DNA电化学生物传感器设计优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网是新一代信息处理平台,它主要包括信息识别层,终端处理层及传输网络层。其中信息识别层中的传感器技术是物联网架构的重要组成部分。DNA电化学生物传感器是近年迅速发展起来的一种全新的生物传感器,它具有制作简便、使用寿命长、灵敏度高、重现性好、成本低、易于实现微型化等诸多优点,在临床医学检验、遗传工程、药物作用机理、新药筛选、环境监测和食品工程等领域得到广泛的研究与应用。
     本论文针对DNA电化学生物传感器的设计优化技术展开研究,主要工作包括:靶向单链DNA片段的固定问题;电子媒介体型DNA生物传感器优化过程;基于数据拟合技术的交流阻抗方法的应用;纳米材料在DNA电化学传感器中应用技术优化等。主要创新点如下:
     (1)研究了在硼掺杂的金刚石电极表面使用电化学方法沉积氧化锆薄膜的新架构,即在室温条件下水溶液中在基体电极表面生成氧化锆多孔状分布的晶体薄膜,薄膜的厚度及氧化锆粒径通过循环电压及沉积时间来改变,循环电压在+O.7至-1.1V之间时,电极表面形成极薄的膜,随着循环电压的变化,在+O.7至-1.6V时,仅仅在10个循环扫描后,电极表面就形成多孔状的氧化锆薄膜,XPS分析显示,电极表面沉积的氧化锆大约增加10倍,为后续传感器的制作打下良好基础。
     (2)设计了一种简单、方便的电化学DNA生物传感器的制作方法,在硼掺杂的金刚石电极(BDD)表面电化学沉积一层氧化锆薄膜,电极表面的活性区域被惰性的氧化锆分隔成类似微阵列的结构。利用氧化锆的分子结构特点,将5末端修饰磷酸基团的寡核苷酸短链(ssDNA)连接到氧化锆薄膜上。以亚甲基蓝(MB)为氧化还原的电子媒介体,应用循环伏安法和差分脉冲法测试了该电极的性能。由于硼掺杂的金刚石电极背景电流非常小,DNA与氧化锆的连接稳定,使得制备的电化学传感器表现出高的灵敏度、良好的线性、长期的稳定性等。
     (3)研究了基于数据拟合技术的交流阻抗方法测试非标记型脱氧核糖核酸杂交传感器的机制。先在掺硼金刚石电极表而电化学沉积氧化锆多孔薄膜,再将5’端磷酸基团单链寡聚DNA固定到氧化锆多孔膜修饰的金刚石电极表面,形成杂交识别层,利用交流阻抗技术(EIS)测量出杂交前后工作电极表面电子传递电阻Ret的改变量作为杂交信号。实验得到的非标记型DNA杂交传感器制作方法简便,响应迅速,线性良好。
     (4)基于DNA/ZrO2/MWCNT/GCE结构设计了高灵敏度的DNA电化学生物传感器。首先将处理过的多壁碳纳米管(MWCNT)适量分散于二甲基甲酰胺中,形成均匀稳定的混合溶液,将其滴涂于玻碳电极(GCE)表面,室温下应用电化学方法将氧化锆沉积至MWCNT/GCE修饰玻碳电极上。碳纳米管大的比表面积和良好的电子传递性能,氧化锆的生物相容性和对DNA极好的吸附能力的协同作用,显著提高了DNA探针的固定量和DNA杂交的检测灵敏度。应用循环伏安法,差分脉冲法和电化学交流阻抗谱分别对传感膜的制备和DNA的固定与杂交进行了测试。线性范围为2.15×10-7至2.15×10-10mol/L,检出限为6.58×10-12mol/L。
The Internet of Things is a new information processing platform, including the system of item identification,the terminal processing system and the transmition network. The sensor technology of the system of item identification will be the key factor of the Internet of Things.DNA electrochemical biosensors have been developed rapidly in recent years, as a new kind of biosensors, which has superiority in electrode fabrication, durable years, reproduction quality, higher sensitivity, lower production cost and small size, and convenience for integration and microminiaturization. So they are of significant progress in research and application, such as clinical medical analysis, genetic engineering, mechanism of drug action, new drug selection, environmental monitoring and food engineering.
     This thesis aims to research on design optimization of DNA electrochemical biosensor, including how to immobilizate the probe DNA onto the working electrode, design optimization of an electrochemical DNA biosensor, application of the data fitting method and impedance measurements,nanotechnology application on electrochemical sensor for performance optimization.
     The electrochemical deposition of zirconia thin film on boron-doped diamond (BDD) electrode is explored, to be used as a linker to bind biomoleculars on BDD surface for biosensor applications. Two electrodeposition methods are compared, either potential cycling or chronoamperometry in ZrO2Cl2The presence of Zirconia was confirmed by XPS and EDX, and uniform and porous Zirconia film was observed by SEM. Both cyclic voltammetry and electrochemical impedance measurement indicate a partially deactivated BDD electrode, resembling a microelectrode array characteristic with small electrochemically active areas separated by inactive zirconia regions. This demonstrates that uniform and porous zirconia can be electrodeposited on BDD in a well controlled method, suitable for use in biosensor application.
     Developing an electrochemical DNA biosensor, using a boron-doped diamond (BDD) electrode modified with zirconia(ZrO2), the zirconia thin porous film is fabricated by cyclic voltammatic method in an aqueous electrolyte of ZrOCl2and KCL at room temperature, DNA probes are attached onto the ZrO2/BDD electrode due to the strong binding of the phosphate group of the DNA with the Zirconia film and the excellent biocompatibility of the BDD. DNA immobilization and hybridization are characterized by cyclic voltammetry and differential pulse voltammetry, using methylene blue as indicator. After the hybridization of DNA probe with the complementary DNA, the peak current of MB decrease obviously. the response current are linearly related to the concentration of the target oligonucleotide sequence.
     Designing a label-free detection system for DNA strands based on data fitting and impedance measurements. A single-stranded5'-PO4mer oligonucleotide (ssDNA) is immobilised via a zirconia porous film on BDD electrodes and serve as probe DNA, The sensor surface clearly distinguished between complementary and non-complementary target ssDNA. The electrode is impedimetrically characterised in the presence of the redox system ferri/ferrocyanide before and after DNA hybridisation. Impedance analysis shows that the charge transfer resistance,Ret, is increasing after DNA duplex formation, The relative change of Ret is used as sensor parameter. The sensor is easy to prepared and respond quickly.
