一维纳米晶(PbWO_4,ZnO,CuO)的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料基于其特殊的物理化学性质,已经在生物医学、新能源、信息产业、环境保护等方面都具有非常广泛的应用,并表现出十分优越的性能。纳米材料的晶体结构和形貌会对其性质和用途产生非常重要的影响,因此,研究和开发简便直接的方法对纳米材料的结构或形貌进行改变、观测变化过程并研究材料结构和形貌的变化对其性质的影响是一项非常有意义的工作。本论文合成了PbWO_4、ZnO以及CuO三种一维纳米材料,用不同的方法改变了他们的晶体结构或形貌,研究了样品结构或形貌对其性质的影响。
     论文的主要研究内容和结论包括以下几个方面:
     1)采用Na_2WO_4·2H_2O和Pb(NO_3)_2为原料,并用氨水调节反应溶剂的PH值,通过复合盐媒介法(CMS),在160℃下,经24h加热,成功制得了人工很难制得的斜钨矿结构的PbWO_4纳米材料。制得的材料为宽度为0.5~3微米,长度长达几百微米的沿[010]方向生长的纳米带。对样品生长机理进行了分析,我们认为氨水是诱导PbWO_4纳米带沿[010]方向各向异性生长的主要因素:在熔融盐中,首先由Pb(NO_3)_2与NH3·H_2O反应生成Pb(OH)_2籽晶,然后Pb(OH)_2与WO_42-反应生成PbWO_4晶核,同时析出(OH)-。由于PbWO_4晶体的(010)面具有最大的表面能,因此(010)面最优先吸附(OH)-以降低表面能,吸附的(OH)-又将继续与反应体系中的Pb(NO_3)_2反应,重复上述的生长过程,如此周而复始,最后生长出沿[010]方向生长的一维PbWO_4纳米带。利用原位透射电子显微镜技术,研究了PbWO_4晶体的相变现象。将实验制得的PbWO_4晶体置于TEM中,并对其原位加热,观察样品的选区电子衍射斑点随温度的变化。在加热到538℃时第一次观测到样品衍射斑点的变化,经过标定,发现样品由单斜晶相的斜钨矿(Raspite)结构变成了四方晶向的白钨矿(Scheelite)结构;继续对样品进行加热,当温度达到618℃时,样品由原来的单晶纳米带变成了由许多尺度很小的纳米棒组装而成的纳米带,对这些小纳米棒进行成分和结构分析发现它们是由于PbWO_4晶体中Pb在加热过程中的挥发,残留下来的W和O形成的四方晶相的WO_3。实验选取了近30根纳米带进行观测,对结果进行统计后发现,PbWO_4晶体由斜钨矿结构(Raspite)变为白钨矿结构(Sheelite)的相变是不可逆的,存在三种相的转化关系:1) a_r=-b_s+c_s, b_r=c_s, c_r=b_s;2)(100)_s//(100)_r, c_s//(011)_r;3)(11|-0)_s//(001)_r,[(11)|-1]_s//[011|-]_r.
     2)用水热法合成了取向性良好的ZnO纳米线阵列,当ZnO纳米线阵列被能量密度为230mJ.cm~(-2)的单个脉冲的KrF准分子激光(波长248nm,一个激光脉冲的时间为25ns)照射后,纳米线顶端会变成纳米球的形状。用SEM、TEM、HRTEM以及EDS等手段对纳米球的结构进行了分析,发现其为结晶度极高的单晶ZnO空心纳米球,尺度均匀,直径约为200nm,球壳厚度约为40nm。分析了空心ZnO纳米球的形成机制,研究了激光强度以及靶材料对激光改性后样品形貌的影响,发现合适的激光能量密度以及独立的、取向性良好的ZnO纳米线都是形成空心ZnO纳米球的必要条件。由于激光改性后,ZnO纳米线顶端被空心ZnO纳米小球修饰,小球顶端为c面,暴露面积非常小,使得ZnO纳米线阵列表面能减小,表面由原本的超亲水变得疏水;且c面暴露面积极小的特性使得激光改性后的ZnO纳米线阵列可作为外延生长及细(10nm)ZnO纳米针尖的模板。顶端修饰纳米小球的ZnO纳米线阵列在制备染料敏化太阳能电池(DSSC)时,由于纳米小球会反射入射光,增加光的利用率,所以对应的DSSC比未经激光改性的ZnO纳米线阵列制得的DSSC性能更好。
     3)用CuCl2.2H_2O和KOH为原料,利用复合盐媒介(CMS)法在200℃下经24h合成了CuO纳米材料,经SEM表征后得知样品为纳米棒。为了比较材料形貌对其性质的影响,我们同时用复合碱媒介(CHM)法在相同的实验条件下制备了CuO纳米晶,SEM反映制得样品为二维CuO纳米片组装成的三维纳米花。分别将两种方法制得的CuO纳米晶用于修饰石墨电极,制备了无酶葡萄糖传感器,并将制得电极的性能与纯的石墨电极进行了比较。用电化学交流阻抗、循环伏安法以及计时电流法检测了三种电极的性能,结果表明纯的石墨电极对葡萄糖没有明显的检测效果,而CuO纳米晶修饰过后的石墨电极却对葡萄糖显示出了极高的灵敏度和良好的选择性。同时,样品形貌不同对应电极的性能也有差异:CHM法制得的CuO纳米花由于比表面积大,其对应的电极对葡萄糖响应灵敏度极高(300μA/mM),但由于表面吸附,其响应的线性程度却不理想;相比之下,CMS法制得的CuO纳米棒对应的电极对葡萄糖响应灵敏度虽然稍低(150μA/mM),但是其性能却十分稳定,检测的线性范围非常宽。
Because of their unique physical and chemical properties, nano-materials have awide application on the areas such as biomedicine, new energy, information technology,environmental protection, which is showing some great advantages. Since thecrystalline structures and morphologies of nano-materials will have a vital influence ontheir properties and applications, it is very important to transform the structures andmorphologies purposely, characterize the transformation process and investigate theinfluence of the transformation to the properties. In this thesis, three differentone-dimensional nano-materials—PbWO_4, ZnO and CuO were successfully synthesized,and their crystalline structures or morphologies were changed, whose influence to theproperties was investigated.
