H W X, J-G L, H K, et al. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(Ⅲ)-doped TiO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 2006,110(13):6804-6809.
    [42]Li Y, Li X, Li J, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res.2006,40(6):1119-1126.
    [43]Dai K, Chen H, Peng T, et al. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 2007,69(9): 1361-1367.
    [44]Akhavan O, Abdolahad M, Esfandiar A, et al. Photodegradation of graphene oxide sheets by tio2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114(30):12955-12959.
    [45]Wang L, Wang N, Zhu L, et al. Photocatalytic reduction of Cr(Ⅵ) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater. 2008,152(1):93-99.
    [46]Wang N, Zhu L, Deng K, et al. Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl. Catal., B 2010,95(3-4):400-407.
    [47]Liu Z, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novel acceptor material:graphene. Adv. Mater.2008,20(20):3924-3930.
    [48]Williams G, Kamat P V. Graphene-semiconductor nanocomposites:excited-state interactions between zno nanoparticles and graphene oxide. Langmuir 2009,25(24): 13869-13873.
    [49]Williams G, Seger B, Kamat P V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008,2(7):1487-1491.
    [50]Yu Y, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect. Nano Lett.2009,9(10):3430-3434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700