     A DNA/ZrO2/MWCNT/GCE electrochemical sensor is prepared for performance optimization. The zirconia thin porous film is fabricated by cyclic voltammatic method in an aqueous electrolyte of ZrOCl2and KCl at room temperature.DNA probes are attached onto the ZrO2/MWCNT/GCE electrode due to the strong binding of the phosphate group of the DNA with the Zirconia film and the excellent active surface area of MWCNT, DNA immobilization and hybridization are characterized by cyclic voltammetry and differential pulse voltammetry,using methylene blue as indicatorhe sensor show high sensitivity and good linearity, the peak current of MB is linearly related to the concentration of the target oligonucleotide sequence in the range2.15×107to2.15x10-10mol/L with the detection limit of6.58×10-12mol/L
引文
[1]Hashimoto K,Ito K,Ishimori Y..Microfabricated disposable DNA sensor for detection of hepatitis B virus DNA[J].Sensors and Actuators B,1998,46(3):220-225.
    [2]Millan K M, Mikkelsen S R..Vohammetric DNA Biosensor for Cystic Fibrosis Based on a Modified Carbon Paste Electrode[J].Anal.Chem.,1994,66(18):2943-2948.
    [3]Wang J,Rivas G,Cai X M,et al..Detection ofclinically relevant point mutations by a novel piezoelectric biosensor[J].Biosens.Bioelectron.,2006,21 (10):1876-1879.
    [4]孙星炎,徐春,刘盛辉.DNA电化学传感器在DNA损伤研究中的应用[J].高等学校化学学报,1998,19(9):1393—1396.
    [5]Brett A M O,Seqlano S H P,Macedo T A,et al.. Electrochemical determination of carboplatin in scram using a DNA modified glassy carbon electrode[J]. Electroanalysis,1996,8(11):992-995.
    [6]Ovadekova, Renata; Jantova, Sona; Letasiova, Silvia; Stepanek, Ivan; Labuda, Jan..Nanostructured electrochemical DNA biosensors for detection of the efect of berberine on DNA from cancer cells [J]. Bioanal.Chem.,2006,386:2055-2062.
    [7]Kerman K, Morita Y,Takamura Y,et al.Anal.Bioanal.Chem.,2005,381(6):1114-1121
    [8]Gu K,Zhu J,Zhu Y,et al..Vohammetric determination ofmifepristone at a DNA-modified carbon paste electrode [J].Fresenius J.Anal.Chem.,2000,368(8):832-35.
    [9]Mikkelsen S.R. Electrochecmical biosensors for DNA sequence detection[J]. Electroanalysis,1996,8(1):15-19.
    [10]Lumley-Woodyear D,Campbell C N,Freeman E,et al.. Rapid Amperometric Verification of PCR Amplification of DNA[J].Anal.Chem.,1999,71(3):535-538.
    [11]Wang J,Rivas G,Parrado C, et al.. Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan cryptosporidium parvum[J], Talanta, 1997,44(11):2003-2010
    [12]Wang J,Rivas G,Cai X H. Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen[J]. Electroanalysis,1997,9(5):395-398.
    [13]Wang J, Rivas G, Cai X,et al. DNA electrochemicalbiosensors for environmental monitoring[J]. Anal.Chim.Acta,1997,347(1-2):1-8.
    [14]C.G. Siontorou, D.P. N ikolelis,A.M iemik,J.Krull. Rapid methods for detection of aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization, Electrochim.Acta,1998,43:3611-3617.
    [15]C.G Siontorou,D.P.N ikolelis,et al. DNA biosensor based on self-assembled bilayer lipid membranes for the detection of hydrazines,Electroanalysis,1998,10:691-694.
    [16]杜晓燕,郑丽,王茂清,等.差分脉冲和方波伏安法研究亲和素一生物素固载ssDNA的生物传感器[J].中国卫生检验杂志,2007,17(3):425-427.
    [17]Watson J D, Crick F H. A Structure for Deoxyribose Nucleic Acid[J]. Nature,1953,171:737-738.
    [18]Lander E S,Linton L M,Birren B,et al. Initial sequencing and analysis of the human genome [J], Nature,2001,409:860-921
    [19]Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome[J], Science,2001,291:1304-1351.
    [20]Wang Joseph. Survey and summary from DNA biosensors to genechips[J]. Nucleic Acids Research,2000,28(16):3011-3016.
    [21]Glenn McGall,Jeff Labadie,Phil Brock, et al. Light directed synthesis of high density oligonucleotide arrays using semiconductor photoresists[J],Proc Nat. Acad. Sci. USA,1996,93 (24):13555-13560.
    [22]Fan C H,Plaxco K W,Heeger A J.Proc. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA[J].Natl.Acad.Sci.USA,2003,100:9134-9137.
    [23]Kane M D, Jatkoc T A, Stumpf C R, et al. Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays [J]. Nucleic Acids Res,2000,28(22):4552-4557.
    [24]Brazma A, Hingamp P, Quackenbush J, et al.,Nat Genet,2001,29(4):365-371.
    [25]Service R F.,Microchip arrays put DNA on the spot[J].Science,1998,282(5388):396-399
    [26]Star R A,Rasooly R S.. Searching for array standards in Rockville[J].Nature Biotechnology,2001,19(5):418-419.
    [27]B.J.Conner,C.M. Reyes,C. Morin,K. Itakurak,R.L.Teplitz, R.B. Wallace Proc. Detection of sickle cell βS-globin allele by hybridization with synthetic oligonucleotides [J],Natl.Acad.Sci.U.S.A.,1983,80:278-282.
    [28]Casson A G, Zheng Z, Evans SC,et al.. Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett)adenocarcinoma[J]. Carcinogenesis, 2005,26(9):1536-1541.
    [29]Altenburg, Lewis C.; Getz, Michael J.; Saunders, Grady F.. Iodine 125 in molecular hybridization experiments [J].Method in Cell Biology,1975,10,325-342
    [30]Herzberg, M.; Reinhartz, A.; Ritterband, M.; Twizer, S.; Smorodinski, N. I.; Fish, F.New concept in diagnostic procedures based on nonradioactive DNA probes(J). Chimica Oggi.,1987,11:69-71.
    [31]邱淑燕, 王申五用生物素化补骨脂索标记核酸探针的方法研究,《北京医科大学学 报》,1993,25:91—92
    [32]R.H.S ymons,N.H abili,J. L.M ehmes. Nonradioactive, photobiotin-labelled DNA probes for routine diagnosis of viroids in plant extracts,J.Virol.Methods,1989,23:299-312
    [33]G H.K eller,D.PH ung,M.M.M anak.Anal.Biochem.,1989,177,392.
    [34]P. Tchen, R.P.P. Fuchs, E. Sage, M. Leeng. Proc. Nati. Acad. Sci. U.S.A.,1984,81,3466
    [35]P.Lebacq,D.Squalli,M.Duchenne,P.Pouletty,M.Jo annees. A new sensitive non-isotopic method using sulfonated probes to detect picogram quantities of specific DNA sequences on blot hybridization, [J]. Biochem.Biophys.Methods,1988,15,255-266.