     The research contents and conclusions of this thesis include the following aspects:
     1) Using Na_2WO_4·2H_2O and Pb(NO_3)_2as the reactants, with the ammonia to tunethe PH of the reaction solution, PbWO_4nano-materials of raspite structure weresuccessfully synthesized, through the Composite-Molten-Salt (CMS) method, bykeeping the solution at160℃for24h. The as-synthesized materials are nanobelts grownalong [010] direction, with the width of0.5~3μm and the length of hundreds of microns.Through the analysis of the growth mechanism, we think that ammonia is the chieffactor that enable the isotropic growth along [010] direction. In composite-molten-salt,Pb(NO_3)_2and NH3·H_2O will firstly react to get Pb(OH)_2seed, then Pb(OH)_2will reactwith WO_42-to create the PbWO_4nucleuses, and produce OH-at the same time. Becausethe (010) surface of PbWO_4has the largest surface energy,(010) surface willpreferentially absorb OH-to lower the surface energy, and the absorbed OH-will reactwith Pb(NO_3)_2in the system. This growth process will repeat continuously, and finallyget the one-dimensional nanobelts grown along [010] direction. Using the in-situtransmission electron microscope (TEM), the phase transformation of PbWO_4wasinvestigated. The as-synthesized PbWO_4nanobelts were inserted into TEM, and heatedin an in-situ manner. The change of the selected-area electron diffraction (SAED)pattern with the change of temperature was investigated. Heated until538℃, the changeof the diffraction pattern was observed for the first time. After indexing the SAEDpatterns, it is found that Raspite of the monoclinic structure has transformed to Scheeliteof tetrahedral structure; when the sample was heated to618℃, the sample transformed from single crystal nanobelts to those composed of many small nanorods. Through theanalysis of the nanorods’ composition and structure, the nanobelts are found to be WO_3of tetrahedral structure, which were formed because of the evaporation of Pb during theheating process. Such experiment and analysis has been carried on30nanobelts, andafter the statistic of the results, it is found that the transformation of PbWO_3crystalfrom Raspite to Scheelite is irreversible, and there exist three phase transformationrelationships:1) a_r=-b_s+c_s, b_r=c_s, c_r=b_s;2)(100)_s//(100)_r, c_s//(011)_r;3)(11|-0)_s//(001)_r,[(11)|-1]_s//[011|-]_r
     2) Highly oriented ZnO nanowire arrays have been synthesized using hydrothermalmethod. When the ZnO nanowire array is irradiated by a short KrF laser pulse(wavelength=248nm, pulse time=25ns), the tips of the nanowires will reshape intospheres. After the characterization using SEM, TEM, HRTEM and EDS, it is found thatthe tips are highly crystallized ZnO hollow spheres, with an even diameter of~200nm,and the shell thickness of40nm. We analyzed the formation mechanism of the hollowZnO nanosphere and investigated the influence of laser intensity and target material tothe morphology after the laser ablation. It is found that both the suitable laser energydensity and discrete, highly-oriented ZnO nanowire are necessary for the formation ofhollow ZnO nanospheres. Because the tips of ZnO nanowires are decorated by hollowZnO nanosphere, and the top of the spheres are c-plane, which is extremely small, thetotal surface energy of ZnO nanowire arrays are reduced, which makes the surfacechange from super-hydrophobic to super-hydrophilic. Besides, because of the smallexposure of c-plane, the laser irradiated ZnO nanowires can act as the template toepitaxially grow fine (10nm) ZnO nanotips. Moreover, since the top-decoratednanospheres can reflect incident light, thus increase the absorption of light, the laserirradiated ZnO nanowire arrays will exhibit a better performance when used tofabricated dye-sensitized solar cells (DSSC).
     3) Using CuCl2.2H2O and KOH as the reactants, CuO nanorods were synthesizedunder200℃(24h) through the Composite-Molten-Salt (CMS) method. For comparison,CuO nanostructure was also synthesized by the Composite-Hydroxide-Mediated (CHM)method under the same experimental condition, and SEM image shows that theas-prepared sample is3-dimensional nanoflower assembled by2-dimensionalnanoplates. CuO nanocrystals from both the methods have been applied to modify the graphite electrodes and fabricated nonenzymatic glucose sensors, which have beencompared with the bare graphite electrode. The electrochemical characteristics of thethree types of electrodes have been study by electrochemical impedance spectrum (EIS),cyclic voltammetry (CV) and amperometry, and the results shows that the CuOnanostructure modified electrodes, compared to the bare graphite electrode, exhibitenhanced electrocatalytic properties for direct glucose oxidation and show highsensitivities and excellent slectivities. Moreover, the sample morphology can influencethe performance of its corresponding electrod. The electrode modified by CHM CuOwhich had a large specific surface area showed a high sensitivity (300μA/mM) towardsglucose, but a poor linear response because of absorbing of the intermediate products. Incontrast, the electrode modified by CMS CuO showed a lower sensitivity (150μA/mM)towards glucose, but a better stability and excellent linear response.
