锂离子电芯性能衰减与电极界面的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大力开发新能源、可再生能源以及发展新能源汽车,是解决我国能源可持续利用以及环境污染问题的有效途径。而大规模利用这些新能源,需要与之配套的高性能电池。在众多现行开发的二次电池中,锂离子电池因具有工作电压高、功率密度和能量密度高和无记忆效应等优点,成为人们的首先。但是,锂离子电池在首次充电、存储和充放电循环等过程中发生性能衰减甚至安全问题,减少了电池的使用寿命,提高其使用成本,并限制了其在交通领域的应用。因此,充分认识这些过程中锂离子电芯的容量衰减、性能失效等机制以及电极界面的特征,对于管理、使用和设计锂离子电芯具有重要的指导意义。
     本论文首先研究了LiNi1/3Mn1/3Co1/3O2/LiPF6-EC:DEC:PC/人造石墨电芯在不同条件下的存储行为,采用交流阻抗技术(EIS)研究电芯及电极阻抗变化;辅助XRD、ICP、FTIR.SEM、EDS和DSC等分析技术,考察存储条件对电极材料以及隔离膜的化学物理性质的影响。发现28周内电芯容量衰减的活化能为28.8-35.8kJ/mol,容量损失率与存储时间的平方根呈线性关系。低温阻碍电极界面副反应发生,减少了容量衰减和阻抗增加。0℃下,28周后,电芯的容量损失率仅为4.1%,比60℃下少39.4%。通过胀气气体成分分析及EIS测试表明负极/电解液界面的副反应占主导。主要气体(CO、CH4、C2H6)是由电解液在负极表面上的还原产生的。高温存储未改变石墨的晶体结构,但导致了电解液在正极表面的氧化,并造成了隔离膜孔隙率的下降;同时改变石墨表面形貌和及其固体电解质界面(SEI)膜的成分,促使SEI膜分解温度提高。此外,还考察了充电状态和石墨颗粒大小对该电芯体系高温存储性能的影响。
     制备参比电极,原位监测三电极电芯在存储、使用过程中电极的电势和阻抗变化。发现满充状态下的LiN11/3Mn1/3Co1/3O2/人造石墨电芯、LiCoO2/混合石墨电芯,在高温存储下,石墨负极的界面阻抗随存储时间的延长先减小而后增大;这说明了SEI膜的溶解与成长存在相互竞争过程。然而,正极界面阻抗则逐渐地增大。存储过程中,负极的电势因LiC6发生脱锂反应而逐渐地上升,正极的电势则因LixNi1/3或LixCoO2材料发生嵌锂反应而逐渐地降低。还发现在电芯循环过程中,正、负极的阻抗变化趋势跟高温存储过程类似。
     分析了锂离子电芯的可逆和不可逆容量损失机理。发现几乎所有可逆损失的容量在电芯存储后的首次充电过程重新获得。可逆损失部分主要有两种来源:从嵌锂石墨中损失掉的Li+,一部分转化为亚稳态的烷基锂,还有一部分Li+因SEI膜的溶解迁移到正极并重新嵌入L1xNi1/3Mn1/3Co1/3或LixCoO2晶格中;这些损失掉的Li+在以后的充放电中可重新利用。此外,还讨论了电芯在循环过程中不可逆容量损失的机理。
     探讨了首次充电条件对石墨SEI膜和电芯电化学性能的影响。提高化成温度可以促进SEI膜中一些亚稳态的锂配合物转化为更稳定的成分,从而改善SEI膜的化学稳定性。当化成温度从25℃提高到45℃时,电芯在60℃存储10周或者在常温下循环300次(-1C)后,不可逆容量损失率减少了约8%。但在同一温度下,化成电流密度在0.044-1.077mA/cm2范围内,对电芯的电化学性能衰减影响小。
     对于LiCoO2/LiPF6-EC:DEC:EMC/混合石墨电芯,不同种类的石墨颗粒间因晶体结构、比表面积的差异,造成存储中活性Li+损失量的不同,从而导致了混合石墨电极中浓差电池(Li1-xC6)(Li1-x-yC6(x≠y)的形成,并诱发了该电极在低频区电感的出现。对于满充电芯,Li+在石墨电极界面的转移活化能为64kJ/mol,比其在LiCoO2正极界面多24kJ/mol。由于石墨界面主导了离子转移电阻及活化能,导致低温下电芯充电时,负极表面容易析锂,造成不可逆容量损失。为此,减小石墨界面电荷转移电阻及其活化能,有利于提高锂离子电池的低温循环和倍率性能。
Development of new and renewable energy, as well as new energy vehicles is an efficient solution to the problems of energy sustainable utilization and environment pollution. In order to store and utilize these new energies in large-scale, batteries with high performance are required. Among several types of secondary batteries, Li-ion battery is concerned firstly owe to its favorable properties of high working voltage, high power and energy density and no memory effect. However, Li-ion battery suffers performance decay and even safety problem during the period of the initial charge, storage and cycle, which will shorten battery life. Consequently, it would lead to increase battery cost and impede its wide application, especially in the transportation field.
     In this thesis, storage behaviors of one type of Li-ion cells based on LiNi1/3Mn1/3Co1/3O2/LiPF6-EC:DEC:PC/artificial graphite under various storage condition were investigated using impedance spectroscopy (EIS), XRD, ICP, FTIR, SEM, EDS, DSC, etc. With aims of these analysis tools, effects of storage conditions on chemical and physical properties of electrodes and separators were studied. It was found that activation energy of cell capacity loss was in the range of28.8-35.8kJ/mol and that there was linear relationship between capacity loss and square root of storage time. Low temperature impedes the interfacial side reactions, capacity loss and growth of impedance of a cell. The capacity loss of an aged cell after storage for28weeks was only4.1%at0℃,39.4%lower than60℃. Gas and EIS analysis results showed that the interfacial reaction on graphite dominated the side reactions of the aged cells. The main gases including CO、CH4、C2H6detected in a swelling aged cell are caused by the reduction of electrolyte at graphite interface. High temperature does not alter structure of graphite, but surface morphology of graphite and composition of solid electrolyte interphase (SEI) film, which leads to increase the decompose temperature of SEI film. The effects of state of charge (SOC) and particle size of graphite on storage performance of Li-ion cells at elevated temperature were also studied.