    [36]A.Azzi,K.Zakrzewsks, G.Gentilomi,M. Musiani, M. Zerbini, Detection of B19 parvovirus infections by a dot-blot hybridization assay using a digoxigenin-labelled probe[J], Virol.Methods,1990,27(2):125-133.
    [37]Chadwick RB,Conrad MP, MeGinnis MD, et al.Hetemzygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase[J].Biotechniques.1996,20(4):676.
    [38]P.O.Prat,E.Lopez,G.Mathis. Europium(III) cryptate:a fluorescent label for the detection of DNA hybrids on solid support [J],Anal.Biochem.,1991,195,283.
    [39]P.Hurskainen,P.Dahlen,etal.,Nucleic Acid. Res.,1991,19,1057.
    [40]D.P.Knight,A.C.Simmonds,P. A.S chaap,J. A khavan,M.A.W.Brady.Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with horseradish peroxidase[J],Anal.Biochem.,1990,185:84-89.
    [41]J.A.Mcneil,C.X.Johson,K.C.Carter.Gent.Anal.Tech.ApplCiin.,1991,8:41.
    [42]J.L.J.Arnold, PW Hommond, W.AWeie, N.C. Neison. Clin Chem.,1989,35:2588.
    [43]T.M cCreery,T Helentjaris.M ethodsM ol.Biol.,1994,28:107.
    [44]K.A.Defillipo,M.L.Grayeski. Flow-injection chemiluminescent method for an enzyme-labeled DNA probe[J],Anal.Chimi.Acta,1991,249:155.
    [45]H.Arakawa,M.Maeda, A.Tsuji. Chemiluminescent assay of various enzymes using indoxyl derivatives as substrate and its applications to enzyme immunoassay and DNA probe assay[J], Anal.Biochem.,1991,199:238-242.
    [46]. J.S.Sevall, H.Prince, G.Garraty,W.A.O'Brien,J.A.Zack. Clin. Chem.,1993,39:433.
    [47]Andersen M T, Foy CA. The development of microarray standards [J]. Anal.Bioanal.Chem.,2005,381(1):87-89.
    [48]谢纳M.生物芯片分析[M].北京:科学出版社,2004
    [49]Palecek E.Oscillographic polarography of highly polymerized deoxyribonucleic acid [J], Nature.1960,188:656-657.
    [50]Palecek E. Adsorptive transfer stripping voltammetry:determination of nanogram quantities of DNA immobilized at the electrode surface [J], Anal.Biochem., 1988,170:421-431.
    [51]De-los-Santos-Alvarez,Patricia,Lobo-Castanon, M Jesus. et al. Voltammetric determination of underivatized oligonucleotides on graphite electrodes based on their oxidation products [J].Anal.Chem.,2002,74(14):3342-3347.
    [52]Gore M R,Szalai V A,Ropp P A, et al..Detection of attomole quantitites of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation [J], Anal.Chem.,2003,75:6586-6592.
    [53]Ontko A C,Armistead P M,Kircus S R,et al.Electrochemical Detection of Single-Stranded DNA Using Polymer-Modified Electrodes [J],Inorg.Chem., 1999,38:1842-1846.
    [54]Szalai V A,Jayawickamarajah J,Thorp H H.Journal of Physical Chemistry B,2002,106:709-716.
    [55]Szalai V A,Thorp H H.Journal of Physical Chemistry B,2000,104:6851-6859.
    [56]Johnston D H,Gasgow K C,Thorp H H.J.Am.Chem.Soc.,1995,117:8933-8938.
    [57]Abbaspour A,Mehrgardi M A. Electrocatalytic Oxidation of Guanine and DNA on a Carbon Paste Electrode Modified by Cobalt Hexacyanoferrate Films[JJ, Anal.Chem.,2004,76:5690-5696.
    [58]Zhang J,Song S P,Zhang L Y,et al.J.Am.Chem.Soc.,2006,128:8575-8580
    [59]Alexeyeva N, Laaksonen T, Kontturi K, Mirkhalaf F,Schiffrin D J, Tammeveski K.Electrochem.Commun.,2006,8(9):1475-1480.
    [60]Jiang K Y,Eitan A,Schadler L S,Ajayan P M,Siegel R W.Nano.Lett.,2003,3(3):275-277
    [61]Gmoez F J,Chen R J,Wang D W,Waymouth Robert M, Dai H J.Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes[J],Chem.Commun.,2003,2:190-191.
    [62]Zhang X Z,Jiao K,Liu S F,Hu Y W. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes[J],Anal.Chem.,2009,81 (15):6006-6012.
    [63]Zhang W, Yang T, Zhuang X M, Guo Z Y, Jiao K. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing[J], Biosens.Bioelectron.,2009,24(8):2417-2422.
    [64]Wang J.Kawde A-N,Musmneh M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization[J], Analyst,2003,128:912-916.
    [65]Clapp, Aaron R.; Medintz, Igor L.; Mauro, J. Matthew; Fisher, et al.. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors[J], J.Am.Chem.Soc.,2004,126:301-310.
    [66]Lumley Woodear T,Campbell CN,HellerA. Direct Enzyme-Amplified Electrical Recognition of a 30-Base Model Oligonucleotide [J],J.Am.Soc.,1996,118:5504-5505.
    [67]Sassolas A,Leca Bouvier B D,Blum L J., DNA Biosensors and Microarrays[J],Chem.Rev.,2008,108(1):109-139.
    [68]Wang J,Cai X H, et al.Stripping potentionetric transduction of DNA hybrization process[J],Aeta.1996.326:141-144.
    [69]Piunno PA,Krull UJ,Hudson RH,et al,Fiber optic biosensor for fluorometricdetection of DNA hybridition[J],AR Chim Aeta,1994,288(3):205-214.
    [70]Ferguson JA,Boles TC,Adams CP,et al,A fiber-optic DNA biosensor microarray for the analysis of gene expression[J],Nat Biotechnol,1996,14(13):1681-1684.
    [71]Piunno PA,Krull UJ,Hudson RH,et al,Fiber optic DNA biosensor for flurometric nucleic acid determination[J],Arug chem 1995,67:2635-2643.
    [72]Watts H J,Yeung D,Parkes H, Real-time detection and quantification of DNA hybridization by an optical biosensor[J],Anal.Chem.1995,67:4283-4289.
    [73]Bier,Frank F.,Kleinjung,Frank;Scheller,Frieder W,Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors:steps towards the genosensor[J],Sensors and Actuators,1997,38:78-82.
    [74]M.Yang,C.Liu,X.Hu,P.He,Y.Fang, Electrochemiluminescence assay for the detection of acridinium esters[J],Anal.Chem.Acta.,2002,461:141.
    [75]M.Yang,C.Liu,K.Qian,P.He,Y.Fang, Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis[J], Analyst, 2002,127(9:1267-1271.