引文
[1] R. P. Feynman, There's Plenty of Room at the Bottom [M]. Engineering and Science,60.XXIII:5.
    [2]许并社,纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [3]孙继荣,沈中毅,刘勇等,小粒子体系的自发磁化[J].物理学报,1993,42:134-141.
    [4]沈海军,纳米科技概论[M].北京:国防工业出版社,2007.
    [5] W. Mu, J. M. Herrman, P. Pichat, Photocatalytic oxidation of alkanes over modified titianiaspeciers [J]. Catal. Lett.,1989,3:73-78.
    [6] J. K. Leland, A. J. Bard, Photochemistry of Colloidal Semiconducting Iron OxidePolymorphs [J]. Phys. Chem.,1987,91:5076-5083.
    [7]毛宏志,印志磊,许效红. X射线粉末衍射仪在实验教学中的应用[J].实验技术及管理,2006,11:11.
    [8]梁社坚,伦璇,吴红. X射线能谱分析方法及其在电镜酶细胞化学中的应用[J].电子显微学报,2006,4(25):2..
    [9] M. Bruchez, M. Morone, P. Gin, Semiconductor nanocrystals as fluorescent biologicallabels [J]. Science,1998,281:2013-2016.
    [10] W. Chan, S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].Science,1998,281:2016-2018.
    [11] K. Hashimoto, K. Ho, Y. Ishimori, Microfabricated disposable DNA sensor for detection ofhepatitis B virus DNA [J]. Sensors and Actuators B,1998,46:220.
    [12] F. Patolsky, B. P. Timko, G. F. Zheng, C. M. Lieber, Nanowire-based nanoelectronic devicesin the life sciences [J]. MRS Bull.,2007,32:142-149.
    [13] Z. L. Wang, J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006,312:242-246.
    [14] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solarcells [J]. Nature Mater.,2005,4:455-459.
    [15] Y. Yang, S. Jeong, L. B. Hu, H. Wu, S. W. Lee, Y. Cui,Transparent lithium-ion batteries [J],P. Natl. Acad. Sci. USA,108:13013-13018.
    [16] S. Kasif, S. Salzberg, D. Waltz, J. Rachlin, D. W. Aha, A probabilistic framework formemory-based reasoning [J]. Artif. Intell.,1998,104:287-311.
    [17] W. Z. Wu, Z. L. Wang, Piezotronic nanowire-based resistive switches as programmableelectromechanical memories [J]. Nano Lett.,2011,11:2279-2285.
    [18] Z. H. Ai, S. C. Lee, Y. Huang, W. K. Ho, L. Z. Zhang, Photocatalytic removal of NO andHCHO over nanocrystalline Zn2SnO4microcubes for indoor air purification [J]. J. Hazard.Mater.,2010,179:141-150.
    [19] F. Shiraishi, S. Ikeda, N. Kamikariy, Photocatalytic decompositions of gaseous HCHO overthin films of anatase titanium oxide converted from amorphous in a heated air and in anaqueous solution of hydrogen peroxide [J]. Chem. Eng. J.,2009,148):234-241.
    [20] H. C. de Oliveira, A. Wulff, E. E. Saviani, I. Salgado, Nitric oxide degradation by potatotuber mitochondria: Evidence for the involvement of external NAD(P)H dehydrogenases [J].Biochim. Biophys. Acta,2008,1777:470-476.
    [21] P. Sarti, A. Giuffre, E. Forte, D. Mastronicola, M. C. Barone, M. Brunori, Nitric Oxide andCytochrome c Oxidase: Mechanisms of Inhibition and NO Degradation [J]. Biochem.Biophys. Res. Commun.,2000,274:183-187.
    [22] K. Dai, H. Chen, T. Y. Peng, D. N. Ke, H. B. Yi, Photocatalytic degradation of methylorange in aqueous suspension of mesoporous titania nanoparticles [J]. Chemosphere,2007,69:1361-1367.
    [23] J. Q. Li, L. P. Li, L. Zheng, Y. Z. Xian, L. T. Jin, Photoelectrocatalytic degradation ofrhodamine B using Ti/TiO2electrode prepared by laser calcination method [J]. Electrochim.Acta,2006,51:4942-4949.
    [24] J. Wang, Z. Jiang, Z. H. Zhang, Y. P. Xie, X. F. Wang, Z. Q. Xing, R. Xu, X. D. Zhang,Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnOpowder under ultrasonic irradiation [J]. Ultrason. Sonochem.,2008,15:768-774.
    [25] W. D. Wang, P. Serp, P. Kalck, J. Lu s Faria, Photocatalytic degradation of phenol onMWNT and titania composite catalysts prepared by a modified sol–gel method [J]. Appl.Catal. B,2005,56:305-312.
    [26] S. N. Hosseini, S. M. Borghei, M. Vossoughi, N. Taghavinia, Immobilization of TiO2onperlite granules for photocatalytic degradation of phenol [J]. Appl. Catal. B,2007,74:53-62.
    [27] A.M. Peiró, J.A. Ayllón, J. Peral, X. Doménech, TiO2-photocatalyzed degradation of phenoland ortho-substituted phenolic compounds [J]. Appl. Catal. B,2001,30:359-373.
    [28] F. Morin, Oxide whiehshowa metal to insulator transition at neel temperature [J]. J. Phys.Rev. Lett.,1959,3:34-36.
    [29] L. Francioso, C. De Pascali, S. Capone, P. Siciliano, Effect of top-down nanomachining onelectrical conduction properties of TiO2nanostructure-based chemical sensors[J].Nanotechnol.2012,23:095302.