     Changes of potentials and impedance of electrodes were in-situ monitored with the aid of reference electrode in3-electrode cells during storage. It was observed that the interfacial impedance of graphite electrode decreased firstly and then increased with the prolonged storage for both of LiNi1/3Mn1/3Co1/3O2/artificial graphite and LiCoO2/mixed graphite cells, indicating that the competition between the damage and growth of SEI film occurs during storage. Yet, the interfacial impedance of positive electrode increased with the storage. During storage, the potentials of negative electrode gradually increased due to the de-lithiation of LiC6, whereas the negative electrode gradually dropped due to Li+re-intercalation into LixNi1/3Mn1/3Co1/3or LixCoO2. It was also found that the impedance changes of both electrodes during cycle were similar with high-temperature storage.
     Mechanisms of reversible and irreversible capacity loss of Li-ion cells have been discussed. Experiment results showed that most of reversible loss of capacity for an aged cell after storage could be regained after recharging. There are two main sources to regain reversibly lost capacity or lithium ions during storage. Some reversibly lost lithium ions react with electrolyte solvent to become metastable lithium alkyl complex (as a part of SEI film), which can be cyclable again after recharging. On the other hand, some lithium ions of SEI film release in electrolyte due to the dissolution of SEI film and re-intercalation into LixNi1/3Mn1/3Co1/3or LixCoO2crystal driven by Li+concentration gradient. The irreversible capacity loss of Li-ion cells during cycle was also discussed.
     The effects of initial charge conditions on SEI film properties and electrochemical performance of Li-ion cells have been discussed. Some metastable lithium complex can be transformed to the stable one by increasing formation temperature, which can enhance the chemical stability of SEI film. The irreversible capacity loss of an aged cell after storage at60℃for10weeks or after300cycles (at~1C) at room temperature reduced ca.8%after increase the formation temperature from25℃to60℃. However, under the same temperature, the formation current density within the range of0.044-1.077mA/cm2hardly impacted on the performance of Li-ion cell.
     As for LiCoO2/LiPF6-EC:DEC:EMC/Mixed graphite Li-ion cell, the amount of lost active Li+during cell storage differs among various types of graphite particles due to their difference of crystal structure and specific surface area, resulting in formation of a concentration cell of (Li1-xC6)/(Li1-x-yC6)(x≠y) in the mixed graphite electrode. The concentration cell can induce inductive phenomena in impedance spectra of the mixed graphite electrode at lower frequency range. It was shown that in the fully charged celll, the activation of lithium ion transfer at graphite/electrolyte interface was64kJ/mol,24kJ/mol more than that of lithium ion transfer at LiCoO2/electrolyte interface. Because the graphite electrode dominates interfacial charge transfer resistance and its activation energy, lithium trends to be plating on the graphite, causing irreversible capacity loss for a cell during a charge process at low temperatures. By reducing both of them, it will be beneficial in improving the low-temperature and the high rate cycle performance of Li-ion cell.
引文
[1]M. Armand, J.M. Tarascon. Building better batteries [J]. Nature,2008, 451(7179):652-657.
    [2]B. Scrosati, J. Garche. Lithium batteries:Status, prospects and future [J]. J. Power Sources,2010,195(9):2419-2430.
    [3]K. Xu. Electrolytes and interphasial chemistry in Li ion devices [J]. Energies, 2010,3(1):135-154.
    [4]吴宇平,戴晓兵,马军旗,et al.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:8-9.
    [5]H. Ikeda, S. Narukawa, H. Nakajima. An intercalation material in organic solvent. Japan Patent, No.1769661.1981.
    [6]S. Basu. Ambient temperature rechargeable battery. USA Patent, No. 4,423,125.1982.
    [7]D. Goers, M.E. Spahr, A. Leone, et al. The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes [J]. Electrochim. Acta,2011,56(11):3799-3808.
    [8]H. Buqa, A. Wusig, D. Goers, et al. Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes [J]. J. Power Sources,2005,146(1-2):134-141.
    [9]J.B. Goodenough. Electrochemical cell with new fast ion conductors. USA Patent, No.4,302,518.1980.
    [10]K. Mizushima, P.C. Jones, P.J. Wiseman, et al. LixCoO2 (0    [11]A. Yoshino, K. Jitsuchika, T. Nakashima. Li-ion battery based on carbonaus material. Japan Patent, No.1989293.1985.
    [12]M. Yoshio, R.J. Brodd, A. Kozawa. Lithium-Ion Batteries Science and Technologies [M]. New York:Springer Science+Business Media,2009.
    [13]郭炳昆,徐徽,王友先.锂离子电池[M].长沙:中南工业大学出版社,2002:10-30.
    [14]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2008:6-7 & 145-146.
    [15]K. Xu. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chem. Rev.,2004,104(10):4303-4417.
    [16]D. Aurbach. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J]. J. Power Sources, 2000,89(2):206-218.
    [17]M.K. Aydinol, G. Ceder. First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries [J]. J. Electrochem. Soc.,1997, 144(11):3832-3835.
    [18]G.-A. Nazri, G.Pistoia. Lithium Batteries:Science and Technology [M]. New York:Springer Science+Business Media,2003:5-10.
    [19]Y.J. Lee, H. Yi, W.-J. Kim, et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes [J]. Science,2009, 324(5930):1051-1055.
    [20]H. Nishide, K. Oyaizu. Materials science:Toward flexible batteries [J]. Science,2008,319(5864):737-738.
    [21]W.-J. Zhang. Structure and performance of LiFePO4 cathode materials:A review [J]. J. Power Sources,2011,196(6):2962-2970.
    [22]K.T. Lee, L.F. Nazar. Positive electrode materials for Li-ion and Li-batteries [J]. Chem. Mater.,2010,22(3):691-714.
    [23]J.W. Fergus. Recent developments in cathode materials for lithium ion batteries [J]. J. Power Sources,2009,195(4):939-954.
    [24]J.B. Goodenough. Cathode materials:A personal perspective [J]. J. Power Sources,2007,174(2):996-1000.
    [25]J.L. Tirado. Inorganic materials for the negative electrode of lithium-ion batteries:state-of-the-art and future prospects [J]. Mater. Sci. Eng. R Rep., 2003,40(3):103-136.
