用户名: 密码: 验证码:
纳米材料及氨基酸修饰电极在药物分析测定中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
70年代中期化学修饰电极逐渐发展形成一个比较活跃的研究方向,是电分析化学和电化学的前沿领域,目前已应用于材料科学、生命科学、分析科学、环境科学等许多方面。电极表面修饰的介质材料可在电极表面的电子传递过程实现电催化反应,加速氧化还原中心,它广泛应用于各种难以实现的电子传递过程,例如:有机物的电催化、生物分子的电催化、无机离子的电催化等。有很多化学修饰电极的制备方法,而且种类各异,本论文针对化学修饰电极的制备及在药物分析领域中的应用展开了以下研究:
     1.在疏水性表面活性剂存在下,乙炔黑纳米颗粒被均匀地分散在水中,并采用滴涂法制备得到乙炔黑修饰玻碳电极。芦丁在该电极上的电化学行为显示这种修饰材料能极大提高芦丁的电化学响应信号,对芦丁的电化学检测有明显的增敏作用。基于这一现象,采用该纳米乙炔黑修饰电极,建立了一种灵敏、简便的芦丁电化学检测新方法,其线性范围为20μg L~(-1)-500μg L~(-1),检测限为10μg L~(-1)。最后,此方法还成功用于多种含芦丁中药材芦丁含量的测定。
     2.通过化学氧化石墨粉末,制备出表面积大、具备大量含氧功能团的石墨烯(GO)纳米颗粒,并将制备的石墨烯纳米颗粒均匀分散在水中,制备得到GO纳米颗粒修饰的玻碳电极。利用该电极研究对乙酰氨基酚电化学行为,发现石墨烯薄膜对对乙酰氨基酚有明显的富集作用,能显著提高对乙酰氨基酚的氧化信号。基于这一现象,建立了一种灵敏、简便、快速测定对乙酰氨基酚的新电化学方法。富集1分钟后,其检测限达到50μg L~(-1)(微克每升),并最后将此方法用于化药片中对乙酰氨基酚含量的测定。
     3.按文献报道方法合成了一种介孔SiO_2材料,然后制备出介孔SiO_2修饰碳糊电极、研究了5-羟基色氨酸(5-HT)在裸碳糊电极和介孔SiO_2修饰碳糊电极上的电化学行为。接过显示由于介孔SiO_2具备大的比表面积、特殊的介孔结构以及强的吸附能力,因而介孔SiO_2修饰电极对5-羟基色氨酸的氧化有明显的增敏效应,显著提高5-羟基色氨酸的电化学氧化信号。通过考察支持电解质种类、介孔SiO_2用量、富集时间等参数对5-羟基色氨酸氧化信号的影响,获得了最佳的测试条件,建立了一种灵敏、快速、简便的测定5-羟基色氨酸的电化学分析新方法。该方法的线性范围为2.0×10~(-7)-1.5×10~(-5)mol L~(-1),富集2分钟后的检出限为6.0×10~(-8)mol L~(-1)。10支介孔SiO_2修饰碳糊电极平行测定10次的相对标准偏差(RSD)等于6.7%,表明该方法重现性良好。最后,将此方法还成功用于人血清中5-HT的检测。
     4.通过电化学聚合的方法,制备了一种测定微量雌二醇的聚L-丝氨酸薄膜修饰电极。利用该修饰电极研究了雌二醇的电化学行为,发现雌二醇在聚L-丝氨酸膜修饰玻碳电极上的氧化峰电位较在裸玻碳电极上明显负移,且氧化峰电流显著提高,表明聚L-丝氨酸膜对雌二醇的氧化有催化作用。基于这些现象,本实验采用该修饰电极建立了一种灵敏、快速、简便的雌二醇电化学检测方法,检测限达到2.0×10~(-8)mol L~(-1)。最后,将建立的方法成功用于人血清中雌二醇含量的测定。
The chemically modified electrodes have been one of the most burgeoning andflourish research areas in the electrochemistry areas and electroanalytic chemistry sincethey were developed in the middle of1970’s.It has been widely applied in many areassuch as material science, life science, analytic science and environmental science.The mediators modified on the electrode could be used to catalyse the electrochemicalreaction f and acilitate the electron transfer,which couldn’t be realized easily, like theelectrocatalysis of organic compounds,biomolecules and inorganic jons.Differentmethods and materials have been used for the modification of electrodes in this workand the appllication of the electrodes prepared is also evaluated.
     The main works we have done in this thesis include:
     1. Acetylene black nanoparticles were homogeneously dispersed into water in thepresence of hydrophobic surfactant and then used to modify the surface of a glassycarbon electrode. An examination of the electrochemistry of rutin showed that thismodification of the electrodes resulted in a considerable enhancement of the surface,thus remarkably increasing the signal for rutin. As a result, a sensitive and convenientelectrochemical method was developed for the determination of rutin. The linear rangeis from20μg L~(-1)to5mg L~(-1), and the limit of detection is10μg L~(-1). The method wassuccessfully employed to the determination of rutin in traditional Chinese medicines.
     2. The graphite oxide (GO) was prepared via the chemical oxidation of naturalgraphite powder, and then used to modify the surface of glassy carbon electrode (GCE).The electrochemical behavior of acetaminophen was examined. In0.01mol L~(-1)HCl, anirreversible oxidation peak is observed for acetaminophen, and the peak currentremarkably increases at the GO film-modified GCE. The influences of supportingelectrolyte, amount of GO suspension, accumulation potential and time were studied onthe oxidation peak current of acetaminophen. As a result, a new electrochemical methodwas developed for the detection of acetaminophen. The linear range is from25μg L~(-1)to4mg L~(-1), and the limit of detection is6μg L~(-1)based on three signal-noise ratio. Finally,it was successfully used to detect acetaminophen in tablets.
     3. A mesoporous SiO_2was synthesized according to the published work, and thenused to modify the carbon paste electrode (CPE). The electrochemical behaviors of5-hydroxytryptamine (5-HT) at the bare CPE and the mesoporous SiO_2modified CPE were compared. Owing to the huge surface area, unique mesopores and strongadsorptive ability, the oxidation signal of5-HT at the mesoporous SiO_2modified CPEgreatly increased, compared with that at the bare CPE. This clearly suggests that themesoporous SiO_2modified electrode shows efficient and remarkable enhancementeffect towards5-HT. Based on this, a sensitive, rapid and convenient electrochemicalmethod was developed for the determination of5-HT after optimizing the experimentalparameters such as supporting electrolyte, content of mesoporous SiO_2as well asaccumulation time. The linear range is from2.0x10~(-7)to1.5x10~(-5)mol/l, and the limitof detection is as low as8.0x10~(-8)mol/l after2-min accumulation. The relative standarddeviation (RSD) for10mesoporous SiO_2modified CPEs is evaluated to be6.7%.Finally, this novel method was successfully used to determine5-HT in human bloodserums.
     4. A thin film of poly(L-serine) was prepared via electropolymerization for thedetermination of trace levels of estradiol. In pH5.0phosphate buffer, L-serine wasoxidized during the cyclic potential sweeps between-0.60and2.0V, forming a thin filmat the electrode surface. The electrochemical behavior of estradiol was investigated. Theoxidation peak potential of estradiol shifts negatively at the poly(L-serine) film-coatedglassy carbon electrode (GCE) compared with that at the bare GCE. Otherwise, theoxidation peak current greatly increases at the poly(L-serine) film-modified GCE. Thesephenomena suggest that the poly(L-serine) film exhibits catalytic activity towards theelectrochemical oxidation of estradiol. Based on this, a sensitive, rapid and simpleelectrochemical method was proposed for the determination of estradiol. The limit ofdetection is evaluated to be2.0x10~(-8)mol L~(-1). Finally, this method was successfullyused to determine estradiol in blood serum.