    [30] S. G. Pawar, M. A. Chougule, S. L. Patil, B. T. Raut, P. R. Godse, S. Sen, V. B. Patil, Roomtemperature ammonia gas sensor based on polyaniline-TiO2nanocomposite [J]. IEEE Sens.J.,2011,11:3417-3423.
    [31] L. Gu, K. B. Zheng, Y. Zhou, J. Li, X. L. Mo, G. R. Patzke, G. R. Chen, Humidity sensorsbased on ZnO/TiO2core/shell nanorod arrays with enhanced sensitivity [J].Sens. Actuat.B-Chem.,2011,159:1-7.
    [32] X. Li, Y. P. Huang, J. F. Chen, X. Tao, Visible light-driven binary dyes synergic degradationby iodine-doped TiO2nanocrystal film [J]. Catal. Commun.,2012,20:94-98.
    [33] W. W. Tang, Q. Wang, X. P. Zeng, X. Y. Chen, Photocatalytic degradation on Disperse Bluewith modified nano-TiO2film electrode [J]. J. Solid State electr.,2012,16:1429-1445.
    [34] L. Yang, L. E. Yu, M. B. Ray, Degradation of paracetamol in aqueous solutions by TiO2photocatalysis [J]. Water Res.,2008,42:3480-3488.
    [35] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Photocatalysis on TiO2surfaces: principles,mechanisms, and selected results [J]. Chem. Rev.,1995,95:735-758.
    [36] K. Tanaka, M. F. V. Capule, T. Hisanaga, Effect of crystallinity of TiO2on its photocatalyticaction [J]. Chem. Phys. Lett.,1991,187:73-76.
    [37] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. D. Yang, Shaping binary metalnanocrystals through epitaxial seeded growth [J]. Nat. Mater.,2007,6:692-697.
    [38] F. R. Fan, D. Y. Liu, Y. F. Wu, S. Duan, Z. X. Xie, Z. Y. Jiang, Z. Q. Tian, Epitaxialgrowth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium andsilver nanocubes [J]. J. Am. Chem. Soc.,2008,130,6949.
    [39] F. R. Fan, Y. Ding, D. Y. Liu, Z. Q. Tian, Z. L. Wang, Facet-selective epitaxial growth ofheterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Agnanocrystals [J]. J. Am. Chem. Soc.,2009,131:12036–12037.
    [40] M. Lazzeri,A. Vittadini, A. Selloi, Structure and energetic of stoichiometric TiO2Anatasesurfaces [J]. Phys. Rev. B,2001,63:155409.
    [41] Y. W. Jun,M. F. Casula, J. Sim,S. Y. Kim,J. Cheon,A. P. Alivisatos, Surfactant-assistedelimination of a high energy facet as a means of controlling the shapes of TiO2nanocrystals[J]. J. Am. Chem. Soc.,2003,125:15981-15985.
    [42] H. G. Yang,C. H. Sun,S. Z. Qiao,J. Zou,G. Liu,S. C. Smith,H. M. Cheng,G. Q. Lu,Anatase TiO2single crystals with a large percentage of reactive facets [J]. Nature,2008,453:638-641.
    [43] A. Selloni, Crystal growth: anatase shows its reactive side [J]. Nature Mater.,2008,7:613-615.
    [44] S. S. Kanmani, K. Ramachandran, Synthesis and characterization of TiO2/ZnO core/shellnanomaterials for solar cell applications [J]. Renew. Energ.,2012,43:149-156.
    [45] J. Deng, Y. Z. Zheng, Q. Hou, J. F. Chen, W. L. Zhou, X. Tao, Solid-state dye-sensitizedhierarchically structured ZnO solar cells [J]. Electrochim., Acta,2011,56:4176-4180.
    [46] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, H. J.Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a highefficiency dye-sensitized solar cell [J]. Nano Lett.,2011,11:666-671.
    [47] M. Itoh, M. Fujita, Optical properties of scheelite and raspite PbWO4crystals [J]. Phys. Rev.B,2000,62:12825-12830.
    [48] T. George, S. Joseph, A. T. Sunny, S. Mathew, Fascinating morphologies of lead tungstatenanostructures by chimie douce approach [J]. J. Nanopart. Res.,2008,10:567-575.
    [49] J. H. Yang, C. H. Lu, H. Su, J. M. Ma, H. M. Cheng, L. M. Qi, Morphological and structuralmodulation of PbWO4crystals directed by dextrans [J]. Nanotechnology,2008,19:035608.
    [50] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, General synthesis ofsingle-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach[J]. Adv. Funct. Mater.,2003,13:639-647.
    [51] P. L. Tam, Y. cao, L. Nyborg, XRD and XPS characterisation of transition metal suicide thinfilms [J]. Surf. Sci.,2012,606:329-336.
    [52] X. L. Li, T. J. Lou,X. M. Sun, Y. D. Li, Highly sensitive WO3hollow-sphere gas sensors [J].Inorganic Chem.,2004,43:5442-5449.
    [53] X. Wang, P. Hu, F. L.Yuan, L. J. Yu, Preparation and characterization of ZnO hollowspheres and ZnO-carbon composite materials using colloidal carbon spheres as templates. J.Phys. Chem., C2007,111:6706–6712.
    [54] M. Mo, J. C. Yu, L. Z. Zhang, S. K. A. Li, Self-assembly of ZnO nanorods and nanosheetsinto hollow microhemispheres and microspheres [J]. Adv. Mater.2005,17:756–760.