    [26]M. Noel, V. Suryanarayanan. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes [J]. J. Power Sources,2002,111(2): 193-209.
    [27]S.S. Zhang. A review on electrolyte additives for lithium-ion batteries [J]. J. Power Sources,2006,162(2):1379-1394.
    [28]J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367.
    [29]W.A.V. Schalkwijk, B. Scrosati. Advances in Lithium-Ion Batteries [M]. New York:Kluwer Academic Publishers,2002:81-84.
    [30]X.Y. Song, K. Kinoshita, T.D. Tran. Microstructural characterization of lithiated graphite [J]. J. Electrochem. Soc.,1996,143(6):L120-L123.
    [31]K. Abe, H. Yoshitake, T. Kitakura, et al. Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries [J]. Electrochim. Acta,2004,49(26):4613-4622.
    [32]W.-M. Zhang, X.-L. Wu, J.-S. Hu, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J]. Adv. Funct. Mater., 2008,18(24):3941-3946.
    [33]H. Li, X. Huang, L. Chen. Anodes based on oxide materials for lithium rechargeable batteries [J]. Solid State Ionics,1999,123(1-4):189-197.
    [34]P. Kubiak, J. Geserick, N. Huing, et al. Electrochemical performance of mesoporous TiO2 anatase [J]. J. Power Sources,2008,175(1):510-516.
    [35]B. Key, R. Bhattacharyya, M. Morcrette, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries [J]. J. Am. Chem. Soc.,2009,131(26):9239-9249.
    [36]Z. Shi, M.L. Liu, D. Naik, et al. Electrochemical properties of Li-Mg alloy electrodes for lithium batteries [J]. J. Power Sources,2001,92(1-2):70-80.
    [37]U. Kasavajjula, C. Wang, A.J. Appleby. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J]. J. Power Sources,2007,163(2): 1003-1039.
    [38]M. Winter, J.O. Besenhard. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim. Acta,1999,45(1-2):31-50.
    [39]J.M. Mosby, A.L. Prieto. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes [J]. J. Am. Chem. Soc.,2008,130(32):10656-10661.
    [40]R.A. Huggins. Lithium alloy negative electrodes [J]. J. Power Sources,1999, 81-82:13-19.
    [41]D. Fouchard, L. Lechner. Analysis of safety and reliability in secondary lithium batteries [J]. Electrochim. Acta,1993,38(9):1193-1198.
    [42]Y. Kim, J.B. Goodenough. Lithium insertion into transition-metal monosulfides:Tuning the position of the metal 4s band [J]. J. Phys. Chem. C, 2008,112(38):15060-15064.
    [43]J. Seo, J. Jang, S. Park, et al. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries [J]. Adv. Mater., 2008,20(22):4269-4273.
    [44]G.-W. Lee, J.H. Ryu, W. Han, et al. Effect of slurry preparation process on electrochemical performances of LiCoO2 composite electrode [J]. J. Power Sources,2009,195(18):6049-6054.
    [45]H. Chen, C.P. Grey. Molten salt synthesis and high rate performance of the desert-rose form of LiCoO2 [J]. Adv. Mater.,2008,20(11):2206-2210.
    [46]Y. Baba, S. Okada, J.-i. Yamaki. Thermal stability of LixCoO2 cathode for lithium ion battery [J]. Solid State Ionics,2002,148(3-4):311-316.
    [47]D. Aurbach, B. Markovsky, A. Rodkin, et al. On the capacity fading of LiCoO2 intercalation electrodes:The effect of cycling, storage, temperature, and surface film forming additives [J]. Electrochim. Acta,2002,47(27): 4291-4306.
    [48]B. Markovsky, D. Kovacheva, Y. Talyosef, et al. Studies of nanosized LiNi0.5Mn0.5O2-layered compounds produced by self-combustion reaction as cathodes for lithium-ion batteries [J]. Electrochem. Solid-State Lett.,2006, 9(10):A449-A453.
    [49]W.-S. Yoon, M. Balasubramanian, X.-Q. Yang, et al. Soft X-Ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge [J]. J. Electrochem. Soc.,2004,151(2):A246-A251.
    [50]B.J. Hwang, Y.W. Tsai, D. Carlier, et al. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2 [J]. Chem. Mater., 2003,15(19):3676-3682.
    [51]J. Guo, L.F. Jiao, H.T. Yuan, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method [J]. Electrochim. Acta,2006,51(18): 3731-3735.
    [52]W.-S. Yoon, K.Y. Chung, J. McBreen, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD [J]. Electrochem. Commun.,2006,8(8):1257-1262.
    [53]S.K. Martha, E. Markevich, V. Burgel, et al. A short review on surface chemical aspects of Li batteries:A key for a good performance [J]. J. Power Sources,2009,189(1):288-296.
    [54]Y. Cho, Y.-S. Lee, S.-A. Park, et al. LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors [J]. Electrochim. Acta,2010,56(1):333-339.
    [55]W.-S. Yoon, K.Y. Chung, J. McBreen, et al. Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy [J]. J. Power Sources, 2007,174(2):1015-1020.
    [56]T. Nonaka, C. Okuda, Y. Seno, et al. In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries [J]. J. Power Sources,2006,162(2):1329-1335.
    [57]D.P. Abraham, E.M. Reynolds, E. Sammann, et al. Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes [J]. Electrochim. Acta,2005,51(3):502-510.
    [58]K. Huang, B. Peng, Z. Chen, et al. Preparation, structure and electrochemical properties of spinel Li1-xMn2-yO4 cathode material for lithium ion batteries [J]. Solar Energy Materials and Solar Cells,2000,62(1-2):177-185.
    [59]G.G. Amatucci, N. Pereira, T. Zheng, et al. Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution [J]. J. Electrochem. Soc., 2001,148(2):A171-A182.
    [60]K.T. Lee, W.H. Kan, L.F. Nazar. Proof of intercrystallite ionic transport in LiMPO4 electrodes (M=Fe, Mn) [J]. J. Am. Chem. Soc.,2009,131(17): 6044-6045.
    [61]B. Kang, G. Ceder. Battery materials for ultrafast charging and discharging [J]. Nature,2009,458(7235):190-193.