    [76]Fawcett NC,Evans JA,Craven RD,et al Proceeding ofthe ACS Division of Polymeric Malerfds[J], Science and Engineering,1997,76:461-462.
    [77]Naomi F C,,DNA sensor by u g aquaxtz crystal micrabalanee Biochem Biophys Res Commun.,1993,96(2):858-861.
    [78]Okabata Matsunobu Y LjiroK,et al.,Hybridization of nucleic acids immobilizedon a quartz crystal microbalence Anal Chem.,1992,114:8299-8302.
    [79]Okabata Y Kawase M Kinetic,Measurements of DNA hybridization on all oligonucleotide-immobilized 27Mhz quartz crystal microbalance, Anal Chem 1998,70:1288-1296.
    [80]Caruso E H,Kim S,Lim G,et al.,Influence of liquid medium and surface morphology on the response of QCM during immobilization and hybridization of short oligonucleotides[J],Biosensors and Bioelectron,2004,20(2):378-389.
    [81]Chen M,Liu M,Yu L,et al.,Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system[J], Nanosci Nanotechnol., 2005,5(10):1266-1272.
    [82]Fawcett NC,Evans J A,Chien U, et al, Nucleic acid hybridization detected by piezoelectric resonance [J],Anal Lett,1988,21(7):1099-1104.
    [83]Palecek E. Oscillographic polarography of highly polymerized deoxyribonucleic acid,Nature,1960,188:656-657.
    [84]Palecek E. Adsorptive transfer stripping voltammetry:determination of nanogram quantities of DNA immobilized at the electrode surface, Anal.Biochem., 1988,170:421-431.
    [85]Paleceek E,From polarography of DNA to micmanalysis with nucleic acid modified electrodes[J],Electronanalysis,1996,8(1):7-14.
    [86]Cai X,Rivas G,Shiraishi H,Electrochemical analysis of formation of oolynucletide complexes in solution and at electrode surfaces [J], Anal. Chim.,Acta,1997,344:65-76.
    [87]Chrisey LA,Lee G U, et.al., Nucleic Acids Res.,1996,24:3031-3039.
    [88]Eggers M,Hogan M, Reich R K, et al., A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups[J], Biotechniques, 1994,17:516-525.
    [89]Guo Z,Guilfoyle R A,T e A J,et al,Nucleic Acids Res.,1994,22:5456-5465.
    [90]Lamture J B,Beauie K L,Burke B E,et al,Nucleic Acids Res.,1994,22:2121-2125.
    [91]Watterson J H,Piunno P A E,Wust C C,et al,Sensors and Actuators,B:Chemical,2001, 74:27-36.
    [92]Hashimoto K,ho K,Ishimori Y, Sequence-Specific Gene Detection with a Gold Electrode Modified with DNA Probes and an Electrochemically Active Dye[J|, Anal.Chem.,1994,66(21):3830-3833.
    [93]Hiroyoshi M,Keniehi Y,Masayuki,Electrochemical analysis of single nucleotide polymorphisms of p53 gene[J],Talanta,2002,56:829-835.
    [94]Chun Xu,Hong Cai,Qun Xu,Pingang He,Yuzhi Fang,J.Anal.Chem.,2001,369:428-432
    [95]Olson,C;Adams,R.N., Carbon paste electrodes. Application to anodic voltammetry[J], Anal.Chim.Acta,1960,22:582.
    [96]Urbaniczky,C.;Lundstrom,K., Voltammetric studies on carbon paste electrodes. The influence of paste composition on electrode capacity and kinetics[J], J.Electroanal.Chem.1984,176:169.
    [97]Rise,M.,Galus,Z.,Adams,R.N.,J.Electroanal.Chem.1983,143:89.
    [98]McCreery,R.L.,Electroanalytical Chemistry,New York,1991,Vol.18.
    [99]Vander Linden,W.E.,Dieker,J.W., Glassy carbon as electrode material in electroanalytical chemistry[J],Anal.Chim. Acta,1980,119:1.
    [100]Engstrom,R.C., Spatial resolution of electrode heterogeneity using iontophoresis [J],Anal.Chem.1984,56,890.
    [101]Csoregi,E.;Gorton,L.;Marko-Varga,G.,Anal.Chim.Acta,1993,273:59.
    [102]Jingping Hu, Katherine B. Holt, and John S. Foord, Focused Ion Beam Fabrication of Boron-Doped Diamond Ultramicroelectrodes[J],Anal.Chem.2009,81,5663-5670.
    [103]M. Fryda, L. Schafer and I. Troster, Recent Res. Devel. Electrochem.,2000,4:85.
    [104]Y.V. Pleskov, in:Advances in Electrochemical Science and Engineering, Volume 8, Editors R.C. Alkire, D. M. Kolb, Wiley-VCH,2002, p.209.
    [105]R.G. Compton, J.S. Foord and F. Marken, Electroanal.,2003,15:1349.
    [106]W. Haenni, P. Rychen, M. Fryda and C. Comninellis, in:Thin-Film Diamond Part B, Ch.Nebel, Editor, Academic Press, Semiconductors and Semimetals series, Elsevier, 2004, p149.
    [107]M. Panizza and G. Cerisola, Electrochim. Acta,2005 51:191.
    [108]O. Chailapakul, W. Siangproh and D.A. Tryk, Sensor Letters,2006,4:99.
    [109]M.A.Q. Alfaro, S. Ferro, C.A. Martinez-Huitle and Y.M. Vong, J. Braz. Chem. Soc.,2006,17:227.
    [110]Mascini M,Palchetti I,Marrazza G,Fresenius Journal of Analyacal Chemistry, 2001,369:15-22.
    [111]J Pividori M I, Merkoci A, Alegret S. Biosensors&Bioelectronics,2000,15:291-303
    [112]Wang J,Rivas G,Cai X H,et al.,Analytlca Chimica Acta,1997,347:1-8.
    [113]Wang J,Cai X,Rivas G,et al.,Stripping potentiometric transcluction of DNA hybridization processes[J],Anal.chim.Acta,1993,344:111-118.
    [114]Wang J,Palecek E,Nielsen P E,Peptide nucleic acid probes for sequence-specific DNA biosensor[J],J. Am.Chem.Soc.,1996,118:7667-7670.
    [115]Kelly M M,Susan M.M., Sequence-selective biosensor for DNA based on electroactive hybridization indicators[J],Anal.Chem,1993,65:2317.
    [116]刘盛辉,何品刚,方禹之.在石墨电极上脱氧核糖核酸与米托蒽醌嵌入作用的电化学研究[J],分析化学,1996,24:1301—1304.
    [117]刘盛辉,刘长林,方禹之,单链脱氧核糖核酸在石墨电极表而固定化的研究[J],分析化学,1999,27(2):131.
    [118]Maeda M,Nakano K,Uchida S,et al,Chem.Lett.,1994:1805-1809.