引文
[1] Lane R F, Hubbard A T, Electrochemistry of chemisorbed molecules. I. Reactants connected toelectrodes through olefinic substituents. The Journal of Physical Chemistry,1973,77,1401-1410.
    [2] Watkins B F, Behling J R, Kariv E, et al., Chiral electrode. Journal of the American ChemicalSociety,1975,97,3549-3550.
    [3] Moses P R, Wier L, Murray R W, Chemically modified tin oxide electrode. Analytical Chemistry,1975,47,1882-1886.
    [4] Murray R, Electroanalytical Chemistry, ed. AJ Bard (Marcel Dekker, New York,1984) vol,13,191.
    [5] Heller A, Conversion of sunlight into electrical power and photoassisted electrolysis of water inphotoelectrochemical cells. Accounts of Chemical Research,1981,14,154-162.
    [6] Yoon H C, Kim H S, Multilayered assembly of dendrimers with enzymes on gold:thickness-controlled biosensing interface. Analytical Chemistry,2000,72,922-926.
    [7] Zhang L, Jia J, Zou X, et al., Simultaneous Determination of Dopamine and Ascorbic Acid at anIn-Site Functionalized Self-Assembled Monolayer on Gold Electrode. Electroanalysis,2004,16,1413-1418.
    [8] Jinrui X, Bin L, Preconcentration and determination of lead ions at a chitosan-modified glassy carbonelectrode. Analyst,1994,119,1599-1601.
    [9]刘盛辉,何品刚,在石墨电极上脱氧核糖核酸与米托蒽醌嵌入作用的电化学研究.分析化学,1996,24,1301-1304.
    [10] Millan K M, Mikkelsen S R, Sequence-selective biosensor for DNA based on electroactivehybridization indicators. Analytical Chemistry,1993,65,2317-2323.
    [11] Yang M, Kong R Y C, Kazmi N, et al., Covalent immobilization of oligonucleotides on modifiedglass/silicon surfaces for solid-phase DNA hybridization and amplification. Chemistry Letters,1998,27,257-258.
    [12] Ligaj M, Jasnowska J, Musial W G, et al., Covalent attachment of single-stranded DNA to carbonpaste electrode modified by activated carboxyl groups. Electrochimica acta,2006,51,5193-5198.
    [13] Quan D, Kim Y, Shin W, Characterization of an amperometric laccase electrode covalentlyimmobilized on platinum surface. Journal of Electroanalytical Chemistry,2004,561,181-189.
    [14] Zhou Y L, Zhi J F, Development of an amperometric biosensor based on covalent immobilization oftyrosinase on a boron-doped diamond electrode. Electrochemistry communications,2006,8,1811-1816.
    [15] Geneste F, Moinet C, Electrocatalytic oxidation of alcohols by a [Ru(tpy)(phen)(OH2+2)]-modifiedelectrode. Journal of Electroanalytical Chemistry,2006,594,105-110.
    [16] Raj C R, Okajima T, Ohsaka T, Gold nanoparticle arrays for the voltammetric sensing of dopamine.Journal of Electroanalytical Chemistry,2003,543,127-133.
    [17]Zhang S, Wang N, Yu H, et al, Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry,2005,67,15-22.
    [18]Zhang S, Wang N, Niu Y, et al., Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor. Sensors and Actuators B:Chemical,2005,109,367-374.
    [19]Brown A P, Anson F C, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Analytical Chemistry,1977,49,1589-1595.
    [20]Brown A P, Koval C, Anson F C, Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1976,72,379-387.
    [21]Brown A P, Anson F C, Electron transfer kinetics with both reactant and product attached to the electrode surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1978,92,133-145.
    [22]Palecek E, Fojta M, Differential pulsed voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components. Analytical Chemistry,1994,66,1566-1571.
    [23]Wang J, Cai X, Rivas G, et al., DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Analytical Chemistry,1996,68,2629-2634.
    [24]Marrazza G, Chianella I, Mascini M, Disposable DNA electrochemical sensor for hybridization detectionl. Biosensors and Bioelectronics,1999,14,43-51.
    [25]刘有芹,沈含熙,氯化血红素修饰玻碳电极的制备及其作用机理.分析化学,2004,32,41-45.
    [26]Moser I, Schalkhammer T, Pittner F, et al, Surface techniques for an electrochemical DNA biosensor. Biosensors and Bioelectronics,1997,12,729-737.
    [27]Fujihira M, Poosittisak S, Precise control of amount of electrodeposited Pt by using the Langmuir-blodgett film and its application to electrocatalysts of molecular oxygen reduction. Chemistry Letters,1986,251-252.
    [28]Sagiv J, Organized monolayers by adsorption.1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society,1980,102,92-98.
    [29]杨生荣,任嗣利,自组装单分子膜的结构及其自组装机理.高等学校化学学报,2001,22,470-476.
    [30]Ulman A, An introduction to ultrathin organic films. Academic Press,1991.
    [31]Ogawa H, Chihara T, Taya K, Selective monomethyl esterification of dicarboxylic acids by use of monocarboxylate chemisorption on alumina. Journal of the American Chemical Society,1985,107,1365-1369.
    [32]Xu X H, Bard A J, Immobilization and hybridization of DNA on an aluminum (III) alkanebisphosphonate thin film with electrogenerated chemiluminescent detection. Journal of the American Chemical Society,1995,117,2627-2631.
    [33] Herrero E, Buller L J, Abru a H D, Underpotential deposition at single crystal surfaces of Au, Pt, Agand other materials. Chemical Reviews,2001,101,1897-1930.
    [34]董绍俊,车广礼,谢远武, et al.,化学修饰电极.科学出版社,1995.
    [35] Diaz A, Kanazawa K K, Gardini G P, Electrochemical polymerization of pyrrole. J. Chem. Soc.,Chem. Commun.,1979,635-636.
    [36] Karyakin A, Strakhova A, Yatsimirsky A, Self-doped polyanilines electrochemically active in neutraland basic aqueous solutions.:: Electropolymerization of substituted anilines. Journal ofElectroanalytical Chemistry,1994,371,259-265.
    [37]董绍俊,化学修饰电极在分析化学中的应用.分析化学,1988,16,951-951.
    [38]林祥钦,晋冠平,崔华,聚L-谷氨酸/石墨充蜡修饰电极测定多巴胺.分析化学,2002,30,271-275.
    [39] Gao Z, Huang H, Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathinfilm modified gold electrode. Chemical Communications,1998,2107-2108.
    [40] Li X, Wan Y, Sun C, Covalent modification of a glassy carbon surface by electrochemical oxidation ofr-aminobenzene sulfonic acid in aqueous solution. Journal of Electroanalytical Chemistry,2004,569,79-87.
    [41] Wang C Y, Wang Z X, Guan J, et al., Voltammetric determination of meloxicam in pharmaceuticalformulation and human serum at glassy carbon electrode modified by cysteic acid formed byelectrochemical oxidation of L-cysteine. Sensors,2006,6,1139-1152.
    [42] Gao Q, Wang W, Ma Y, et al., Electrooxidative polymerization of phenothiazine derivatives onscreen-printed carbon electrode and its application to determine NADH in flow injection analysissystem. Talanta,2004,62,477-482.
    [43]刘有芹,颜芸,沈含熙,化学修饰电极的研究及其分析应用.化学研究与应用,2006,18,337-343.
    [44] Mao L, Yamamoto K, Amperometric on-line sensor for continuous measurement of hypoxanthinebased on osmium-polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassycarbon electrode. Analytica chimica acta,2000,415,143-150.
    [45] Zhu Y H, Zhang Z L, Pang D W, Electrochemical oxidation of theophylline at multi-wall carbonnanotube modified glassy carbon electrodes. Journal of Electroanalytical Chemistry,2005,581,303-309.