    [62]P.S. Herle, B. Ellis, N. Coombs, et al. Nano-network electronic conduction in iron and nickel olivine phosphates [J]. Nat Mater,2004,3(3):147-152.
    [63]S.-Y. Chung, J.T. Bloking, Y.-M. Chiang. From our readers:On the electronic conductivity of phospho-olivines as lithium storage electrodes [J]. Nat. Mater., 2003,2(11):702-703.
    [64]A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc.,1997,144(4):1188-1194.
    [65]C.A.J. Fisher, V.M.H. Prieto, M.S. Islam. Lithium battery materials LiMPO4 (M=Mn, Fe, Co, and Ni):Insights into defect association, transport mechanisms, and doping behavior [J]. Chem. Mater.,2008,20(18): 5907-5915.
    [66]T. Drezen, N.H. Kwon, P. Bowen, et al. Effect of particle size on LiMnPO4 cathodes[J]. J. Power Sources,2007,174(2):949-953.
    [67]S.K. Martha, B. Markovsky, J. Grinblat, et al. LiMnPO4 as an advanced cathode material for rechargeable lithium batteries [J]. J. Electrochem. Soc., 2009,156(7):A541-A552.
    [68]S.K. Martha, J. Grinblat, O. Haik, et al. LiMn0.8Fe0.2PO4:An advanced cathode material for rechargeable lithium batteries [J]. Angew. Chem. Int. Ed., 2009,48(45):8559-8563.
    [69]M.R. Yang, W.H. Ke. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells [J]. J. Electrochem. Soc.,2008,155(10):A729-A732.
    [70]J. Molenda, W. Ojczyk, J. Marzec. Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials [J]. J. Power Sources, 2007,174689-694.
    [71]J. Kikkawa, T. Akita, M. Tabuchi, et al. Fe-rich and Mn-rich nanodomains in Li1.2Mn0.4Fe0.4O2 positive electrode materials for lithium-ion batteries [J]. Appl. Phys. Lett.,2007,91(5):054103.
    [72]G.X. Wang, S. Needham, J. Yao, et al. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries [J]. J. Power Sources, 2006,159(1):282-286.
    [73]J. Li, C. Daniel, D. Wood. Materials processing for lithium-ion batteries [J]. J. Power Sources,2011,196(5):2452-2460.
    [74]O. Schilling, J.R. Dahn. Thermodynamic stability of chemically delithiated Li(LixMn2-x)O4 [J]. J. Electrochem. Soc.,1998,145(2):569-575.
    [75]X. Li, Y. Xu, C. Wang. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode [J]. J. Alloys and Compd.,2009,479(1-2):310-313.
    [76]K. Kuriyama, A. Onoue, Y. Yuasa, et al. Atomic force microscopy study of surface morphology change in spinel LiMn2O4:Possibility of direct observation of Jahn-Teller instability [J]. Surface Science,2007,601(10): 2256-2259.
    [77]X. Li, Y. Xu, C. Wang. Novel approach to preparation of LiMn2O4 core/LiNixMn2-xO4 shell composite [J]. Appl. Surf. Sci.,2009,255(11): 5651-5655.
    [78]刘云建.锂离子动力电池的制作与性能研究[博士论文].长沙:中南大学;2009.
    [79]A.M. Andersson, K. Edstrom. Chemical composition and morphology of the elevated temperature SEI on graphite [J]. J. Electrochem. Soc.,2001,148(10): A1100-A1109.
    [80]E. Peled, D. Golodnitsky, G. Ardel, et al. The SEI model--application to lithium-polymer electrolyte batteries [J]. Electrochim. Acta,1995,40(13-14): 2197-2204.
    [81]E. Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model [J]. J. Electrochem. Soc.,1979,126(12):2047-2051.
    [82]M. Winter, P. Novak, A. Monnier. Graphites for lithium-ion cells:The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area [J]. J. Electrochem. Soc.,1998,145(2):428-436.
    [83]D. Aurbach, A. Zaban. Impedance spectroscopy of lithium electrodes:Part 1. General behavior in propylene carbonate solutions and the correlation to surface chemistry and cycling efficiency [J]. J. Electroanal. Chem.,1993, 348(1-2):155-179.
    [84]A. Zaban, D. Aurbach. Impedance spectroscopy of lithium and nickel electrodes in propylene carbonate solutions of different lithium salts A comparative study [J]. J. Power Sources,1995,54(2):289-295.
    [85]D. Aurbach, A. Zaban. Impedance spectroscope of lithium electrodes:Part 2. The behaviour in propylene carbonate solutions-the significance of the data obtained [J]. J. Electroanal. Chem.,1994,367(1-2):15-25.
    [86]S. Koike, T. Fujieda, N. Wakabayashi, et al. Electrochemical and quartz microbalance technique studies of anode material for secondary lithium batteries [J]. J. Power Sources,1997,68(2):480-482.
    [87]E.S. Nimon, A.V. Churikov. Electrochemical behaviour of Li-Sn, Li-Cd and Li-Sn-Cd alloys in propylene carbonate solution [J]. Electrochim. Acta,1996, 41(9):1455-1464.
    [88]S. Menkin, D. Golodnitsky, E. Peled. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications [J]. Electrochem. Commun.,2009,11(9):1789-1791.
    [89]D. Aurbach, B. Markovsky, G. Salitra, et al. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J]. J. Power Sources,2007,165(2):491-499.
    [90]Y. Park, N.H. Kim, J.Y. Kim, et al. Surface characterization of the high voltage LiCoO2/Li cell by X-ray photoelectron spectroscopy and 2D correlation analysis [J]. Vibrational Spectroscopy,2010,53(1):60-63.
    [91]R. Dedryeve, D. Foix, S. Franger, et al. Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery [J]. J. Phys. Chem. C,2010,114(24):10999-11008.
    [92]K.-I. Morigaki, A. Ohta. Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy [J]. J. Power Sources, 1998,76(2):159-166.
    [93]D. Bar-Tow, E. Peled, L. Burstein. A study of Highly Oriented Pyrolytic Graphite as a model for the graphite anode in Li-ion batteries [J]. J. Electrochem. Soc,1999,146(3):824-832.
    [94]D. Aurbach, B. Markovsky, A. Shechter, et al. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures [J]. J. Electrochem. Soc.,1996, 143(12):3809-3820.