    [119]Tonya M H,Michael J T,13C-1H and 13C-13C Spin-Coupling Constants in Methyl β-D-Ribofuranoside and Methyl 2-Deoxy-β-D-erythro-pentofuranoside:Correlations with Molecular Structure and Conformation[J],J.Am.Chem.Soc.,1997,119:8916-8920.
    [120]Gomathi, H.; Chandra, Navin; Sharma, L. R.; Rao, G. Prabhakara, Glassy carbon-surface characterization by electrochemical and spectral methods[J], Electrochemistry,1995,1:248-252.
    [121]Zhang H,Wang R H,Tan H W,Nie L H,Yao S Z,Talanta,1997,46:171-178.
    [122]Wilchek M,Bayer E A, The avidin-biotin complex in bioanalytical applications[J], Anal.Biochem.,1988,171:1-32.
    [123]Park J W,Lee H Y,Kim J M,et al.Journal of Bioscience and Bioengineering, 2004,97:29-32.
    [124]Pan S L,Rothberg L, Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy [J],Langmuir,2005,21:1022-1027.
    [125]Kai E,Sawata S,Ikebukuro K,et al.,Analytical Chemistry,1999,71:796-800.
    [126]Marrazza G,Chianella L,Mascini M,Biosens.Bioelectron,1999,14:45-51.
    [127]Panatano P,Morton T H,Kunr W G, Enzyme-modified carbon-fiber microelectrodes with millisecond response times[J],J.Am.Chem.Soc.,1991,113:1832-1833.
    [128]Sastry M,Ramakrislman V,Pattarkine M,Gole A,Ganesh K N,Langmuir,2000, 16:9142-9146.
    [129]Nicolini C,Erokhin V,Facci P,Guerzoni S,Ross A,Paschkevitsch P,Biosens. Bioelectron.,1997,12:613-618.
    [130]Millan KM,Angela S,Susan R M.Anal.Chem.,1994,66:2943-2947.
    [131]Zhu N N,Zhang A P,Wang Q J,He P G,Fang Y Z,Anal.Chim.Acta,2004,510:163-168.
    [132]Krisanu Bandyopadhyay,Sudhakar R.Sainkar,,and Kunjukrishnapillai Vijayamohanan, Novel Room-Temperature Synthesis of Microcrystalline Zirconia,J.Am.Ceram.SOC., 1999,82[1]:222-224.
    [133]Rajendra N. Basu, Clive A. Randall,and Merrilea J.Mayo, Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition,J.Am.Ceram.Soc.,2001,84(1):33-40.
    [134]Ilia Valov, Dimitar Stoychev, Ts. Marinova, Study of the kinetics of processes during electrochemical deposition of zirconia from nonaqueous electrolytes, Electrochimica Acta 2002,47:4419-4431.
    [135]S. D. Ramamurthi, Z. Xu, and D. A. Payne, "Nanometer-Sized ZrO2 Particles Prepared by a Sol-Emulsion-Gel Method," J. Am. Ceram. Soc.,1990,73 [9]2760-63.
    [136]Hua-Zhong Yu, Aaron W. Rowe, and Damien M. Waugh, Tcmplated Electrochemical Deposition of Zirconia Thin Films on "Recordable CDs"[J],Anal. Chem.2002,74:5742-5747.
    [137]X. Pang, I. Zhitomirsky, M. Niewczas, Cathodic electrolytic deposition of zirconia films, Surface & Coatings Technology 20051 95:138-146.
    [138]Christoph E Nebel, Bohuslav Rezek, Dongchan Shin,Hiroshi Uetsukal and Nianjun Yang, Diamond for bio-sensor applications,J.Phys. D:Appll.Phys.2007,40:6443-6466.
    [139]Alexander Kraft, Doped Diamond:A Compact Review on a New, Versatile Electrode Material,J.Electrochem.Sci.,2007,2:355-385.
    [140]David Carrie're,Me'lanie Moreau,Philippe Barboux,et al., Modification of the Surface Properties of Porous Nanometric Zirconia Particles by Covalent Grafting Laboratoire de Physique de la Matie're Condense'e,CNRS UMR 7643C, Ecole Polytechnique,91128 Palaiseau Cedex, France Olivier Spalla Service de Chimie Mole'culaire, DRECAM, CEA-Saclay,91191 Gif sur Yvette,France, Langmuir 2004,20:3449-3455.
    [141]John S. Foord, Jingping Hu,and Katherine B. Holt, Diamond ultramicroelectrodes,phys. stat. sol. (a)2007,204, No.9,2940-2944.
    [142]Jingping Hu, Katherine B. Holt, and John S. Foord, Focused Ion Beam Fabrication of Boron-Doped Diamond Ultramicroelectrodes,Anal.Chem.2009,81:5663-5670.
    [143]John H. T. Luong,ab Keith B. Maleb and Jeremy D. Glennon, Boron-doped diamond electrode:synthesis, characterization, functionalization and analytical applications[J],Analyst,2009,134:1965-1979.
    [144]Nebel,CE,Shin,DC, Rezek,B,et al,Diamond and biology,JOURNAL OF THE ROYAL SOCIETY INTERFACE Volume:4 Issue:14 Pages:439-461 Published:JUN 22 2007
    [145]Compton, RG; Foord, J S; Marken, F,Electroanalysis at diamond-like and doped-diamond electrodes, ELECTRO ANALYSIS Volume:15 Issue:17 Pages: 1349-1363 Published:SEP 2003.
    [146]Jie Yang & Kui Jiao & Tao Yang, A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal Bioanal Chem,2007,389:913-921.
    [147]Ningning Zhu,Aiping Zhang,Qingjiang Wang, Pingang He,Yuzhi Fang, Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes Analytica Chimica Acta 2004,510:163-168.
    [148]Shou-Qing Liu,Jing-Juan Xua,Hong-Yuan Chena, A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application Colloids and Surfaces B:Biointerfaces 2004,36:155-159.
    [149]P.J.Cumpson and M. P.Seah,Surf.Interface Anal.,1997,25:430.
    [150]D.Garcia-Raya, R.Madueno,J.M.Sevilla,M.Blazquez and T.Pineda, Electrochim. Acta,2008,53:8026.
    [151]Jin B K,Ji X P,Nakamura T,Electric Chimica Acta,2004,50:1049-1055.
    [152]Li H, Xu Z G, Ji L N, et al., Journal of Applied Electrochemistry,2005,35:235-241.
    [153]Erdem A,Merle B,Kerman K,et al.,Electroanalysis,1999,11:1372-1376.
    [154]Li Nan, Guo Liping,Jiang Junguang, Yang Xiurong,Interaction of echinomycin with guanine:electrochemistry and spectroscopy studies[J], Biophysical Chemistry, 2004,111(3):259-265.
    [155]Yang J, Zhang Z, Rusling J F, Electmanalysis,2002,14:1494-1500.