    [46] Shen L, Huang R, Hu N, Myoglobin in polyacrylamide hydrogel films: direct electrochemistry andelectrochemical catalysis. Talanta,2002,56,1131-1139.
    [47] Lojou é, Luciano P, Nitsche S, et al., Poly(ester–sulfonic acid): modified carbon electrodes for theelectrochemical study of c-type cytochromes. Electrochimica acta,1999,44,3341-3352.
    [48] Shigehara K, Oyama N, Anson F C, Electrochemical responses of electrodes coated with redoxpolymers. Evidence for control of charge-transfer rates across polymeric layers by electron exchangebetween incorporated redox sites. Journal of the American Chemical Society,1981,103,2552-2558.
    [49] Gerhardt G A, Oke A F, Nagy G, et al., Nafion-coated electrodes with high selectivity for CNSelectrochemistry. Brain Research,1984,290,390-395.
    [50] Zhuo Y, Yuan R, Chai Y, et al., Amperometric enzyme immunosensors based on layer-by-layerassembly of gold nanoparticles and thionine on Nafion modified electrode surface for α-1-fetoproteindeterminations. Sensors and Actuators B: Chemical,2006,114,631-639.
    [51] Deng C, Li M, Xie Q, et al., Construction as well as EQCM and SECM characterizations of a novelNafion/glucose oxidase-glutaraldehyde/poly (thionine)/Au enzyme electrode for glucose sensing.Sensors and Actuators B: Chemical,2007,122,148-157.
    [52] Chen H, Wang Y, Liu Y, et al., Direct electrochemistry and electrocatalysis of horseradish peroxidaseimmobilized in Nafion-RTIL composite film. Electrochemistry communications,2007,9,469-474.
    [53] Zhao S, Zhang K, Bai Y, et al., Glucose oxidase/colloidal gold nanoparticles immobilized in Nafionfilm on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry,2006,69,158-163.
    [54] Ding S N, Xu J J, Zhang W J, et al.,Tris (2,2′-bipyridyl)ruthenium(II)–Zirconia–Nafion compositemodified electrode applied as solid-state electrochemiluminescence detector on electrophoreticmicrochip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin. Talanta,2006,70,572-577.
    [55] Selvaraju T, Ramaraj R, Electrochemically deposited nanostructured platinum on Nafion coatedelectrode for sensor applications. Journal of Electroanalytical Chemistry,2005,585,290-300.
    [56] Huang J, Song Z, Li J, et al., A highly-sensitive l-lactate biosensor based on sol-gel film combinedwith multi-walled carbon nanotubes (MWCNTs) modified electrode. Materials Science andEngineering: C,2007,27,29-34.
    [57] Salimi A, Noorbakhsh A, Ghadermarzi M, Amperometric detection of nitrite, iodate and periodate atglassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sensors andActuators B: Chemical,2007,123,530-537.
    [58] Kang X, Mai Z, Zou X, et al., A sensitive nonenzymatic glucose sensor in alkaline media with acopper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Analyticalbiochemistry,2007,363,143-150.
    [59] Zhu L, Zhai J, Yang R, et al., Electrocatalytic oxidation of NADH with Meldola's bluefunctionalized carbon nanotubes electrodes. Biosensors and Bioelectronics,2007,22,2768-2773.
    [60] Zare H R, Nasirizadeh N, Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrodefor electrocatalytic oxidation of hydrazine. Electrochimica acta,2007,52,4153-4160.
    [61] Zhang Y, Cai Y, Su S, Determination of dopamine in the presence of ascorbic acid by poly (styrenesulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode.Analytical biochemistry,2006,350,285-291.
    [62] Li Y, Shi X, Hao J, Electrochemical behavior of glassy carbon electrodes modified by multi-walledcarbon nanotube/surfactant films in a buffer solution and an ionic liquid. Carbon,2006,44,2664-2670.
    [63] Tsai Y C, Chen J M, Li S C, et al., Electroanalytical thin film electrodes based on aNafion-multi-walled carbon nanotube composite. Electrochemistry communications,2004,6,917-922.
    [64] Lee C H, Wang S C, Yuan C J, et al., Comparison of amperometric biosensors fabricated by palladiumsputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbonelectrodes. Biosensors and Bioelectronics,2007,22,877-884.
    [65] Wang H S, Li T H, Jia W L, et al., Highly selective and sensitive determination of dopamine using aNafion/carbon nanotubes coated poly (3-methylthiophene) modified electrode. Biosensors andBioelectronics,2006,22,664-669.
    [66] Sun D, Xie X, Cai Y, et al., Voltammetric determination of Cd2+based on the bifunctionality ofsingle-walled carbon nanotubes–Nafion film. Analytica chimica acta,2007,581,27-31.
    [67] Bocarsly A B, Galvin S A, Sinha S, Properties of chemically derivatized nickel electrodes: thesynthesis of an electrocatalytic interface. Journal of the Electrochemical Society,1983,130,1319-1325.
    [68]刘有芹,沈含熙,钴氢氧化物修饰玻碳电极的镀膜/循环伏安法制备及其电化学行为.化学学报,2004,62,2067-2072.
    [69]刘有芹,刘六战,沈含熙,氢氧化钴修饰玻碳电极的制备及其电化学行为.分析测试学报,2004,23,9-13.
    [70] Halbert M K, Baldwin R P, Electrocatalytic and analytical response of cobalt phthalocyaninecontaining carbon paste electrodes toward sulfhydryl compounds. Analytical Chemistry,1985,57,591-595.
    [71] Millan K M, Saraullo A, Mikkelsen S R, Voltammetric DNA biosensor for cystic fibrosis based on amodified carbon paste electrode. Analytical Chemistry,1994,66,2943-2948.
    [72]魏培海,李关宾,多巴胺在3-巯丙基三甲氧基硅烷-铜/多孔晶形分子筛修饰碳糊电极上的电化学氧化.分析化学,2005,33,703-706.
    [73] Zare H, Nasirizadeh N, Mazloum Ardakani M, Electrochemical properties of atetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneousdetermination of ascorbic acid, dopamine and uric acid. Journal of Electroanalytical Chemistry,2005,577,25-33.
    [74] Yantasee W, Lin Y, Fryxell G E, et al., Simultaneous detection of cadmium, copper, and lead using acarbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer onmesoporous silica (SAMMS). Analytica chimica acta,2004,502,207-212.
    [75] Teixeira M F S, Marino G, Dockal E R, et al., Voltammetric determination of pyridoxine (Vitamin B6)at a carbon paste electrode modified with vanadyl(IV)–Salen complex. Analytica chimica acta,2004,508,79-85.
    [76] Kroto H W, Heath J R, O'Brien S C, et al., C60: buckminsterfullerene. Nature,1985,318,162-163.
    [77] Iijima S, Helical microtubules of graphitic carbon. Nature,1991,354,56-58.
    [78] Iijima S, Ichihashi T, Single-shell carbon nanotubes of1-nm diameter.1993.
    [79] Bethune D S, Kiang C H, De Vries M S, et al., Cobalt-catalysed growth of carbon nanotubes withsingle-atomic-layer walls. Nature,1993,363,605-607.
    [80] Ebbesen T W, Carbon nanotubes. Physics Today,1996,49,26-35.
    [81]成会明,纳米碳管:制备,结构,物性及应用.化学工业出版社,2002.
    [82] Wang J, Li M, Shi Z, et al., Electrocatalytic oxidation of3,4-dihydroxyphenylacetic acid at a glassycarbon electrode modified with single-wall carbon nanotubes. Electrochimica acta,2001,47,651-657.