    [95]E. Peled, D. Golodnitsky, C. Menachem, et al. An advanced tool for the selection of electrolyte components for rechargeable lithium batteries [J]. J. Electrochem. Soc.,1998,145(10):3482-3486.
    [96]A. Kominato, E. Yasukawa, N. Sato, et al. Analysis of surface films on lithium in various organic electrolytes [J]. J. Power Sources,1997,68(2):471-475.
    [97]E. Peled, D. Golodnitsky, G. Ardel. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes [J]. J. Electrochem. Soc.,1997,144(8):L208-L210.
    [98]K. Edstrom, M. Herstedt, D.P. Abraham. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries [J]. J. Power Sources,2006, 153(2):380-384.
    [99]A.M. Andersson, A. Henningson, H. Siegbahn, et al. Electrochemically lithiated graphite characterised by photoelectron spectroscopy [J]. J. Power Sources,2003,119-121:522-527.
    [100]P. Verma, P. Maire, P. Novak. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries [J]. Electrochim. Acta,2010,55(22): 6332-6341.
    [101]T. Yoshida, M. Takahashi, S. Morikawa, et al. Degradation mechanism and life prediction of lithium-ion batteries [J]. J. Electrochem. Soc.,2006,153(3): A576-A582.
    [102]D. Alliata, R. Koz, P. Nova, et al. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes [J]. Electrochem. Commun.,2000,2(6):436-440.
    [103]K.A. Hirasawa, T. Sato, H. Asahina, et al. In situ electrochemical atomic force microscope study on graphite electrodes [J]. J. Electrochem. Soc.,1997, 144(4):L81-L84.
    [104]O. Matsuoka, A. Hiwara, T. Omi, et al. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell [J]. J. Power Sources,2002,108(1-2):128-138.
    [105]D. Aurbach, Y. Ein-Eli, O. Chusid, et al. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable'Rocking-Chair1 type batteries [J]. J. Electrochem. Soc.,1994, 141(3):603-611.
    [106]J. Yan, J. Zhang, Y.-C. Su, et al. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries [J]. Electrochim. Acta,2010,55(5):1785-1794.
    [107]D. Aurbach, Y. Ein-Eli, B. Markovsky, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries [J]. J. Electrochem. Soc.,1995,142(9):2882-2890.
    [108]D. Aurbach, M.D. Levi, E. Levi, et al. Failure and stabilization mechanisms of graphite electrodes [J]. J. Phys. Chem. B,1997,101(12):2195-2206.
    [109]D. Aurbach, Y Ein-Ely, A. Zaban. The surface chemistry of lithium electrodes in alkyl carbonate solutions [J]. J. Electrochem. Soc.,1994,141(1):L1-L3.
    [110]A. Augustsson, M. Herstedt, J.H. Guo, et al. Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy [J]. Phys. Chem. Chem. Phys.,2004,6(16):4185-4189.
    [111]G.V. Zhuang, J. Philip N. Ross. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy [J]. Electrochem. Solid-State Lett.,2003,6(7):A136-A139.
    [112]H.O. Pierson. Handbook of Carbon, Diamond and Fullerenes [M]. Park Ridge, New Jersey:Noyes Publications,1993:63-64.
    [113]P.B. Balbuena, Y. Wang. Lithium-Ion Batteries:Solid-Electrolyte Interphase [M]. London:Imperial College Press,2004:22-40.
    [114]E. Peled, D.B. Tow, A. Merson, et al. Microphase Structure of SEI on HOPG [J]. J. of New Materials for Electrochemical Systems 2000,3:321-328.
    [115]V. Eshkenazi, E. Peled, L. Burstein, et al. XPS analysis of the SEI formed on carbonaceous materials [J]. Solid State Ionics,2004,170(1-2):83-91.
    [116]D.G. E. Peled, G. Ardel, C. Menachem, D.B. Tow and V. Eshkenazy The role of SEI in lithium and lithium-ion batteries [J]. Mater. Res. Soc. Symp. Proc., 1995,393209-221.
    [117]P. Arora, R.E. White, M. Doyle. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J. Electrochem. Soc.,1998,145(10):3647-3667.
    [118]O. Chusid, E. Ein Ely, D. Aurbach, et al. Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems [J]. J. Power Sources,1993,43(1-3):47-64.
    [119]G.H. Wrodnigg, J.O. Besenhard, M. Winter. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes [J]. J. Electrochem. Soc., 1999,146(2):470-472.
    [120]M. Xu, X. Zuo, W. Li, et al. Effect of butyl sultone on the Li-ion battery performance and interface of graphite electrode [J]. Acta Phys.-Chim. Sin., 2006,22(3):335-340.
    [121]E.-G. Shim, T.-H. Nam, J.-G. Kim, et al. Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries [J]. Electrochim. Acta, 2007,53(2):650-656.
    [122]G. Park, H. Nakamura, Y. Lee, et al. The important role of additives for improved lithium ion battery safety [J]. J. Power Sources,2009,189(1): 602-606.
    [123]J.O. Besenhard, M. Winter, J. Yang, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes [J]. J. Power Sources,1995,54(2):228-231.
    [124]Z.X. Shu, R.S. McMillan, J.J. Murray. Effect of 12 Crown 4 on the electrochemical intercalation of lithium into graphite [J]. J. Electrochem. Soc., 1993,140(6):L101-L103.
    [125]S.H. Ng, C. Vix-Guterl, P. Bernardo, et al. Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries [J]. Carbon,2009,47(3):705-712.
    [126]M. Dolle, S. Grugeon, B. Beaudoin, et al. In situ TEM study of the interface carbon/electrolyte [J]. J. Power Sources,2001,97-98:104-106.
    [127]S.-B. Lee, S.-I. Pyun. The effect of electrolyte temperature on the passivity of solid electrolyte interphase formed on a graphite electrode [J]. Carbon,2002, 40(13):2333-2339.
    [128]S.-B. Lee, S.-I. Pyun. Critical assessment of a new in situ spectroelectrochemical cell designed for the study of interfacial reactions between a porous graphite anode and alkyl carbonate solution [J]. J. Solid State Electrochem.,2003,7(4):201-207.