    [55] M. S. Mo, S. H. Lim, Y. W. Mai, R. K. Zheng, S. P. Ringer, In situ self-assembly of thinZnO nanoplatelets into hierarchical mesocrystal microtubules withsurface grafting ofnanorods: a general strategy towards hollow mesocrystal structures [J]. Adv. Mater.,2008,20:339–342.
    [56] H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. J. Zhou, C. Klingshirn, H. Kalt, ZnO-basedhollow nanoparticles by selective etching: elimination and reconstruction of metalsemiconductor interface, improvement of blue emission and photocatalysis [J]. ACS Nano,2008,2:1661-1670.
    [57] A. L. Schawlow, C. H. Townes, Infrared and optical masers [J]. Phys. Rev.,1958,12:1940-1949.
    [58]唐亚陆,杜泽民,脉冲激光沉积(PLD)原量及其应用[J].桂林电子工业学院2006,26:24-27.
    [59]邓国联,江建军,脉冲沉积技术在磁性薄膜制备中的应用[J],材料导报,2003,17:66-68.
    [60] E. Nannen, T. Kummell, A. Ebbers, G. Bacher, P-Si/n-ZnO nanocrystal heterojunction lightemitting device [J]. Appl. Phys. Express,2012,100:101108.
    [61] S. C. Yang, Y. C. Shen, T. C. Lu, T. L. Yang, J. J. Huang, Tumor detection strategy usingZnO light-emitting nanoprobes [J]. Nanotechnol.,2012,23:055202.
    [62] J. H. Na, M. Kitamura, M. Arita, Y. Arakawa, Hybrid p-n junction light-emitting diodesbased on sputtered ZnO and organic semiconductors [J]. Appl. Phys. Lett.,2009,95:253303.
    [63] J. Liu, Y. H. Ahn, J. Y. Park, K. H. Koh, S. Lee, Hybrid light-emitting diodes based onflexible sheets of mass-produced ZnO nanowires [J]. Nanotechnol.,2009,20:445203.
    [64] N. Miyanishi, S. Nakakita, W. Sumiyoshi, H. Okuma, K. Izumori. J. Hirabayashi,Development of D-allose sensor on the basis of three strategic enzyme reactions [J].Biosens. Bioelectron.,2010,26:126-130.
    [65] X. Chen, C. C. Li, Y. L. Liu, Z. F. Du, S. J. Xu, L. M. Li, M. Zhang, T. H. Wang,Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microspheremicrobiocomposites to hydrogen peroxide [J]. Talanta,2008,77:37-41.
    [66] M. Elkaoutit, I. Naranjo-Rodriguez, M. Dominguez, M. P. Hernandez-Artiga, D.Bellida-Milla, J. L. H. H. de Cisneros, A third-generation hydrogen peroxide biosensorbased on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion-Sonogel-Carboncomposite [J]. Electrochemica Acta,2008,53:7131-7137.
    [67] M. H. Zhou, Y. X. Li, S. Q. Peng, G. X. Lu, S. B. Li, Effect of epimerization of d-glucose onphotocatalytic hydrogen generation over Pt/TiO2[J]. Catal. Commun.,2012,18:21-25.
    [68] S. Park, S. Park, R. A. Jeong, H. Boo, J. Park, H. C. Kim, T. D. Chung, Nonenzymaticcontinuous glucose monitoring in human whole blood using electrified nanoporous Pt [J].Biosens. Bioelectron.,2012,31:284-291.
    [69] A. M. P. Hussain, S. N. Sarangi, J. A. Kesarwani, S. N. Sahu, Au-nanocluster emissionbased glucose sensing [J]. Biosens. Bioelectron.,2011,29:60-65.
    [70] X. Wang, C. G. Hu, H. Liu, G. J. Du, X. S. He, Y. Xi, Synthesis of CuO nanostructures andtheir application for nonenzymatic glucose sensing [J]. Sensor. Actuat. B-Chem.,2010,144:220-225.
    [71] Y. Xi, C. G. Hu, X. M. Zhang, Y. Zhang, Z. L. Wang, Optical switches based on Bi2S3nanowires synthesized by molten salt solvent method [J]. Solid State Commun.,2009,149:43-44.
    [72] P. Lecoq, I. Dafinei, E. Auffray, M. Schneegans, M. Korzhik, Lead tungstate (PbWO4)scintillators for LHC EM calorimetry [J]. Nucl. Instr. Meth. Phys. A,1995,365:291-298.
    [73]邵明国,向卫东,梁晓娟,金怀东,蔡倩,钨酸铅(PbWO4)晶体的研究进展[J].材料导报,2011,25:346-350.
    [74]周志强,张振志,康平,提拉法生长单晶工艺中扩肩阶段实行自动控制的研究[J].人工晶体学报,2001,30:393.
    [75]杨培志,廖晶莹,沈柄孚,高质量钨酸铅晶体生长[J].无机材料学报,200,17:210-215.
    [76]王卓,杨玉国,杨长红,沉淀法制备钨酸铅纳米粉体[J].硅酸盐学报,2006,34:601-603.
    [77] D. Chen, G. Z. Shen, K. B. Tang, AOT-microemulsion-based formation and evolution ofPbWO4crystals [J]. J. Phys. Chem. B,2004,108:11280-11284.
    [78] J. H. Ryu, S. M. Koo, D. S. Chang, Microwave assisted synthesis of PbWO4nano-powdersvia a citrate complex precursor and its photoluminescence [J]. Ceramics Internation,2006,32:647-652.
    [79] M. Zhang, H. Yang, Y. N. Liu, X. D. Sun, D. K. Zhang, D. F. Xue, Hydrophobicprecipitation of carbonaceous spheres from fructose by a hydrothermal process [J]. Carbon,2012,50:2155-2161.