    [83] Zou J, Ji B, Feng X Q, et al., Self-assembly of single-walled carbon nanotubes into multiwalledcarbon nanotubes in water: molecular dynamics simulations. Nano letters,2006,6,430-434.
    [84] Tsang S C, Chen Y K, Harris P J F, et al., A simple chemical method of opening and filling carbonnanotubes. Nature,1994,372,159-162.
    [85] Rinzler A G, Liu J, Dai H, et al., Large-scale purification of single-wall carbon nanotubes: process,product, and characterization. Applied Physics A: Materials Science&Processing,1998,67,29-37.
    [86]杨占红,李晶,碳纳米管的纯化-电化学氧化法.高等学校化学学报,2001,22,446-449.
    [87] Wu F H, Zhao G C, Wei X W, Electrocatalytic oxidation of nitric oxide at multi-walled carbonnanotubes modified electrode. Electrochemistry communications,2002,4,690-694.
    [88]罗红霞,施祖进,李南强,羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报,2000,21,1372-1374.
    [89] Luo H X, Shi Z J, Li N Q, et al., Investigation of the electrochemical and electrocatalytic behavior ofsingle-wall carbon nanotube film on a glassy carbon electrode. Analytical Chemistry,2001,73,915-920.
    [90]郝春香,赵常志,唐祯安,碳纳米管修饰电极对多巴胺和抗坏血酸的电催化氧化.分析化学,2003,31,958-958.
    [91] Musameh M, Wang J, Merkoci A, et al., Low-potential stable NADH detection atcarbon-nanotube-modified glassy carbon electrodes. Electrochemistry communications,2002,4,743-746.
    [92] Wang Z, Liu J, Liang Q, et al., Carbon nanotube-modified electrodes for the simultaneousdetermination of dopamine and ascorbic acid. Analyst,2002,127,653-658.
    [93] Liu P, Hu J, Carbon nanotube powder microelectrodes for nitrite detection. Sensors and Actuators B:Chemical,2002,84,194-199.
    [94] Lin X Q, He J B, Zha Z G, Simultaneous determination of quercetin and rutin at a multi-wallcarbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors and ActuatorsB: Chemical,2006,119,608-614.
    [95] Wang J, Li M, Shi Z, et al., Investigation of the electrocatalytic behavior of single-wall carbonnanotube films on an Au electrode. Microchemical journal,2002,73,325-333.
    [96]肖素芳,王宗花,罗国安, et al., L-半胱氨酸在环糊精复合碳纳米管电极上的伏安测定.高等学校化学学报,2004,25,1833-1835.
    [97] Wang G, Liu X, Yu B, et al., Electrocatalytic response of norepinephrine at a β-cyclodextrinincorporated carbon nanotube modified electrode. Journal of Electroanalytical Chemistry,2004,567,227-231.
    [98] Wu K, Hu S, Fei J, et al., Mercury-free simultaneous determination of cadmium and lead at a glassycarbon electrode modified with multi-wall carbon nanotubes. Analytica chimica acta,2003,489,215-221.
    [99] Islam M, Rojas E, Bergey D, et al., High weight fraction surfactant solubilization of single-wallcarbon nanotubes in water. Nano letters,2003,3,269-273.
    [100] Wu K, Hu S, Electrochemical Study and Selective Determination of Dopamine at a Multi-Wall CarbonNanotube-Nafion Film Coated Glassy Carbon Electrode. Microchimica Acta,2004,144,131-137.
    [101] Zhao G-C, Yin Z-Z, Zhang L, et al., Direct electrochemistry of cytochrome c on a multi-walledcarbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2.Electrochemistry communications,2005,7,256-260.
    [102] Campbell J K, Sun L, Crooks R M, Electrochemistry using single carbon nanotubes. Journal of theAmerican Chemical Society,1999,121,3779-3780.
    [103] Bao J, Tie C, Xu Z, et al., A Facile Method for Creating an Array of Metal-Filled Carbon Nanotubes.Advanced Materials,2002,14,1483-1486.
    [104] Che G, Lakshmi B B, Fisher E R, et al., Carbon nanotubule membranes for electrochemical energystorage and production. Nature,1998,393,346-349.
    [105]陈静,包建春,蔡称心, Fabrication, Characterization and Electrocatalysis of an Ordered CarbonNanotube Electrode.中国化学:英文版,2003,21,665-669.
    [106] Miao J Y, Cai Y, Chan Y F, et al., A Novel Carbon Nanotube Structure Formed in Ultra-LongNanochannels of Anodic Aluminum Oxide Templates. The Journal of Physical Chemistry B,2006,110,2080-2083.
    [107]南小林,张锦,单壁碳纳米管在金表面的图形化组装.物理化学学报,2001,17,393-396.
    [108] Liu Z, Shen Z, Zhu T, et al., Organizing single-walled carbon nanotubes on gold using a wetchemical self-assembling technique. Langmuir,2000,16,3569-3573.
    [109] Sotiropoulou S, Chaniotakis N A, Carbon nanotube array-based biosensor. Analytical andbioanalytical chemistry,2003,375,103-105.
    [110] Tominaga M, Shimazoe T, Nagashima M, et al., Electrocatalytic oxidation of glucose at goldnanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochemistrycommunications,2005,7,189-193.
    [111] Yang Z, Hu G, Chen X, et al., The nano-Au self-assembled glassy carbon electrode for selectivedetermination of epinephrine in the presence of ascorbic acid. Colloids and Surfaces B: Biointerfaces,2007,54,230-235.
    [112] Zhang L, Jiang X, Wang E, et al., Attachment of gold nanoparticles to glassy carbon electrode and itsapplication for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosensorsand Bioelectronics,2005,21,337-345.
    [113] Kumar S S, Mathiyarasu J, Phani K L, Exploration of synergism between a polymer matrix and goldnanoparticles for selective determination of dopamine. Journal of Electroanalytical Chemistry,2005,578,95-103.
    [114] Wang L, Bai J, Huang P, et al., Self-assembly of gold nanoparticles for the voltammetric sensing ofepinephrine. Electrochemistry communications,2006,8,1035-1040.
    [115]张宏,金葆康,纳米金修饰玻碳电极在抗坏血酸共存下选择性测定去甲肾上腺素.分析化学,2002,30,1285-1288.
    [116] Zhang J, Kambayashi M, Oyama M, Seed mediated growth of gold nanoparticles on indium tin oxideelectrodes: electrochemical characterization and evaluation. Electroanalysis,2005,17,408-416.
    [117] Delvaux M, Walcarius A, Demoustier-Champagne S, Electrocatalytic H2O2amperometric detectionusing gold nanotube electrode ensembles. Analytica chimica acta,2004,525,221-230.
    [118] Yang W, Bai Y, Li Y, et al., Amperometric nitrite sensor based on hemoglobin/colloidal goldnanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film. Analytical andbioanalytical chemistry,2005,382,44-50.
    [119] Majid E, Hrapovic S, Liu Y, et al., Electrochemical determination of arsenite using a goldnanoparticle modified glassy carbon electrode and flow analysis. Analytical Chemistry,2006,78,762-769.
    [120] Dai X, Compton R G, Gold nanoparticle modified electrodes show a reduced interference by Cu (II)in the detection of As (III) using anodic stripping voltammetry. Electroanalysis,2005,17,1325-1330.
    [121] Curulli A, Valentini F, Padeletti G, et al., Smart (Nano) materials: TiO2nanostructured films tomodify electrodes for assembling of new electrochemical probes. Sensors and Actuators B: Chemical,2005,111-112,441-449.
    [122]褚道葆,林昌健, Ti表面修饰纳米TiO2膜电极的电催化活性.高等学校化学学报,2002,23,678-681.