    [129]M. Wohlfahrt-Mehrens, C. Vogler, J. Garche. Aging mechanisms of lithium cathode materials [J]. J. Power Sources,2004,127(1-2):58-64.
    [130]W. Lu, Z. Chen, H. Joachin, et al. Thermal and electrochemical characterization of MCMB/LiNi1/3Co1/3Mn1/3O2 using LiBoB as an electrolyte additive [J]. J. Power Sources,2007,163(2):1074-1079.
    [131]M. Holzapfel, F. Alloin, R. Yazami. Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures [J]. Electrochim. Acta,2004,49(4):581-589.
    [132]A.D. Pasquier, F. Disma, T. Bowmer, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries [J]. J. Electrochem. Soc.,1998,145(2):472-477.
    [133]M.N. Richard, J.R. Dahn. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. Ⅰ. Experimental [J]. J. Electrochem. Soc.,1999,146(6):2068-2077.
    [134]J. Jiang, J. Chen, J.R. Dahn. Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using Accelerating Rate Calorimetry [J]. J. Electrochem. Soc.,2004,151(12):A2082-A2087.
    [135]M. Inaba, H. Tomiyasu, A. Tasaka, et al. Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures [J]. Langmuir,2004,20(4):1348-1355.
    [136]K.H. Lee, E.H. Song, J.Y. Lee, et al. Mechanism of gas build-up in a Li-ion cell at elevated temperature [J]. J. Power Sources,2004,132(1-2):201-205.
    [137]J. Eom, M.G. Kim, J. Cho. Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2(x =0,0.03, and 0.06) cathode materials for lithium batteries [J]. J. Electrochem. Soc.,2008,155(3):A239-A245.
    [138]K. Amine, J. Liu, I. Belharouak. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J]. Electrochem. Commun.,2005,7(7): 669-673.
    [139]H. Maleki, J.N. Howard. Effects of overdischarge on performance and thermal stability of a Li-ion cell [J]. J. Power Sources,2006,160(2):1395-1402.
    [140]M. Zhao, S. Kariuki, H.D. Dewald, et al. Electrochemical stability of copper in lithium-ion battery electrolytes [J]. J. Electrochem. Soc.,2000,147(8): 2874-2879.
    [141]J. Vetter, P. Novak, M.R. Wagner, et al. Ageing mechanisms in lithium-ion batteries [J]. J. Power Sources,2005,147(1-2):269-281.
    [142]R. Spotnitz, J. Franklin. Abuse behavior of high-power, lithium-ion cells [J]. J. Power Sources,2003,113(1):81-100.
    [143]G. Li, R. Xue, L. Chen. The influence of polytetrafluorethylene reduction on the capacity loss of the carbon anode for lithium ion batteries [J]. Solid State Ionics,1996,90(1-4):221-225.
    [144]T. Zheng, A.S. Gozdz, G.G. Amatucci. Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures [J]. J. Electrochem. Soc.,1999,146(11):4014-4018.
    [145]G. Kwak, J. Park, J. Lee, et al. Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries [J]. J. Power Sources,2007,174(2):484-492.
    [146]D. Aurbach, B. Markovsky, A. Rodkin, et al. An analysis of rechargeable lithium-ion batteries after prolonged cycling [J]. Electrochim. Acta,2002, 47(12):1899-1911.
    [147]W. Li, B.L. Lucht. Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries [J]. J. Power Sources,2007,168(1): 258-264.
    [148]R. Imhof, P. Novak. Oxidative electrolyte solvent degradation in lithium-ion batteries:An in situ differential electrochemical mass spectrometry investigation [J]. J. Electrochem. Soc.,1999,146(5):1702-1706.
    [149]M. Holzapfel, A. Wusig, W. Scheifele, et al. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries [J]. J. Power Sources,2007,174(2): 1156-1160.
    [150]T. Yamamoto, T. Hara, K. Segawa, et al.4.4 V lithium-ion polymer batteries with a chemical stable gel electrolyte [J]. J. Power Sources,2007,174(2): 1036-1040.
    [151]M. Onuki, S. Kinoshita, Y. Sakata, et al. Identification of the source of evolved gas in Li-ion batteries using 13C-labeled solvents [J]. J. Electrochem. Soc., 2008,155(11):A794-A797.
    [152]M. Broussely, S. Herreyre, P. Biensan, et al. Aging mechanism in Li ion cells and calendar life predictions [J]. J. Power Sources,2001,97-98:13-21.
    [153]H.J. Ploehn, P. Ramadass, R.E. White. Solvent diffusion model for aging of lithium-ion battery cells [J]. J. Electrochem. Soc.,2004,151(3):A456-A462.
    [154]R.P. Ramasamy, J.-W. Lee, B.N. Popov. Simulation of capacity loss in carbon electrode for lithium-ion cells during storage [J]. J. Power Sources,2007, 166(1):266-272.
    [155]I. Bloom, B.W. Cole, J.J. Sohn, et al. An accelerated calendar and cycle life study of Li-ion cells [J]. J. Power Sources,2001,101(2):238-247.
    [156]G. Pistoia, A. Antonini, R. Rosati, et al. Storage characteristics of cathodes for Li-ion batteries [J]. Electrochim. Acta,1996,41(17):2683-2689.
    [157]R. Yazami, Y.F. Reynier. Mechanism of self-discharge in graphite-lithium anode[J]. Electrochim. Acta,2002,47(8):1217-1223.
    [158]E. Karden, S. Buller, R.W. De Doncker. A method for measurement and interpretation of impedance spectra for industrial batteries [J]. J. Power Sources,2000,85(1):72-78.
    [159]Q. Zhuang, L. Tian, G. Wei, et al. Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation [J]. Chin. Sci. Bull.,2009,54(15):2627-2632.
    [160]S.S. Zhang, K. Xu, T.R. Jow. Electrochemical impedance study on the low temperature of Li-ion batteries [J]. Electrochim. Acta,2004,49(7):1057-1061.
    [161]D.P. Abraham, S.D. Poppen, A.N. Jansen, et al. Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells [J]. Electrochim. Acta,2004,49(26):4763-4775.
    [162]H.-M. Cho, Y.J. Park, J.-W. Yeon, et al. In-depth investigation on two- and three-electrode impedance measurements in terms of the effect of the counter electrode [J]. Electron. Mater. Lett.,2009,5(4):169-178.