    [156]A.Erdem and M.Ozsoz,Electrochemical DNA biosensors based on DNA-drug interactions[J], Electroanalysis,2002,14:965-974.
    [157]F.Jelen,A.Erdem,E.Palecek,Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode[J], Bioelectrochemistry,,2002,55:165-167.
    [158]Steel A B,Heine T M,Tadov M J,Analytical Chemistry,1998,70:4670-4677.
    [159]Wang J,Rivas QParrado C,et al.,Electrechemical biosensor for detection DNA sequences from the pathogenic protozoan Cryptosporidium parvum[J], Talanta,1997,44:2003-2010.
    [160]Millan K M, Mikkelsen S R,Sequence-selective biosensor for DNA based on electroactive hybridization indicators, Analytical Chemistry,1993,65:2317-2323.
    [161]Pang D W,Abrufia H D, J.Anal.Chem.,2002,72:4700-4706.
    [162]M.Maeda, Y Mitsuhashi. DNA-immobilized gold electrode for DNA-binding drug sensor [J]. Anal.Sci.,1992,8,83-84.
    [163]M J.W aring.A nnu. DNA modification and cancer[J],Rev.Biochem.,1981,50,159-192
    [164]Hashimoto K,ho K,lshimofi Y.Analytical Chemistry,1994,66:383-3833.
    [165]Wang S,Pellg T,Yang C F,Electroanalysis,2002,14:1648-1653.
    [166]Erdem A,Ozsoz M,Electrochemical DNA biosensors based on DNA-drug interactions[J],Electro.anal.,2002,14:965-974.
    [167]Ozkan D,Erdem A,K P,OZ,AIlele-spesifi genotype detection of flactor V Leiden mutatiOn flmm polymerase chainreactiOn ampl icons based on label-flree electTochemic81 genosensor [J],Anal chem.,2002,74:5931-5936.
    [168]Jin Y,Yao X,Liu Q, Li J H,Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indictor[J],Biosens.Bioelectron,2007,22:1126-1130.
    [169]Korri-Youssoufi,Hafsa,Makrouf,Bouchra,Electrochemical biosensor of DNA hybridization by ferrecenyl groups functionalized polypyrrole [J]. Anal.Chim.Acta, 2002,469:85-92.
    [170]Kelley S O,Boon E M,Barton J K,et al.,Nucleic Acids Res.,1999,27:4830-4837
    [171]Boon EM,CeresDM,DrummondTG,et al..Nat.Biotechnol.,2000,18:109-1100.
    [172]Kermank, Ozsozd, Karap, et al., Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes[J],Anal. Chim. Aeta,2002,462:39-47.
    [173]Erdema,Kermank,Mericb,et al., Methylene blue as a novel electrochemical hybridization indicator [J],Electroanalysis,2001,13(3):219-223.
    [174]Emara S,Moxka I,Tamura K, et al.,Talanta,2000,51:359.
    [175]Suguwara K,Kuramitsu H,Hoshi S,Akatsuka K,Tanaka S,Nakamura H,Talanta, 1998,47:665.
    [176]罗济文,张敏,张蓉颖,抗癌药物的电化学研究(II)道诺霉素在DNA修饰石墨电极上的电化学行为及分析应用[J],分析科学学报,2002,18(1):1—4.
    [177]方禹之,刘盛辉,何品刚,用盐酸阿霉素作为嵌入剂石墨电极伏安法识别测定DNA片段的研究[J].高等学校化学学报,1996,17(8),1222—1224.
    [178]Jackson N M,Hill M G.Current Opinion in Chemical Biology,2001,5:209-215.
    [179]Fan C H,Plaxco K W,Heeger A J.Proc.Nail.Acad.Sci.USA,2003,100:9134-9137.
    [180]Wang J,Liu G D,Merkoci A.J.Am.Chem.Soc.,2003,125:3214-3215.
    [181]Xiao Yi, Lubin, Arica A.,Baker, Brian R.,Plaxco,Kevin W.,Heeger, Alan J.,Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex[J],Nat.Acad.Sci.USA,2006,103:16677-16680..
    [182]M.F. Cardosi, C.J. Standley, A.P.F. Turner. Abstract, Second International Meeting on Chemicals ensors,B ordeaux,France.1986.
    [183]T.deL umley,C.C ampbell,A.H eller,J. Am.Chem.So c.,1996,118:5504.
    [184]Charels D, Broeders S, Corbisier P, Trapmann S, Schimmel H,Emons H,2007, J Agric Food Chem 55:3268-3274.
    [185]Takahashi Y, Tojo T, Nagahora S, Yamazaki K J AgricFood Chem,2007,55:2923-2929.
    [186]Masarik M, Kizek R, Kramer KJ, Billova S, Brazdova M, Vacek J, Bailey M, Jelen F, Howard JA,2003, Anal Chem 75:2663-2669.
    [187]Takeiri A, Mishima M, Tanaka K, Shioda A, Ueda O, Suzuki H,Inoue M, Masumura K, Nohmi T Chem Res Toxicol,2003,16:171-179.
    [188]V. Benoit, A. Steel, M. Torres, Y. Y. Yu, H. Yang, J. Cooper,Anal. Chem.2001,73:2412
    [189]J.K.Barton,Metals and DNA:molecular left-handed complements[J], Science,1986,233:727.
    [190]J.M.Kelley,A.B.Tossi,D.J.McConnell,C.Ohuigin,Nucl.Acids Res.,1985,13:6017.
    [191]C.V.Kumar,J.K.Barton,N.J.Turro,J.Am.Chem.Soc.1985,107:5518.
    [192]H. Ju, J. Zhou, C. Cai, H. Chen, The electrochemical behavior of methylene blue at a microcylinder carbon fiber electrode[J],Electroanalysis 1995,7:1165-1170.
    [193]D.B.Hall,S.O.Kelley,J.K.Barton,Long-Range and Short-Range Oxidative Damage to DNA:Photoinduced Damage to Guanines in Ethidium-DNA Assemblies[J], Biochem.1998,37:15933-15940.
    [194]A.Erdem,K.Kerman,B.Meric,M.Ozsoz,Methylene blue as a novel electrochemical hybridization indicator,Electroanal.2001,13:219-223.
    [195]G. Mandong, L. Yanqing, G. Hongxia,W.Xiaoqin,F.Lifang,Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosanmodified CPE[J],Bioelectrochemistry 2007,70:245-249.
    [196]N.N. Zhu,A.P.Zhang,Q.J.Wang,P.G. He,Y.Z.Fang,Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes[J],Anal.Chim.Acta,2004,510:163-168.
    [197]Christoph E Nebel, Bohuslav Rezek, Dongchan Shin,Hiroshi Uetsukal and Nianjun Yang, Diamond for biosensor applications,J.Phys.D:pp1.Phys.,2007,40:6443-6466.