    [123] Wang J, Pamidi P V A, Jiang M, Low-potential stable detection of β-NADH at sol–gel derivedcarbon composite electrodes. Analytica chimica acta,1998,360,171-178.
    [124] Topoglidis E, Campbell C J, Cass A E G, et al., Factors that affect protein adsorption onnanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir,2001,17,7899-7906.
    [125] Topoglidis E, Astuti Y, Duriaux F, et al., Direct electrochemistry and nitric oxide interaction of hemeproteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir,2003,19,6894-6900.
    [126] Zhang Y, He P, Hu N, Horseradish peroxidase immobilized in TiO2nanoparticle films on pyrolyticgraphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochimica acta,2004,49,1981-1988.
    [127] Li Q, Luo G, Feng J, Direct electron transfer for heme proteins assembled on nanocrystalline TiO2film. Electroanalysis,2001,13,359-363.
    [128] Gray N J, Unwin P R, Simple procedure for the fabrication of silver/silver chloride potentiometricelectrodes with micrometre and smaller dimensions: application to scanning electrochemicalmicroscopy. Analyst,2000,125,889-893.
    [129] Wang C, Hu X, Fabrication of nanometre-sized platinum electrodes by controllable electrochemicaldeposition. Talanta,2006,68,1322-1328.
    [130] Wang X, Kang Z, Wang E, et al., Preparation, electrochemical property and application inchemically bulk-modified electrode of a hybrid inorganic-organic silicomolybdate nanoparticles.Materials Letters,2002,56,393-396.
    [131] Matsuo Y, Higashika S, Kimura K, et al., Synthesis of polyaniline-intercalated layered materials viaexchange reaction. Journal of Materials Chemistry,2002,12,1592-1596.
    [132] Jun L, WANG Z H, WANG Y M, et al., Nanosized SnO2Particles Dispersed on a Graphite Electrodefor Selective Detection of Dopamine and Ascorbic Acid. Chinese Chemical Letters,2002,13,765-768.
    [133] Wang S, Yin Y, Lin X, Cooperative effect of Pt nanoparticles and Fe (III) in the electrocatalyticoxidation of nitrite. Electrochemistry communications,2004,6,259-262.
    [134]古练权,许家喜,段玉峰,生物化学In高等教育出版社,2000,
    [135] Campuzano S, Serra B, Pedrero M, et al., Amperometric flow-injection determination of phenoliccompounds at self-assembled monolayer-based tyrosinase biosensors. Analytica chimica acta,2003,494,187-197.
    [136] Luz R d C S, Damos F S, Tanaka A A, et al., Dissolved oxygen sensor based on cobalttetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode.Sensors and Actuators B: Chemical,2006,114,1019-1027.
    [137] Ardakani M M, Rahimi P, Karami P E, et al., Electrocatalytic oxidation of cysteine by quinizarine atglassy carbon electrode. Sensors and Actuators B: Chemical,2007,123,763-768.
    [138] Ramesh A, Hasegawa H, Sugimoto W, et al., Adsorption of gold (III), platinum (IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresource technology,2008,99,3801-3809.
    [139] Koncki R, Wa cerz I, Ruckruh F, et al., Bienzymatic potentiometric electrodes for creatine andL-arginine determination. Analytica chimica acta,1996,333,215-222.
    [140] Wang S f, Du D, Zou Q C, Electrochemical behavior of epinephrine at L-cysteine self-assembledmonolayers modified gold electrode. Talanta,2002,57,687-692.
    [141] Ralph T R, Hitchman M L, Millington J P, et al., The reduction of l-cystine hydrochloride atstationary and rotating disc mercury electrodes. Electrochimica acta,2005,51,133-145.
    [142] Kong J, Chapline M G, Dai H, Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors.Advanced Materials,2001,13,1384-1386.
    [143] Davis D G, Blanco E, An electrochemical study of the oxidation of L-cysteine. Journal ofElectroanalytical Chemistry (1959),1966,12,254-260.
    [144]徐肖邢,铜卟啉-L-半胱氨酸自组装复合膜修饰电极的制备及电化学性能研究.化学研究与应用,2004,16,632-634.
    [145]王广凤,李茂国,阚显文,纳米银/半胱氨酸修饰金电极的制备及对苯二酚的测定.应用化学,2005,22,168-171.
    [146] Fei S, Chen J, Yao S, et al., Electrochemical behavior of L-cysteine and its detection at carbonnanotube electrode modified with platinum. Analytical biochemistry,2005,339,29-35.
    [147] Wang C, Shao X, Liu Q, et al., Differential pulse voltammetric determination of nimesulide inpharmaceutical formulation and human serum at glassy carbon electrode modified by cysteicacid/CNTs based on electrochemical oxidation of L-cysteine. Journal of Pharmaceutical andBiomedical Analysis,2006,42,237-244.
    [148] Viana E R C, Pereira F C, Zanoni M V B, Electrochemical reduction and determination of CibacronBlue F3GA at poly-L-lysine modified glassy carbon electrode. Dyes and Pigments,2006,71,145-152.
    [149] Santos D P, Zanoni M V B, Bergamini M F, et al., Poly (glutamic acid) nanofibre modified glassycarbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemicalimpedance. Electrochimica acta,2008,53,3991-4000.
    [150] Takita R, Yoshida K, Anzai J, Redox properties of ferricyanide ion on layer-by-layer deposited poly(glutamic acid) film-coated electrodes and its use for electrocatalytic sensing of ascorbic acid.Sensors and Actuators B: Chemical,2007,121,54-60.
    [151] Ling D, Wu G, Wang C, et al., The preparation and characterization of an immobilized L-glutamicdecarboxylase and its application for determination of l-glutamic acid. Enzyme and MicrobialTechnology,2000,27,516-521.
    [152] Li C, Voltammetric determination of tyrosine based on an L-serine polymer film electrode. Colloidsand Surfaces B: Biointerfaces,2006,50,147-151.
    [153] Yu A M, Chen H Y, Electrocatalytic oxidation and determination of ascorbic acid at poly (glutamicacid) chemically modified electrode. Analytica chimica acta,1997,344,181-185.
    [154]董绍俊,车广礼,谢远武,化学修饰电极(修订版). In高等教育出版社,2003,
    [155] Pinter J S, Brown K L, DeYoung P A, et al., Amperometric detection of hydrazine by cyclicvoltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta,2007,71,1219-1225.
    [156] Lowinsohn D, Bertotti M, Flow injection analysis of blood L-lactate by using a Prussian Blue-basedbiosensor as amperometric detector. Analytical biochemistry,2007,365,260-265.
    [157] Agüí L, Pe a-Farfal C, Yá ez-Sede o P, et al., Determination of β-carboline alkaloids in foods andbeverages by high-performance liquid chromatography with electrochemical detection at a glassycarbon electrode modified with carbon nanotubes. Analytica chimica acta,2007,585,323-330.
    [158] Chou C C, Lin S P, Lee K M, et al., Fast differentiation of meats from fifteen animal species byliquid chromatography with electrochemical detection using copper nanoparticle plated electrodes.Journal of Chromatography B,2007,846,230-239.
    [159] Zanganeh A R, Amini M K, A potentiometric and voltammetric sensor based on polypyrrole filmwith electrochemically induced recognition sites for detection of silver ion. Electrochimica acta,2007,52,3822-3830.
    [160]李建平,彭图治,张雪君,铋膜电极电位溶出法测定痕量铅,镉,锌.分析化学,2002,30,1092-1095.
    [161] Lindfors T, Ivaska A, pH sensitivity of polyaniline and its substituted derivatives. Journal ofElectroanalytical Chemistry,2002,531,43-52.
    [162] Zhang X, Ogorevc B, Wang J, Solid-state pH nanoelectrode based on polyaniline thin filmelectrodeposited onto ion-beam etched carbon fiber. Analytica chimica acta,2002,452,1-10.