    [80] T. D. N. Phan, H. D. Pham, T. V. Cuong, E. J. Kim, S. Kim, E. W. Shin, A simplehydrothermal preparation of TiO2nanomaterials using concentrated hydrochloric acid [J]. J.Crys. Growth,2009,312:79-85.
    [81] F. Huang, H. Z. Zhang, J. F. Banfield, Two-stage crystal-growth kinetics observed duringhydrothermal coarsening of nanocrystalline ZnS [J]. Nano Lett.,2003,3:373-378.
    [82] C. H. An, K. B. Tang, G. Z.Shen, Hydrothermal preparation of luminescent PbWO4nanocrystallites [J]. Mater. Lett.,2002,57:565–568.
    [83] X. L. Hu, Y. J. Zhu, Morphology Control of PbWO4Nano-and Microcrystals via a Simple,Seedless, and High-Yield Wet Chemical Route [J]. Langmuir,2004,20:1521-1523.
    [84] G. J. Zhou, M. K. Lu, F. Gu, D. Xu, D. R. Yuan, Morphology-controlled synthesis,characterization and growth mechanism of PbWO4nano and macrocrystals [J]. J. Crys.Growth,2005,276(3):577-582.
    [85] G. J. Zhou, M. K. Lu, B. Y. Su, F. Gu, Z. L. Xiu, S. F. Wang, Preparation andcharacterization of luminescent PbWO4Nano-and macrostructure[J]. Opt. Mater.,2006,28:1385-1388.
    [86] B. Xie, Y. Wu, Y. Jiang, F. Q. Li,J. Wu,S. W. Yuan, W. C. Yu, Y. T. Qian, Shape-controlledsynthesis of BaWO4crystals under different surfactants [J]. J. Crys. Growth,2002,235:283-286.
    [87] J. Geng, J. J. Zhu, D. J. Lu, H. Y. Chen, Hollow PbWO4nanospindles via a facilesonochemical route [J]. Inorg. Chem.,2006,45:8403–8407.
    [88] M. Nikl, K. Nitsch, S. Baccaro, Radiation induced formation of color centers in PbWO4single crystals [J]. J. Appl. Phys.,1997,82:5758-5762.
    [89] M. Itoh, M. Fujita, Optical properties of scheelite and raspite PbWO4crystals [J]. Phys. Rev.B,2000,62:12825-12830.
    [90] S. Bastians, G. Crump, W. P. Griffith, R. Withnall, Raspite and studtite: Raman spectra oftwo unique minerals [J]. J. Raman Spectrosc.,2004,35:726-731.
    [91] T. Y. Liu, Q. R. Zhang, S. L. Zhuang, Study on the optical polarized properties for thePbWO4crystal with raspite structures [J]. Opt. Mater.,2007,29:1044-1047.
    [92] Q. L. Dai, H. W. Song, X. G. Ren, S. Z. Lu, G. H. Pan, X. Bai, B. Dong, R. F. Qin, X. S. Qu,H. Zhang, Structure and upconversion luminescence of hydrothermal PbWO3++4: Er, Yb3powders [J]. J. Phys. Chem. C,2008,112:19694-19698.
    [93] J. M. Moreau, P. H. Galez, J. P. Peigneux, M. V. Korzhik, Structural characterization ofPbWO4and related new phase [J]. J. Alloys. Compd.,1996,238:46-48.
    [94] T. Fujita, L. Kawada, K. Kato, Raspite from Broken Hill [J]. Acta Cryst.,1977,33:162-164.
    [95] L. Huo, Y. Chu, Controlled synthesis of PbWO4crystals via microemulsion-basedsolvothermal method [J]. Mater. Lett.,2006,60:2675-2681.
    [96] Q. Yang, W. H. Wang, S. Xu, Z. L. Wang, Enhancing light emission of ZnOmicrowire-based diodes by piezo-phototronic effect [J]. Nano Lett.,2010,11:4012-4017.
    [97] S. Bai, W. W. Wu, Y. Qin, N. Y. Cui, D. J. Bayerl, X. D. Wang, High-performance integratedZnO nanowire UV sensors on rigid and flexible substrates [J]. Adv. Funct. Mater.,2011,21:4464-4469.
    [98] A. Menzel, K. Subannajui, F. Guder, D. Moser, O. Paul, M. Zacharias, MultifunctionalZnO-nanowire-based sensor [J]. Adv. Funct. Mater.,2011,21:4342-4348.
    [99] T. B. Guo, Y. Q. Chen, L. Z. Liu, Y. F. Cheng, X. H. Zhang, Q. Li, M. Q. Wei, B. J. Ma,Enhanced photovoltaic performance of dye-sensitized solar cells using TiO2-decorated ZnOnanorod arrays grown on zinc foil [J]. J. Power Sources,2012,201:408-412.
    [100] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J.Cho, H. Morkoc, A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98:041301.
    [101] X. Y. Kong, Y. Ding, R. S. Yang, Z. L. Wang, Single-crystal nanorings formed by epitaxialself-coiling of polar nanobelts [J]. Science,2004,303:1348-1351.
    [102] Z. L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics,piezoelectricity, and sensing [J]. Appl. Phys. A,2007,88:7-15.
    [103] A. N. Mariano, R. E. Hanneman,Crystallographic polarity of ZnO crystals [J]. J. Appl.Phys.,1963,34:384-388.
    [104] Z. L. Wang, ZnO nanowire and nanobelt platform for nanotechnology [J]. Mater. Sci. Eng.R,2009,64:33-71.
    [105] Z. L. Wang, J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006,312:242-246.