    [198]John S. Foord, Jingping Hu, and Katherine B. Holt, Diamond ultramicroelectrodes, phys. stat. sol.,2007,No.9:2940-2944.
    [199]Jingping Hu,Katherine B. Holt, and John S. Foord, Focused Ion Beam Fabrication of Boron-Doped Diamond Ultramicroelectrodes,Anal.Chem.2009,81:5663-5670.
    [200]Rezek, B,Shin, D,Nakamura, T, Nebel,C. E.J. Am.Chem.Soc.2006,128:3884.
    [201]Shin, D,Tokuda N, Rezek B, Nebel, C. E. Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing [J],Electrochem.Commun.2006,8:844-850.
    [202]Yang Wensha,Auciello Orlando,Butler James E, et al.,DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates[J]. Nature Materials, 2002,1:253-257.
    [203]C.Piconi,G. Maccauro,Zirconia as a ceramic biomaterial, Biomaterials 20,1999,1-25.
    [204]C.T. Buscher, D. McBranch, D. Li, Understanding the relationship between surface coverage and molecular orientation in polar self-assembled monolayers, J. Am. Chem. Soc.,1996,118:2950-2953.
    [205]S.Q. Liu, J.J. Xu, H.Y. Chen, A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application, Coll. Surf. B,2004,36:155-159.
    [206]N.N.Zhu,A.P.Zhang,Q.J.Wang,P.G. He,Y.Z. Fang, Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes, Anal. Chim.Acta,2004,510:163-168.
    [207]Shao-Hua Zuo,Ling-Fan Zhang, Hui-Hui Yuan, Min-Bo Lan,Geoffrey A. Lawrance, Gang Wei, Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode[J]. Bioelectrochemistry,2009,74:223-226.
    [208]Wei Zhang,Tao Yang, Chen Jiang, Kui Jiao, DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode [J], Applied Surface Science,2008,254:4750-4756
    [209]曾楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002.
    [210]Gerischer.H,Mehl W Z,Elcctrochem.1955,59:1049.
    [211]Wang J. Electrochemical biosensors:Towards point-of-care cancer diagnostics Biosens. Bioelectron 2006,21:1887-1892.
    [212]Long Y T,Li G Z,Sutheriand T C,et al.,Electrochem ical detection of single nueleotide mismatches applieation of M-DNA[J],Anal. Chem.,2004,76:4059-4065.
    [213]Pan S,Rothberg. Chemical control of electrode funetionalization for detection of DNA hybridization by electrochemical impedance spectroscopy[J]. Langmuir,2005, 21:1022-1027.
    [214]Patolsky,Fernando;Lichtenstin, Amir; Willner,Itamar,Electrochemical transduction of liposome-amplified DNA sensing[J]. Angew Chem Int Ed,2000,39:940-943.
    [215]Aifontai,Bardeaa,Khersonskyo,et al.,Chronopotentiometry and Faradaie impedance spectroscopy as signal transduetion methods for the bioeatalytie precipitation of an insoluble product on electrode supports:routes for enzyme sensors, immunosensors and DNA sensors [J],Biosensor & Bioelectron,2001,16:675-687.
    [216]Patolsky, Fernando,Lichtenstin,Amir,Willner,Itamar. Detection of single-base DNA mutations by enzyme-amplified electronic transduction[J]. Nat.Biotechnol., 2001,19:253-257.
    [217]徐颖,杨琳,叶晓燕,何品刚,方禹之,运用交流阻抗技术直接监测DNA杂交[J],华东师范大学学报(自然科学版),2006,4:39—48.
    [218]Patolsky F,Lichtenstein A,Willner I,Detection of single-base DNA mutations by enzyme-amplified electronic transduction [J], Nat Biotechnol.,2001,19(3):253.
    [219]Li Xiaohong,Jeremy SL,Kraatz HB,Electrochemical detection of single-nucleotide mismatches using an electrode microarray[J],Anal. Chem.,2006,78:6096.
    [220]S J.P ark,T.A.Taton,C.A.Mirkin, Array-based electrical detection of DNA with nanoparticle probes[J], Science,2002,295:1503-1506.
    [221]Tlilia C,Jaffrezic-Renauha N J,Marteleta C,et al,Direct electroehemical probing of DNA hybridization on oligonucleotide-functionalized polypyrrole[J].Materials Science and Engineering C,2008,28 (5-6):848-854.
    [222]Peng H,Soeller C,Cannell M B,et al.,Electrochemical detection of DNA hybridization amplified by nanoparticles[J],Biosensors and Bioelectronics,2006,21(9):1727-1736.
    [223]Livache T,Fouque B,Roget A,et al.,Polypyrrole DNA chip on a silicon device:Example of hepatitis C virus genotyping[J],Anal. Biochemistry,1998,255(2):188-194.
    [224]Wang J,Jimlg M,Fortes A,et al.,New label-free DNA recognition based on doping nucleic acid probes within conducting polymer films [J].Anal. Chim.Acta,1999,402(1-2):7-12.
    [225]Tlilia C,Korri-Youssoufib H,Ponsonneta L,et al.,Electrochemicalimpedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole[J]. Talanta, 2005,68(1):131-137.
    [226]Zhu Jiewen. Chemical synthesis of DNA chip-the DNA immobilization via electropolymerization of polypryyole compounds [D]. Shanghai:Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences,2002.
    [227]Mascini M,Palchetti I,Marrazza G, et al., DNA electrochemical biosensors[J], Anal.Chem.,2001,369(1):15-22.
    [228]Pividori M I, Merkoci A, Alegret S. Electrochemical genosensor design:immobilisation of oligonueleotides onto transducer surfaees and detection methods[J], Biosens.Bioelectron,2000,15(5-6):291-303.
    [229]Kerman K, Kobayashi M, Tamiyal E. Recent trends in electrochemical DNA biosensor technology[J]. Meas.Sci.Tech.,2004,15(2):R1-R11.
    [230]I.V. Yang, H.H. Thorp, Modification of indium tin oxide electrodes with repeat polynucleotides:electrochemical detection of trinucleotide repeat expansion, Anal. Chem. 2001,73:5316.
    [231]M.Yu,Vagin,A.A.Karyakin,T.Hianik,Surfactant bilayers for the direct electrochemical detection of affinity interactions,Bioelectrochemistry,2002,56:91.
    [232]Pemkopf W,Sagl M,Fafilek G,et al., Applications of microelectrodes in impedance spectroscopy[J].Solid State lonics,2005,176(25-28):2031.
    [233]G.L. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production[J],Nature 1998,393 (6683):346-349.
    [234]P.J.Britto,K.S.V. Santhanam,A.Rubio,J.A.Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes [J], Advanced Materials 1999,11 (2):154-157.
    [235]J.K.Campbell, L. Sun, R.M. Crooks, Electrochemistry Using Single Carbon Nanotubes [J] Journal of the American Chemical Society 1999,121(15):3779-3780.