    [163] Kaempgen M, Roth S, Transparent and flexible carbon nanotube/polyaniline pH sensors. Journal ofElectroanalytical Chemistry,2006,586,72-76.
    [164] Bhat V S, Ijeri V S, Srivastava A K, Coated wire lead(II) selective potentiometric sensor based on4-tert-butylcalix[6]arene. Sensors and Actuators B: Chemical,2004,99,98-105.
    [165] Gupta V K, Jain A K, Agarwal S, et al., An iron(III) ion-selective sensor based on a μ-bis(tridentate)ligand. Talanta,2007,71,1964-1968.
    [166] Singh A K, Mehtab S, Calcium(II)-selective potentiometric sensor based on α-furildioxime as neutralcarrier. Sensors and Actuators B: Chemical,2007,123,429-436.
    [167] Honeychurch K C, O'Donovan M R, Hart J P, Voltammetric behaviour of DNA bases at ascreen-printed carbon electrode and its application to a simple and rapid voltammetric method for thedetermination of oxidative damage in double stranded DNA. Biosensors and Bioelectronics,2007,22,2057-2064.
    [168] Fahnrich K, Pravda M, Guilbault G, Disposable amperometric immunosensor for the detection ofpolycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosensors andBioelectronics,2003,18,73-82.
    [169] Künzelmann U, B ttcher H, Biosensor properties of glucose oxidase immobilized within SiO2gels.Sensors and Actuators B: Chemical,39,222-228.
    [170] Yamamoto K, Ohgaru T, Torimura M, et al., Highly-sensitive flow injection determination of hydrogenperoxide with a peroxidase-immobilized electrode and its application to clinical chemistry. Analyticachimica acta,2000,406,201-207.
    [171] Wang H, Guan R, Fan C, et al., A hydrogen peroxide biosensor based on the bioelectrocatalysis ofhemoglobin incorporated in a kieselgubr film. Sensors and Actuators B: Chemical,2002,84,214-218.
    [172]缪谦,金葆康, ss-DNA在纳米金上固载和杂化的化学传感研究.高等学校化学学报,2000,21,27-30.
    [173] Lin Y, Lu F, Tu Y, et al., Glucose biosensors based on carbon nanotube nanoelectrode ensembles.Nano letters,2004,4,191-195.
    [174] Zhang H M, Li N Q, Zhu Z, Electrocatalytic response of dopamine at a DL-homocysteineself-assembled gold electrode. Microchemical journal,2000,64,277-282.
    [175] Zhao Y, Gao Y, Zhan D, et al., Selective detection of dopamine in the presence of ascorbic acid anduric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta,2005,66,51-57.
    [176] Lin X Q, Zhang L, Simultaneous determination of dopamine and ascorbic acid at glutamic acidmodified graphite electrode. Analytical letters,2001,34,1585-1601.
    [177] Zhang L, Lin X, Covalent modification of glassy carbon electrodes with glycine for voltammetricseparation of dopamine and ascorbic acid. Fresenius' journal of analytical chemistry,2001,370,956-962.
    [178] Zen J M, Hsu C T, A selective voltammetric method for uric acid detection at Nafion-coated carbonpaste electrodes. Talanta,1998,46,1363-1369.
    [179] Choi H N, Kim M A, Lee W Y, Amperometric glucose biosensor based on sol-gel-derived metaloxide/Nafion composite films. Analytica chimica acta,2005,537,179-187.
    [180] Chen R S, Huang W H, Tong H, et al., Carbon fiber nanoelectrodes modified by single-walledcarbon nanotubes. Analytical Chemistry,2003,75,6341-6345.
    [181]钟爱国,罗美沙星铋(Ⅲ)修饰碳糊电极的制作及应用.西北药学杂志,2003,18,244-245.
    [182]钟爱国,雷尼替丁-汞(Ⅱ)配合物修饰碳糊电极的制作及应用.现代科学仪器,2002,51-52.
    [183] Gong K, Zhang M, Yan Y, et al., Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes:tunable electrode dimension and potential electrochemical applications. Analytical Chemistry,2004,76,6500-6505.
    [184] Yang Y, Yang M, Wang H, et al., Inhibition biosensor for determination of nicotine. Analyticachimica acta,2004,509,151-157.
    [185] Huang F, Jin G, Liu Y, et al., Sensitive determination of phenylephrine and chlorprothixene at poly(4-aminobenzene sulfonic acid) modified glassy carbon electrode. Talanta,2008,74,1435-1441.
    [186]王赫胤,杨继生,花蓓,聚吡咯碳糊电极的研制及应用.分析化学,1998,7,847-849.
    [187]汪敏,张祯,聚氯乙烯膜氧氟沙星和曲马多选择电极的研制与应用.分析化学,1997,25,448-451.
    [188]李东辉,汪敏,聚氯乙烯膜诺氟沙星选择电极的研制与应用.分析化学,1996,24,931-933.
    [189]李东辉,丁杨栋,贾云宏,涂碳型聚氯乙烯膜奎宁选择电极的研制与应用.分析化学,1996,24,990-990.
    [190]李贵荣,王永生,甘油三酯微生物传感器的研制.分析化学,1998,26,793-796.
    [191] Zeng Y, Li C, Tang C, et al., The electrochemical properties of Co (TPP), tetraphenylborate modifiedglassy carbon electrode: application to dopamine and uric acid analysis. Electroanalysis,2006,18,440-448.
    [192] Liu T, Li M, Li Q, Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteineself-assembled monolayer. Talanta,2004,63,1053-1059.
    [193] Hu G, Liu Y, Zhao J, et al., Selective response of dopamine in the presence of ascorbic acid onL-cysteine self-assembled gold electrode. Bioelectrochemistry,2006,69,254-257.
    [194] Gopalan A I, Lee K P, Manesh K M, et al., Electrochemical determination of dopamine and ascorbicacid at a novel gold nanoparticles distributed poly (4-aminothiophenol) modified electrode. Talanta,2007,71,1774-1781.
    [195] Zhang P, Wu F H, Zhao G C, et al., Selective response of dopamine in the presence of ascorbic acidat multi-walled carbon nanotube modified gold electrode. Bioelectrochemistry,2005,67,109-114.
    [196] Jiang X, Lin X, Overoxidized polypyrrole film directed DNA immobilization for construction ofelectrochemical micro-biosensors and simultaneous determination of serotonin and dopamine.Analytica chimica acta,2005,537,145-151.
    [197] Lin X, Zhang Y, Chen W, et al., Electrocatalytic oxidation and determination of dopamine in thepresence of ascorbic acid and uric acid at a poly (p-nitrobenzenazo resorcinol) modified glassycarbon electrode. Sensors and Actuators B: Chemical,2007,122,309-314.
    [198] Wu K, Fei J, Hu S, Simultaneous determination of dopamine and serotonin on a glassy carbonelectrode coated with a film of carbon nanotubes. Analytical biochemistry,2003,318,100-106.
    [199] Xu H, Wang D, Zhang W, et al., Determination of isatin and monoamine neurotransmitters in ratbrain with liquid chromatography using palladium hexacyanoferrate modified electrode. Analyticachimica acta,2006,577,207-213.
    [200] Li Y, Lin X, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinylalcohol) covalently modified glassy carbon electrode. Sensors and Actuators B: Chemical,2006,115,134-139.
    [201] Goyal R N, Tyagi A, Bachheti N, et al., Voltammetric determination of bisoprolol fumarate inpharmaceutical formulations and urine using single-wall carbon nanotubes modified glassy carbonelectrode. Electrochimica acta,2008,53,2802-2808.
    [202]施国跃,周红国,微渗析活体取样-NiHCF修饰电极色谱电化学检测的研究.分析化学,1998,26,814-818.