    [163]J.Y. Song, H.H. Lee, Y.Y. Wang, et al. Two- and three-electrode impedance spectroscopy of lithium-ion batteries [J]. J. Power Sources,2002,111(2): 255-267.
    [164]D.D. Macdonald. Reflections on the history of electrochemical impedance spectroscopy [J]. Electrochim. Acta,2006,51(8-9):1376-1388.
    [165]J.S. Xue, R.D. Wise, X. Zhang, et al. Performance characteristics of Ultralife's solid polymer rechargeable batteries [J]. J. Power Sources,1999,80(1-2): 119-127.
    [166]J.P. Fellner, G.J. Loeber, S.S. Sandhu. Testing of lithium-ion 18650 cells and characterizing/predicting cell performance [J]. J. Power Sources,1999,81-82: 867-871.
    [167]T. Osaka, S. Nakade, M. Rajamaki, et al. Influence of capacity fading on commercial lithium-ion battery impedance [J]. J. Power Sources,2003, 119-121:929-933.
    [168]C.H. Chen, J. Liu, K. Amine. Symmetric cell approach towards simplified study of cathode and anode behavior in lithium ion batteries [J]. Electrochem. Commun.,2001,3(1):44-47.
    [169]D. Zhang, B.S. Haran, A. Durairajan, et al. Studies on capacity fade of lithium-ion batteries [J]. J. Power Sources,2000,91(2):122-129.
    [170]V. Ganesh Kumar, N.b. Munichandraiah, A.K. Shukla. Electrode impedance parameters and internal resistance of a sealed LiC/Li1-xCoO2 lithium-ion rechargeable battery [J]. J. Appl. Electrochem.,1997,27(1):43-49
    [171]M.C. Smart, B.V. Ratnakumar, J.F. Whitacre, et al. Effect of electrolyte type upon the high-temperature resilience of lithium-ion cells [J]. J. Electrochem. Soc.,2005,152(6):A1096-A1104.
    [172]M. Koltypin, D. Aurbach, L. Nazar, et al. More on the performance of LiFePO4 electrodes-The effect of synthesis route, solution composition, aging, and temperature [J]. J. Power Sources,2007,174(2):1241-1250.
    [173]C. Huang, K. Huang, H. Wang, et al. Storage behavior of LiNi1/3Co1/3Mn1/3O2/artificial graphite Li-ion cells [J]. Electrochim. Acta,2009, 54(21):4783-4788.
    [174]M.-S. Wu, P.-C.J. Chiang. High-rate capability of lithium-ion batteries after storing at elevated temperature [J]. Electrochim. Acta,2007,52(11): 3719-3725.
    [175]Y.-K. Lin, C.-H. Lu. Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3-yAlyO2 [J]. J. Power Sources,2009,189(1): 353-358.
    [176]B.Y. Liaw, E.P. Roth, R.G. Jungst, et al. Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells [J]. J. Power Sources,2003,119-121:874-886.
    [177]W. Kong, H. Li, X. Huang, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries [J]. J. Power Sources,2005,142(1-2): 285-291.
    [178]Z. Zhang, D. Fouchard, J.R. Rea. Differential scanning calorimetry material studies:implications for the safety of lithium-ion cells [J]. J. Power Sources, 1998,70(1):16-20.
    [179]H. Liu, C. Li, Q. Cao, et al. Effects of heteroatoms on doped LiFePO4/C composites [J]. J. Solid State Electrochem.,2008,12(7):1017-1020.
    [180]S. Zhang, C. Deng, B.L. Fu, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries [J]. J. Electroanal. Chem.,2010,644(2):150-154.
    [181]A.Y. Shenouda, H.K. Liu. Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems [J]. J. Power Sources,2008, 185(2):1386-1391.
    [182]M. Dolle, F. Orsini, A.S. Gozdz, et al. Development of reliable three-electrode impedance measurements in plastic Li-ion batteries [J]. J. Electrochem. Soc., 2001,148(8):A851-A857.
    [183]P.L. Moss, G. Au, E.J. Plichta, et al. Investigation of solid electrolyte interfacial layer development during continuous cycling using ac impedance spectra and micro-structural analysis [J]. J. Power Sources,2009,189:66-71.
    [184]P. Liu, J. Wang, J. Hicks-Garner, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses [J]. J. Electrochem. Soc.,2010,157(4):A499-A507.
    [185]C. Huang, K. Huang, H. Wang, et al. The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells [J]. J. Solid State Electrochem.,2011, in press, DOI:10.1007/s10008-10010-11219-10001.
    [186]D. Guyomard, J.M. Tarascon. High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries [J]. J. Power Sources,1995, 54(1):92-98.
    [187]P. Ramadass, B. Haran, R. White, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures:Part II. Capacity fade analysis [J]. J. Power Sources,2002,112(2):614-620.
    [188]Y. Kida, A. Kinoshita, K. Yanagida, et al. A study on the cycle performance of lithium secondary batteries using lithium nickel-cobalt composite oxide and graphite/coke hybrid carbon [J]. Electrochim. Acta,2002,47(11):1691-1696.
    [189]Y. Zhang, C. Wang, X. Tang. Cycling degradation of an automotive LiFePO4 lithium-ion battery [J]. J. Power Sources,2011,196(3):1513-1520.
    [190]M. Safari, M. Morcrette, A. Teyssot, et al. Multimodal physics-based aging model for Life prediction of Li-ion batteries [J]. J. Electrochem. Soc.,2009, 156(3):A145-A153.
    [191]T. Ohzuku, Y. Iwakoshi, K. Sawai. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell [J]. J. Electrochem. Soc.,1993, 140(9):2490-2498.
    [192]Y. Cheng, G. Wang, M. Yan, et al. In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte [J]. J. Solid State Electrochem.,2007,11(2):310-316.
    [193]M. Park, X. Zhang, M. Chung, et al. A review of conduction phenomena in Li-ion batteries [J]. J. Power Sources,2010,195(24):7904-7929.
    [194]F.-M. Wang, H.-M. Cheng, H.-C. Wu, et al. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries [J]. Electrochim. Acta,2009,54(12):3344-3351.