    [106] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-current nanogenerator driven byultrasonic waves [J]. Science,2007,316:102-105.
    [107] Y. Qin, X. D. Wang, Z. L. Wang, Microfibre–nanowire hybrid structure for energyscavenging [J]. Nature,2008,451:809-813.
    [108] S. Xu, Y. G. Wei, J. Liu, R. S. Yang, Z. L. Wang, Integrated multilayer nanogeneratorfabricated using paired nanotip-to-nanowire brushes [J]. Nano Lett.,2008,11:4027-4032.
    [109] Z. L. Wang, Nanopiezotronics, Adv. Mater.,2007,19:889-892.
    [110] M. H. Huang,S. Mao,H. Feiek,H. Q. Yan,Y. Y. Wu,H. Kind,E. Webe, R. Russo, P.D. Yang,Room-temperature ultraviolet nanowire nanolasers [J]. Seience,2001,292:1897-1899.
    [111] Z. Y. Fan, J. G. Lu,Chemical sensing with ZnO nanowire field-effect transistor [J]. IEEE T.Nanotechnol.,2006,5:393-396.
    [112] R. Konenkamp,R. C. Word, M. Godinez,Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes [J]. Nano Lett.,2005,5:2005-2008.
    [113] M. C. Jeong,B. Y. Oh,M. H. Ham,ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes [J]. Small,2007,3:568-572.
    [114] D. K. Hwang,S. H. Kang,J. H. Lim,P-ZnO/n-GaN heterostructure ZnO light-emittingdiodes [J]. Appl. Phys. Lett.,2005,86:222101.
    [115] D. K. Hwang,M. S. Oh,ZnO-based light-emitting metal-insulator-semiconductor diodes [J].Appl. Phys. Lett.,2007,91:121113.
    [116] Y. Liu,C. R. Gorla,S. Liang, Ultraviolet detectors based on epitaxial ZnO films grown byMOCVD [J]. J. Electron. Mater.,2000,29:69-74.
    [117] P. Shanna,K. Sreenivas,Highly sensitive ultraviolet detector based on ZnO/LiNbO3hybridsurface acoustic wave filter [J]. Appl. Phys. Lett.,2003,83:3617-3619.
    [118] H. Nakahata,K. Higaki,A. Hachigo,S. Shikata, N. Fujimori, Y. Takahashi, T. Kajihara, Y.Yamamoto, High frequency surface acoustic wave filter using Zn/diamond/Si structure [J].J. Appl. Phys.,1994,33:324-328.
    [119] N. W. Emanetoglu,J. Zhu,Y. Chen,Surface acoustic wave ultraviolet photo detectors usingepitaxial ZnO multilayers grown on r-plane sapphire [J]. Appl. Phys. Lett.,2004,85:3702-3704.
    [120] C. H. Ku, J. J. Wu,Electron transport properties in ZnO nanowire array/nano particlecomposite dye-sensitized solar cells [J]. Appl. Phys. Lett.,2007,91:093117.
    [121] B. Pradhan,S. K. Batabyal. A. J. Pal,Vertically aligned ZnO nanowire arrays in rosebengal-based dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,2007,91:769-773.
    [122] Z. L. Wang, Nanostructures of zinc oxide [J]. Mater.Today,2004,7:26-33.
    [123] J. Joo, S. G. Kwon,J. H Yu, T. Hyeon, Synthesis of ZnO nanocrystals with cone, hexagonalcone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions [J]. Adv. Mater.,2005,17:1873-1877.
    [124] H. Q. Yan,R. R. He,J. Johnson,M. Law,R. J. Saykally,P. D. Yang,Dendritic nanowireultraviolet laser array [J]. J. Am. Chem. Soc.,2003,125:4728-4729.
    [125] S. H. Jung,E. Oh, K. H. Lee, Y. Yang, C. G. Park, W. J. Park, S. H. Jeong, Sonochemicalpreparation of shape-selective ZnO nanostructures [J]. Crys. Growth Des.,2008,8:265-269.
    [126] H. G. Zhu, J. F. Huang, Z. W. Pan, S. Dai, Ionothermal synthesis of hierarchical ZnOnanostructures from ionic-liquid precursors [J]. Chem. Mater.,2006,18:4473-4477.
    [127] S. Y. Gao, H. J. Zhang, X. M. Wang, R. P. Deng, D. H. Sun, G. L. Zheng, ZnO-based hollowmicrospheres: biopolymer-assisted assemblies from ZnO nanorods [J]. J. Phys. Chem. B,2006,110:15847-15852.
    [128] X. Wang, P. Hu, F. L. Yuan, L. J. Yu, Preparation and Characterization of ZnO hollowspheres and ZnO-carbon composite materials using colloidal carbon spheres as templates [J].J. Phys. Chem. C,2007,111:6706-6712.
    [129] Y. F. Gao, M. Nagai, T. C. Chang, J. J. Shyue, Solution-derived ZnO nanowire array film asphotoelectrode in dye-sensitized solar cells [J]. Crys. Growth Des.,2007,7:2467-2471.
    [130] J. Maeng, S. Heo, G. Jo, M. Choe, S. Kim, H. Hwang, T. Lee, The effect of excimer laserannealing on ZnO nanowires and their field effect transistors [J]. Nanotechnol.,2009,20:095203.
    [131] T. Szorenyi, L. D. Laude, I. Bertoti, Z. Kantor, Z. Geretovszky, Excimer-laser processing ofindium-tin-oxide films-an optical investigation [J]. J. Appl. Phys.,1995,78:6211-6219.