    [203]彭图治,洪佳琼, Nafion修饰碳纤维电极在体测定脑神经递质.传感技术学报,1996,9,41-45.
    [204] Patel N G, Erlenk tter A, Cammann K, et al., Fabrication and characterization of disposable typelactate oxidase sensors for dairy products and clinical analysis. Sensors and Actuators B: Chemical,2000,67,134-141.
    [205] Shu H C, Wu N p, A chemically modified carbon paste electrode with D-lactate dehydrogenase andalanine aminotranferase enzyme sequences for d-lactic acid analysis. Talanta,2001,54,361-368.
    [1] Gene R M, Carta a C, Adzet T, et al., Anti-inflammatory and analgesic activity of Baccharis trimera:identification of its active constituents. Planta medica,1996,62,232-235.
    [2] Ren W, Qiao Z, Wang H, et al., Flavonoids: promising anticancer agents. Medicinal researchreviews,2003,23,519-534.
    [3] Dall'Agnol R, Ferraz A, Bernardi A P, et al., Antimicrobial activity of some Hypericum species.Phytomedicine,2003,10,511-516.
    [4] Yang J, Guo J, Yuan J, In vitro antioxidant properties of rutin. LWT-Food Science and Technology,2008,41,1060-1066.
    [5] Tyszczuk K, Sensitive voltammetric determination of rutin at an in situ plated lead film electrode.Journal of pharmaceutical and biomedical analysis,2009,49,558-561.
    [6] Sun W, Yang M, Li Y, et al., Electrochemical behavior and determination of rutin on apyridinium-based ionic liquid modified carbon paste electrode. Journal of pharmaceutical andbiomedical analysis,2008,48,1326-1331.
    [7] Zhang Y, Zheng J, Sensitive voltammetric determination of rutin at an ionic liquid modified carbonpaste electrode. Talanta,2008,77,325-330.
    [8] Wu S H, Sun J J, Zhang D F, et al., Nanomolar detection of rutin based on adsorptive strippinganalysis at single-sided heated graphite cylindrical electrodes with direct current heating.Electrochimica Acta,2008,53,6596-6601.
    [9] Xie X, Zhou D, Zheng X, et al., Electrochemical sensing of Rutin using an MCM-41modifiedelectrode. Analytical Letters,2009,42,678-688.
    [10] Franzoi A C, Spinelli A, Vieira I C, Rutin determination in pharmaceutical formulations using acarbon paste electrode modified with poly (vinylpyrrolidone). Journal of pharmaceutical andbiomedical analysis,2008,47,973-977.
    [11] Lin X Q, He J B, Zha Z G, Simultaneous determination of quercetin and rutin at a multi-wallcarbon-nanotube paste electrodes by reversing differential pulse voltammetry. Sensors andActuators B: Chemical,2006,119,608-614.
    [12] Zeng B, Wei S, Xiao F, et al., Voltammetric behavior and determination of rutin at a single-walledcarbon nanotubes modified gold electrode. Sensors and Actuators B: Chemical,2006,115,240-246.
    [13] He J L, Yang Y, Yang X, et al., β-Cyclodextrin incorporated carbon nanotube-modified electrode asan electrochemical sensor for rutin. Sensors and Actuators B: Chemical,2006,114,94-100.
    [14] Wang G, Hu N, Wang W, et al., Preparation of carbon nanotubes/neutral red composite filmmodified electrode and its catalysis on rutin. Electroanalysis,2007,19,2329-2334.
    [15] Xu J, Zhang H, Chen G, Carbon nanotube/polystyrene composite electrode for microchipelectrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus. Talanta,2007,73,932-937.
    [16] Wei Y, Wang G, Li M, et al., Determination of rutin using a CeO2nanoparticle-modified electrode.Microchimica Acta,2007,158,269-274.
    [17] Malagutti A R, Zuin V G, Cavalheiro é T G, et al., Determination of Rutin in Green Tea InfusionsUsing Square-Wave Voltammetry with a Rigid Carbon-Polyurethane Composite Electrode.Electroanalysis,2006,18,1028-1034.
    [18] Li G, Ji Z, Wu K, Square wave anodic stripping voltammetric determination of Pb2+using acetyleneblack paste electrode based on the inducing adsorption ability of I. Analytica chimica acta,2006,577,178-182.
    [19] Sun D, Zhang H, Voltammetric determination of6-benzylaminopurine (6-BAP) using an acetyleneblack-dihexadecyl hydrogen phosphate composite film coated glassy carbon electrode. Analyticachimica acta,2006,557,64-69.
    [20] Yang X, Zhang H, Sensitive determination of kojic acid in foodstuffs using PVP(polyvinylpyrrolidone) modified acetylene black paste electrode. Food chemistry,2007,102,1223-1227.
    [21] Sun D, Zhang H, Electrochemical determination of2-chlorophenol using an acetylene black filmmodified glassy carbon electrode. Water research,2006,40,3069-3074.
    [22] Huang W, Qu W, Zhu D, Electrochemistry and determination of1-naphthylacetic acid using anacetylene black film modified electrode. Bull. Korean Chem. Soc,2008,29,1323.
    [23] Bissessur R, Liu P K Y, White W, et al., Encapsulation of polyanilines into graphite oxide.Langmuir,2006,22,1729-1734.
    [24] Scheuermann G M, Rumi L, Steurer P, et al., Palladium nanoparticles on graphite oxide and itsfunctionalized graphene derivatives as highly active catalysts for the Suzuki-miyaura couplingreaction. Journal of the American Chemical Society,2009,131,8262-8270.
    [25] Cote L J, Cruz-Silva R, Huang J, Flash reduction and patterning of graphite oxide and its polymercomposite. Journal of the American Chemical Society,2009,131,11027-11032.
    [26] Petit C, Bandosz T J, Graphite oxide/polyoxometalate nanocomposites as adsorbents of ammonia.The Journal of Physical Chemistry C,2009,113,3800-3809.
    [27] Ramesha G K, Sampath S, Exfoliated graphite oxide modified electrode for the selectivedetermination of picomolar concentration of lead. Electroanalysis,2007,19,2472-2478.
    [28] Chu Q, Jiang L, Tian X, et al., Rapid determination of acetaminophen and p-aminophenol inpharmaceutical formulations using miniaturized capillary electrophoresis with amperometricdetection. Analytica chimica acta,2008,606,246-251.
    [29] Toklu H Z, ehirli A, Velio lu-ün A, et al., Acetaminophen-induced toxicity is prevented byβ-D-glucan treatment in mice. European Journal of Pharmacology,2006,543,133-140.
    [30] Babaei A, Afrasiabi M, Babazadeh M, A glassy carbon electrode modified with multiwalled carbonnanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen andmefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis,2010,22,1743-1749.
    [31] Alothman Z A, Bukhari N, Wabaidur S M, et al., Simultaneous electrochemical determination ofdopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode.Sensors and Actuators B: Chemical,2010,146,314-320.
    [32] Xiong H, Xu H, Wang L, et al., Characterization and sensing properties of a carbon nanotube pasteelectrode for acetaminophen. Microchimica Acta,2009,167,129-133.
    [33] Sun D, Zhang H, Electrochemical determination of acetaminophen using a glassy carbon electrodecoated with a single-wall carbon nanotube-dicetyl phosphate film. Microchimica Acta,2007,158,131-136.
    [34] Wan Q, Wang X, Yu F, et al., Effects of capacitance and resistance of MWNT-film coatedelectrodes on voltammetric detection of acetaminophen. Journal of applied electrochemistry,2009,39,1145-1151.
    [35] Ghorbani-Bidkorbeh F, Shahrokhian S, Mohammadi A, et al., Simultaneous voltammetricdetermination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbonelectrode. Electrochimica Acta,2010,55,2752-2759.