    [195]M.-S. Zheng, Q.-F. Dong, H.-Q. Cai, et al. Formation and influence factors of solid electrolyte interphase film on the negative electrode surface in lithium-ion batteries [J]. J. Electrochem. Soc.,2005,152(11):A2207-A2210.
    [196]Y. Yamada, Y. Iriyama, T. Abe, et al. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes:Effects of solvent and surface film [J]. Langmuir,2009,25(21):12766-12770.
    [197]I.H. Cho, S.S. Kim, S.C. Shin, et al. Effect of SEI on capacity losses of spinel lithium manganese oxide/graphite batteries stored at 60℃ [J]. Electrochem. Solid-State Lett.,2010,13(11):A168-A172.
    [198]R.P. Ramasamy, R.E. White, B.N. Popov. Calendar life performance of pouch lithium-ion cells [J]. J. Power Sources,2005,141(2):298-306.
    [199]F. Beuin, F. Chevallier, C. Vix-Guterl, et al. Correlation of the irreversible lithium capacity with the active surface area of modified carbons [J]. Carbon, 2005,43(10):2160-2167.
    [200]H.H. Lee, Y.Y. Wang, C.C. Wan, et al. A fast formation process for lithium batteries [J]. J. Power Sources,2004,134(1):118-123.
    [201]D. Aurbach, Y. Talyosef, B. Markovsky, et al. Design of electrolyte solutions for Li and Li-ion batteries:a review [J]. Electrochim. Acta,2004,50(2-3): 247-254.
    [202]Y. Kida, A. Kinoshita, K. Yanagida, et al. Study on capacity fade factors of lithium secondary batteries using LiNi0.7Co0.3O2 and graphite-coke hybrid carbon [J]. Electrochim. Acta,2002,47(26):4157-4162.
    [203]福井谦一.图解量子化学[M].北京:化学工业出版社,1976:24-33.
    [204]N. Choi, I. Profatilova, S. Hur, et al. Electrolyte for lithium ion secondary battery and lithium ion secondary battery inluding the same. USA Patent, No. 12/509,302.2010.
    [205]许梦清,邢丽丹,李伟善.锂离子电池界面膜形成功能分子的研究现状[J].化学进展,2009,21(10):2017-2027.
    [206]X. Xie, L. Chen, W. Sun, et al. Gamma-crotonlatone as an electrolyte additive for improving the cyclability of MCMB electrode [J]. J. Power Sources,2007, 174(2):784-788.
    [207]K. Ozawa. Lithium Ion Rechargeable Batteries:Materials, Technology, and New Applications [M]. Weinheim,Germany:WILEY-VCH Verlag GmbH & Co.KGaA,2009.
    [208]K. Abe, Y. Ushigoe, H. Yoshitake, et al. Functional electrolytes:Novel type additives for cathode materials, providing high cycleability performance [J]. J. Power Sources,2006,153(2):328-335.
    [209]S.S. Zhang, K. Xu, T.R. Jow. The low temperature performance of Li-ion batteries [J]. J. Power Sources,2003,115(1):137-140.
    [210]J. Li, J. Zhang, X. Zhang, et al. Study of the storage performance of a Li-ion cell at elevated temperature [J]. Electrochim. Acta,2009,55(3):927-934.
    [211]S. Whitney, S.R. Biegalski, Y.H. Huang, et al. Neutron depth profiling applications to lithium-ion cell research [J]. J. Electrochem. Soc.,2009, 156(11):A886-A890.
    [212]K. Xu. "Charge-transfer" process at graphite/electrolyte interface and the solvation sheath structure of Li+in nonaqueous electrolytes [J]. J. Electrochem. Soc.,2007,154(3):A162-A167.
    [213]L. Baggetto, R.A.H. Niessen, P.H.L. Notten. On the activation and charge transfer kinetics of evaporated silicon electrode/electrolyte interfaces [J]. Electrochim. Acta,2009,54(24):5937-5941.
    [214]T. Abe, H. Fukuda, Y. Iriyama, et al. Solvated Li-ion transfer at interface between graphite and electrolyte [J]. J. Electrochem. Soc.,2004,151(8): A1120-A1123.
    [215]Z. Ogumi, T. Abe, T. Fukutsuka, et al. Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte [J]. J. Power Sources, 2004,127(1-2):72-75.
    [216]S.S. Zhang, K. Xu, T.R. Jow. Study of the charging process of a LiCoO2-based Li-ion battery [J]. J. Power Sources,2006,160(2):1349-1354.
    [217]M. Itagaki, N. Kobari, S. Yotsuda, et al. In situ electrochemical impedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries [J]. J. Power Sources,2004,135(1-2):255-261.
    [218]A.P. Srikanth, A. Lavanya, S. Nanjundan, et al. Synthesis, characterization, and corrosion protection properties of poly(N-(methacryloyloxymethyl) benzotriazole-co-methyl methacrylate) on mild steel [J]. App. Surf. Sci.,2006, 253(4):1810-1816.
    [219]Y. Huang, J. Luo, D.G. Ivey. Comparative study of GaAs corrosion in H2SO4 and NH3-H2O solutions by electrochemical methods and surface analysis [J]. Mater. Chem. Phys.,2005,93(2-3):429-442.
    [220]N. Wagner, E. Guzow. Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell [J]. J. Power Sources,2004,127(1-2):341-347.
    [221]M. Itagaki, H. Hasegawa, K. Watanabe, et al. Electroreduction mechanism of oxygen investigated by electrochemical impedance spectroscopy [J]. J. Electroanal. Chem.,2003,557:59-73.
    [222]J.S. Gnanaraj, R.W. Thompson, S.N. Iaconatti, et al. Formation and growth of surface films on graphitic anode materials for Li-ion batteries [J]. Electrochem. Solid-State Lett.,2005,8(2):A128-A132.
    [223]E. Markevich, E. Pollak, G. Salitra, et al. On the performance of graphitized meso carbon microbeads (MCMB)-meso carbon fibers (MCF) and synthetic graphite electrodes at elevated temperatures [J]. J. Power Sources,2007, 174(2):1263-1269.
    [224]Q. Zhuang, J. Xu, X. Fan, et al. LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy [J]. Sci. China Ser. B:Chem.,2007,50(6):776-783.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700