    [132] R. E. Leuchtner, Mass spectrometry and photoionization studies of the ablation of ZnO:ions, neutrals, and rydbergs [J]. Appl. Surf. Sci.,1998,127:626-632.
    [133] J. Liu, Zinc oxide nanowires for sensing and power generation for systen-on-packgetechnology [M]. A dissertation presented to the academic faculty,2008, p6.
    [134] X. Jiang, C. L. Jia, B. Szyszka, Manufacture of specific structure of aluminum-doped zincoxide films by patterning the substrate surface [J]. Appl. Phys. Lett.,2002,80:3090-3092.
    [135] D. S. Kim, U. Goesele, M. Zacharias, Surface-diffusion induced growth of ZnO nanowires[J]. J. Cryst. Growth,2009,311:3216-3219.
    [136] G. Kwak, M. Seol, Y. Tak, K. Yong, Superhydrophobic ZnO nanowire surface: chemicalmodification and effects of UV irradiation [J]. J. Phys. Chem. C,2009,113:12085-12089.
    [137] S. Lee, W. Kim, K. Yong, Overcoming the water vulnerability of electronic devices: ahighly water-resistant ZnO nanodevice with multifunctionality [J]. Adv. Mater.,2011,23:4398-4402.
    [138] G. Kwak, S. Jung, K. Yong, Multifunctional transparent ZnO nanorod films [J].Nanotechnol.,2011,22:115705.
    [139] C. L. Cheng, S. H. Chao, Y. F. Chen, Enhancement of field emission in nanotip-decoratedZnO nanobottles [J]. J. Cryst. Growth,2009,311:4381-4384.
    [140] H. J. Xu, Y. M. Hou, J. Y. Gao, H. C. Zhu, R. Zhu, Y. H. Sun, X. L. Zhu, Y. Z. Wang, X. W.Wang, D. P. Yu, Regrowth of template ZnO nanowires for the underlying catalyst-freegrowth mechanism [J]. Cryst. Growth Des.,2011,11:2135-2141.
    [141] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao, Aggregation of ZnOnanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew.Chem. Int. Ed.,2008,47:2402-2406.
    [142] B. J. Weintraub, Y. G. Wei, Z. L. Wang, Optical fiber/nanowire hybrid structures forefficient three-dimensional dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2009,48:1-6.
    [143] J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen, S. H. Yang, Temperaturedependence of field emission from cupric oxide nanobelt films [J]. Appl. Phys. Lett.,2003,83:746-748.
    [144] A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P. K. Patanjali, Responsespeed of SnO2-based H2S gas sensors with CuO nanoparticles [J].Appl. Phys. Lett.,2004,84:1180-1182.
    [145] S. A. Patil, L. A. Patil, D. R. Patil, G. H. Jain, M. S. Wagh, CuO-modified tin titanate thickfilm resistors as H2-gas sensors [J]. Sens. Actuators B: Chem.,2007,123:233-239.
    [146] F. Teng, W. Q. Yao, Y. F. Zheng, Y. T. Ma, Y. Teng, T. G. Xu, S. H. Liang, Y. F. Zhu,Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis [J]. Sens.Actuators B: Chem.,2008,134:761-768.
    [147] J. Y. Xiang, J. P. Tu, X. H. Huang, Y. Z. Yang, A comparison of anodically grown CuOnanotube film and Cu2O film as anodes for lithium ion batteries [J]. J. Solid StateElectrochem.,2008,12:941-945.
    [148] H. B.Wang, Q. M. Pan, H. W. Zhao, G. P. Yin, P. J. Zuo, Fabrication of CuO film withnetwork-like architectures through solution-immersion and their application in lithium ionbatteries [J]. J. Power Sources,2007,167:206-211.
    [149] X. G. Zheng, C. N. Xu, Y. Tomokiyo, E. Tanaka, H. Yamada, Y. Soejima, Observation ofcharge stripes in cupric oxide [J]. Phys. Rev. Lett.,2000,85:5170-5173.
    [150] M. Vaseem, A. Umar, Y. B. Hahn, D. H. Kim, K. S. Lee, J. S. Jang, J. S. Lee, Flower-shapedCuO nanostructures: structural, photocatalytic and XANES studies [J]. Catal. Commun.,2008,10:11-16.
    [151] M. Vaseem, A. Umar, S. H. Kim, Y. B.Hahn, Low-temperature synthesis of flower-shapedCuO nanostructures by solution process: formation mechanism and structural properties [J].J. Phys. Chem. C,2008,112:5729-5735.
    [152] H. X. Zhang, J. Feng, M. L. Zhang, Preparation of flower-like CuO by a simple chemicalprecipitation method and their application as electrode materials for capacitor [J]. Mater.Res. Bull.,2008,43:3221-3226.
    [153] H. Liu, C. G. Hu, Z. L. Wang, Composite-hydroxide-mediated approach for the synthesis ofnanostructures of complex functional-oxides [J]. Nano Lett.,2006,6:1535-1540.
    [154] C. G. Hu, Y. Xi, H. Liu, Z. L. Wang, Composite-hydroxide-mediated approach as a generalmethodology for synthesizing nanostructures [J]. J. Mater. Chem.,2009,19:858-868.
    [155] J. Chen, W. D. Zhang, J. S. Ye, Nonenzymatic electrochemical glucose sensor based onMnO2/MWNTs nanocomposite [J]. Electrochem. Commun.,2008,10:1268-1271.
    [156] B. Liu, R. Hu, J. Deng, Characterization of immobilization of an enzyme in a modified Yzeolite matrix and its application to an amperometric glucose biosensor [J]. Anal. Chem.,1997,69:2343-2348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700