    [236]H.X. Luo, Z.J. Shi, N.Q. Li, Z.N. Gu, Q.K. Zhuang, Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode [J], Analytical Chemistry,2001,73 (5):915-920.
    [237]J.X. Wang, M.X. Li, Z.J. Shi, N.Q. Li, Z.N. Gu, Electrochimica Acta,2001,47 (4):651
    [238]Iijima S,Helicalmicrotubeles of graphitie carbon[J],Nature,1991,358:56-58.
    [239]W.P.Kang, J.L. Davidson, Y.M. Wong, K.L. Soh, Y. Gurbuz, IEEE Transactions 2004 ,2004,376
    [240]Li C H,Yao K F,Liang J,Influence of acid treatment on the activity of carbon nanotube supported catalysts [J].Carbon,2003,41(4):858.
    [241]Wang W D,Serp P,Kalck P,et al.,Visible light photodegradation of phenol on MWNT-Ti()2 compo site catalysts prepared by a modified sol-gel method [J].J. Mol. Catal. A.Chem.,2005,235(1-2):194.
    [242]Zhao Y,I i C H,Yu Z X,et al.,Effect of microstructures of Pt catalysts supported on carbon nanotubes(CNTs)and activated carbon(AC)for nitrobenzene hydrogenation[J]. Mater Chem. Phys.,2007,103:225.
    [243]Tasis D,Tagmatarchis N,Bianco A,et al.,Chemistry of Carbon Nanotubes[J], Chem.Rev.,2006,106(3):1105-1136.
    [244]Lago R M,et al. J Chem Soc,Chem Commun,1995,13:1355-1356.
    [245]Chen C S,Chen X H,Yi B,et al.,Znic oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties[J].Acta Materialia,2006,54:5401.
    [246]Wang J. Kawde A-N, Musmneh M. Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization [J],Analyst, 2003,128:912-916.
    [247]Bong Gill Choi,HoSeok Park,Tae Jung Park, et al.,Development of the electrochemical biosensor for organophosphate chemicals using CNT/ionic liquid bucky gel electrode [J]. Electrochemistry Communications,2009,11:672-675.
    [248]Cai H,Xu Y,He P G,et al.,Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode [J].Electroanalysis,2003,15(23-24):1864-1870.
    [249]Cai H,Xu c M,Fang Y Z,et al.,Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA [J], J.Electroanal.Chem., 2001,510(1/2):78-85.
    [250]Mitchell G Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots[J],J.Am.Chem.Soc.,1999,12:8122-8123.
    [251]Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes [J],Anal.Chem.,2003,75(9):2181-2187.
    [252]Cai H, Xu Y, Fang Y Z, et al. An electrochemical DNA hybridization detection assay based on a silver nanoparticle label [J],Analyst,2002,127(6):803-808.
    [253]Wang J,Rincon O,Polsky R,et al.,Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster [J], Electrochem.Commun.,2003,5:83-86.
    [254]Mucic R C,Storhoff J J, Mirkin,et al.,DNA-directed synthesis of binary nanoparticle network materials[J],J.Am.Chem.Soc.,1998.120:12674-12675.
    [255]Storhoff J J, Elghanian R, Mucic R C, et al. One pot colorimetric diferentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J],J.Am.Chem.Soc.,1998,120:1959-1964.
    [256]Elghanian R,Storhoff J J,Mucic R C,et al.,Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science,1997,277(22):1078-1080.
    [257]Cai H, WangY Q,FangY Z.etal., Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label [J]Chim.Acta,2002,469(2):165-172.
    [258]Wang J,Polsky R,Xu D. Silver enhanced colloidal gold electrochemical stripping detection of DNA hybridization[J],Langmuir,2001,17(19):5739-5741.
    [259]Zhu N N, Cai H, Fang Y Z, et al.,Tris(2,2'-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization [J],Anal.Chim.Acta,2003,481 (2):181-189.
    [260]刘爱丽,彭图治,程琼.应用纳米磁性球电化学检测特定序列DNA[J].高等学校化学学报,2005,26(2):231—234.
    [261]Stoeva S I,Huo F W,Lee J S,et al.,[J].J Anal Chem Soc.,2005,127:15362-15363.
    [262]Wang J, Polsky R. Danke X. Silver-Enhanced Colloidal Gold Electrochemical Stripping Detection of DNA Hybridization [J].Langmuir,2001,17(19):5739-5741
    [263]Liu F,Choi J Y,Seo T S, Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer [J], Biosens.Bioelectron.,2010, 25(10):2361-2365.
    [264]Huang K J,Niu D J, Sun JY, Han C H, Wu Z W, Li Y L, Xiong X Q. Colloid.Surface B,2011,82(2):543-549.
    [265]X. W. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y. L.Chang, Q. Wang, Carbon Nanotube DNA Sensor and Sensing Mechanism[J]. Nano Lett.2006,6,1632-1636.
    [266]C. H. Fan, K. W. Plaxco, A. J. Heeger, Biosensors based on binding-modulated donor-acceptor distances [J]. Trends Biotechnol.2005,23:186-192.
    [267]Shso Y H,Nirkin M V,Fish G,et al.,Nanometer-sized Electrochemical sonsol-s[J].Anal Chem.,1997,69(8):1627-1634.
    [268]Forrer P,Schlottig F,Siegenthaler H,et al.,Electrochemical prepm lion and surface properties of gold nanowire arrays formed by the template technique[J].Journal of Applied Electrochemistry,2000,30:533-541.
    [269]X. C. Ma, N. Lun, S. L. Wen, Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method [J], Diamond Rel. Mater.2005, 14:68-73.
    [270]Fasi A.,Palinko I,Seo J.W, Konya, Z.,Hernadi,K.,Kiricsi,I.,Sonication assisted gold deposition on multiwall carbon nanotubes[J].Chem.Phys.Lett.2003,372:848-852.
    [271]B.C.Satishkumar,E.M.Vogl,A.Govindaraj,C.N.R.Rao, The decoration of carbon nanotubes by metal nanoparticles[J].J.Phys.D:Appl.Phys.1996,29:3173-3176.
    [272]J.X.Li,H.Grennberg Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes[J].Chem.Eur.J.2006,12:3869-3875.
    [273]N.N.Zhu,Z. Chang,P.G. He,Y.Z.Fang,Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes[J],Anal.Chim.Acta,2005,545:21-26
    [274]C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials,1999,20:1-25
    [275]C.T.Buscher,D.McBranch,D.Li,Understanding the relationship between surface coverage and molecular orientation in polar self-assembled monolayers[J]. J.Am.Chem.Soc.,1996118:2950-2953.
    [276]S.Q. Liu, J.J. Xu, H.Y. Chen, A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application[J].Coll.Surf. B 2004,36:155-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700