    [36] Su W Y, Cheng S H, Electrochemical oxidation and sensitive determination of acetaminophen inpharmaceuticals at poly (3,4-ethylenedioxythiophene)-modified screen-printed electrodes.Electroanalysis,2010,22,707-714.
    [37] Shahrokhian S, Asadian E, Simultaneous voltammetric determination of ascorbic acid,acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modifiedcarbon paste electrode. Electrochimica Acta,2010,55,666-672.
    [38] Xu Z, Yue Q, Zhuang Z, et al., Flow injection amperometric determination of acetaminophen at agold nanoparticle modified carbon paste electrode. Microchimica Acta,2009,164,387-393.
    [39] Kumar S A, Tang C F, Chen S M, Electroanalytical determination of acetaminophen usingnano-TiO2/polymer coated electrode in the presence of dopamine. Talanta,2008,76,997-1005.
    [40] Radovan C, Cofan C, Cinghita D, Simultaneous determination of acetaminophen and ascorbic acid atan unmodified boron\doped diamond electrode by differential pulse voltammetry in buffered media.Electroanalysis,2008,20,1346-1353.
    [41] Razmi H, Harasi M, Rapid and accurate amperometric determination of acetaminophen inpharmaceutical preparations and spiked human blood serum samples at cadmiumpentacyanonitrosylferrate modified glassy carbon electrode. Journal of the iranian chemical society,2008,5,296-305.
    [42] Wang S F, Xie F, Hu R F, Carbon-coated nickel magnetic nanoparticles modified electrodes as asensor for determination of acetaminophen. Sensors and Actuators B: Chemical,2007,123,495-500.
    [43] Wan Q, Wang X, Yu F, et al., Poly (taurine)/MWNT-modified glassy carbon electrodes for thedetection of acetaminophen. Journal of applied electrochemistry,2009,39,785-790.
    [44] Kovtyukhova N I, Ollivier P J, Martin B R, et al., Layer-by-layer assembly of ultrathin compositefilms from micron-sized graphite oxide sheets and polycations. Chemistry of materials,1999,11,771-778.
    [45] Oni J, Nyokong T, Simultaneous voltammetric determination of dopamine and serotonin on carbonpaste electrodes modified with iron (II) phthalocyanine complexes. Analytica chimica acta,2001,434,9-21.
    [46] Wang Z H, Liang Q L, Wang Y-m, et al., Carbon nanotube-intercalated graphite electrodes forsimultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Journal ofElectroanalytical Chemistry,2003,540,129-134.
    [47] Wu K B, Fei J J, Hu S S, Simultaneous determination of dopamine and serotonin on a glassy carbonelectrode coated with a film of carbon nanotubes. Analytical Biochemistry,2003,318,100-106.
    [48] Selvaraju T, Ramaraj R, Simultaneous determination of ascorbic acid, dopamine and serotonin atpoly (phenosafranine) modified electrode. Electrochemistry communications,2003,5,667-672.
    [49] Goyal R N, Gupta V K, Oyama M, et al., Gold nanoparticles modified indium tin oxide electrodefor the simultaneous determination of dopamine and serotonin: Application in pharmaceuticalformulations and biological fluids. Talanta,2007,72,976-983.
    [50] Li J, Lin X, Simultaneous determination of dopamine and serotonin on goldnanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors andActuators B: Chemical,2007,124,486-493.
    [51] Xu H, Zhang W, Wang D, et al., Simultaneous determination of5-hydroxyindoleacetic acid and5-hydroxytryptamine in urine samples from patients with acute appendicitis by liquidchromatography using poly (bromophenol blue) film modified electrode. Journal ofChromatography B,2007,846,14-19.
    [52] Yang P, Zhao D, Margolese D I, et al., Generalized syntheses of large-pore mesoporous metaloxides with semicrystalline frameworks. Nature,1998,396,152-155.
    [53] Kresge C, Leonowicz M, Roth W, et al., Ordered mesoporous molecular sieves synthesized by aliquid-crystal template mechanism. Nature,1992,359,710-712.
    [54] Feng X, Fryxell G, Wang L Q, et al., Functionalized monolayers on ordered mesoporous supports.Science,1997,276,923.
    [55] Tolbert S H, Firouzi A, Stucky G D, et al., Magnetic field alignment of ordered silicate-surfactantcomposites and mesoporous silica. Science,1997,278,264.
    [56] Landskron K, Ozin G A, Periodic mesoporous dendrisilicas. Science,2004,306,1529.
    [57] Cai Q, Lin W Y, Xiao F S, et al., The preparation of highly ordered MCM-41with extremely lowsurfactant concentration. Microporous and mesoporous materials,1999,32,1-15.
    [58] Laviron E, Adsorption, autoinhibition and autocatalysis in polarography and in linear potentialsweep voltammetry. Journal of Electroanalytical Chemistry,1974,52,355-393.
    [59] Atkinson W, Lockhart S J, Houghton L A, et al., Validation of the measurement of lowconcentrations of5-hydroxytryptamine in plasma using high performance liquid chromatography.Journal of Chromatography B,2006,832,173-176.
    [60] Nuthakki B, Rusling J F, Electrochemical catalysis by crosslinked films of cobalt reconstitutedmyoglobin and poly(l-lysine) in a bicontinuous microemulsion. Journal of ElectroanalyticalChemistry,2005,581,139-144.
    [61] Monterroso S C C, Carapu a H M, Duarte A C, Mixed polyelectrolyte coatings on glassy carbonelectrodes: Ion-exchange, permselectivity properties and analytical application ofpoly-l-lysine–poly(sodium4-styrenesulfonate)-coated mercury film electrodes for the detection oftrace metals. Talanta,2006,68,1655-1662.
    [62] Li C, Voltammetric determination of tyrosine based on an L-serine polymer film electrode. Colloidsand Surfaces B: Biointerfaces,2006,50,147-151.
    [63] Nováková L, Solich P, Matysová L, et al., HPLC determination of estradiol, its degradation product,and preservatives in new topical formulation Estrogel HBF. Analytical and bioanalytical chemistry,2004,379,781-787.
    [64] Havlíková L, Nováková L, Matysová L, et al., Determination of estradiol and its degradationproducts by liquid chromatography. Journal of Chromatography A,2006,1119,216-223.
    [65] Wang S, Zhuang H, Du L, et al., Determination of Estradiol by Biotin‐A vidin‐AmplifiedElectrochemical Enzyme Immunoassay. Analytical Letters,2007,40,887-896.
    [66] Watabe Y, Kubo T, Nishikawa T, et al., Fully automated liquid chromatography–mass spectrometrydetermination of17β-estradiol in river water. Journal of Chromatography A,2006,1120,252-259.
    [67] Hu S, Wu K, Yi H, et al., Voltammetric behavior and determination of estrogens at Nafion-modifiedglassy carbon electrode in the presence of cetyltrimethylammonium bromide. Analytica chimicaacta,2002,464,209-216.
    [68] Sun Y, Wu K, Hu S, Fabrication of a Multi-wall Carbon Nanotubes Modified Glassy CarbonElectrode and its Catalytic Effect on the Oxidation of Estradiol, Estrone and Estriol. MicrochimicaActa,2003,142,49-53.
    [69] Murugananthan M, Yoshihara S, Rakuma T, et al., Electrochemical degradation of17β-estradiol (E2)at boron-doped diamond (Si/BDD) thin film electrode. Electrochimica Acta,2007,52,3242-3249.
    [70] Kim Y S, Jung H S, Matsuura T, et al., Electrochemical detection of17β-estradiol using DNAaptamer immobilized gold electrode chip. Biosensors and Bioelectronics,2007,22,2525-2531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700