基于无机氧化物的核壳型功能纳米复合材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癌症是严重威胁人类健康的疾病,据联合国世界卫生组织(WHO)统计,由于生活环境,饮食习惯等诸多因素,癌症发病率逐年增高,目前我国每年因肿瘤而死亡的人数达150万。而癌症的治疗却一直是医学界难以攻克的难题,为此,诸如阿霉素,紫杉醇等一系列具有良好药效的化疗药物被相继开发并应用于肿瘤的临床治疗中。但由于这些药物大多缺乏专一药理作用,不能对肿瘤细胞或组织有的放矢,在实际临床应用中存在着严重的毒副作用。这不仅给患者带来了极大的痛苦,也降低了药物的生物利用率。因此,如何实现药物的高效安全负载及可控释放已成为当今生物医学领域研究的重点前沿和焦点之一。
     本论文主要针对目前抗肿瘤药物载体载药量小、功能单一等问题设计并制备了一系列基于功能聚合物的智能型药物控释体系。该类载体的优势在于其本身具有良好的生物相容性并在生物体内稳定循环,在达到指定的肿瘤部位后在特定的外部刺激条件下释放所负载的药物。与此同时,四氧化三铁(Fe304)纳米粒子的顺磁性或者表面修饰的聚合物的荧光性能还赋予该类纳米载体以磁共振造影或者荧光细胞成像功能,从而达到对肿瘤诊断及靶向治疗的双重目的。
     (1)设计合成了以Fe304纳米粒子为核、靶向性荧光聚合物(PMA-RBM-FA)为壳的纳米复合物(Fe3O4@mSiO2@PMA-RBM-FA)。首先合成了粒径分布均一的Fe304纳米粒子,并在其表面包裹一层介孔二氧化硅(mSiO2)以增加其生物相容性。另外合成了一种新型水溶性荧光聚合物PMA-RBM,通过KH550接枝到Fe3O4@mSiO2表面,利用mSiO2的孔道吸附性能以及亲水性荧光聚合物(PMA-RBM)的氢键负载药物,然后通过活性酯与氨基反应在复合纳米粒子表面修饰上叶酸(Folic Acid),对叶酸高表达的肿瘤细胞实现靶向药物输送。另外,Fe3O4@mSiO2@PMA-RBM-FA通过透过性增强及滞留(EPR)效应在肿瘤组织部位富集的同时,可以方便地利用磁共振成像(MRI)以及荧光成像来作为体内以及体外诊断的工具,从而简便地实现肿瘤的诊断与治疗的双重目的。该核-壳型纳米复合物将无机纳米材料与功能性聚合物的优点相结合,改善了聚合物药物载体在体内高盐环境中循环时的不稳定性以及现有纳米材料功能比较单一的缺陷,为聚合物-无机纳米复合药物载体的进一步发展作了良好的铺垫。
     (2)为了更好地实现药物的pH响应智能型控制释放及磁共振造影诊断,我们在核-壳型纳米复合物的聚合物壳层引入基于缩醛结构的pH-敏感基团。首先设计合成具有良好生物相容性的pH-敏感两亲性聚合物,并在水介质中与油酸包裹的Fe304磁性纳米粒子(SPIONPs)通过疏水范德华力进行自组装,得到以Fe304核、pH-敏感两亲聚合物为壳的纳米复合物SPIONPs@PDH。该类药物载体具有良好的水相分散性,在组装过程中包裹疏水性药物并携带药物进入肿瘤部位,在肿瘤内部偏酸性环境刺激下即发生降解,疏水的Fe304磁性纳米粒子也逐渐聚集而导致MRI信号发生明显的变化,最终实现肿瘤组织的选择性MRI诊断与治疗。
     (3)利用可逆加成-断裂链转移(RAFT)的活性可控聚合方法控制聚合物分子量及分布指数,合成含有叶酸靶向基团的pH-敏感两亲性聚合物,并与Fe304磁性纳米粒子自组装,得到结构更可控、粒径更均一的pH-敏感肿瘤靶向核-壳型纳米复合物(HAMAFA-b-DBAM-SPIONPs)。组装过程中负载的药物可由该载体靶向输送到肿瘤部位并在肿瘤内部偏酸性环境刺激下释放。在保证上一体系的良好造影诊断及药物控释性能的基础上,该纳米药物载体更有利于实现对其结构的控制和药物的靶向输送。
     (4)为了进一步突破纳米药物载体的载药效率,我们设计制备了具有中空介孔结构的二氧化硅(HMS)纳米粒子,其中空内腔以及介孔孔道可以极大地负载药物,从而有效提高载药量。另外,二氧化硅材料本身良好的生物相容性及表面可修饰性使其在纳米药物载体方面有更加广泛的应用前景。首先制备了疏水性荧光中空介孔二氧化硅(FOFHMS)纳米粒子,并利用范德华力将疏水性药物分子负载在其纳米内腔及孔道中,后包覆上两亲性的pH敏感靶向包裹剂起到封存药物的效果。该纳米药物载体在体内循环过程中可以选择性地富集于肿瘤细胞内并在肿瘤内部偏酸性条件刺激下实现药物的可控释放。体系中荧光素的引入赋予该纳米载体荧光造影功能,从而在输送药物的同时实现对肿瘤细胞的荧光监测与诊断。
     上述基于四氧化三铁和二氧化硅无机纳米粒子的纳米复合材料除了在生物医用领域有良好的应用前景之外,由于其在电容量方面的优势,经改造后也可用于锂离子电池阳极材料的制备。在锂离子电池阳极纳米复合材料制备方面开展了研究,并取得了如下成果:
     (5)将柔韧性优异的中空多孔四氧化三铁纳米粒子(HM)包覆上导电性优良、柔韧性很好的石墨烯材料来弥补其充放电过程中结构不稳定性的缺陷。此外,HM具有价格便宜、自然界大量存在等天然优势,相比目前使用的石墨电极(372mAhg-1)具有很高的比电容。实验结果表明,通过简易的静电组装得到的锂离子阳极材料具有优异的电容(大于900mAh g-1)并保持良好的充放电循环性能(循环90次后仍保持在832mAhg-1)。
     (6)为了进一步提高电极材料的电容,进而提高锂离子电池的电池容量(从900mAh g-1增加到3762mAhg-1),我们将中空多孔二氧化硅通过简便的镁热还原法得到中空多孔的硅材料,然后通过简单的银镜反应将银纳米粒子修饰到中空多孔硅材料孔道及内腔,以提高硅纳米粒子间的电子导通能力。该方法通过简单的途径得到高性能的硅基阳极材料,为降低硅基阳极材料成本、提高锂离子电池容量以及实现高容量锂离子电池的工业化等提供了切实有效的途径。
Cancer is a serious threat to human health and disease. According to the statistics of the United Nations World Health Organization (WHO), the incidence of cancer increased year by year because of the living environments, eating habits and so on. And in China, the annual number of deaths was around1.5million. However, the treatment of cancer was still difficult to overcome in medicine. Then, a series of chemotherapy drugs (doxorubicine, taxol, et al) with good efficacy were exploited and used in clinic. However, these drugs are mostly lack of specific pharmacological effects and exist serious side effects. This makes the patients treated with more physical burden, and drug bioavailability is very low. Thus, how to achieve efficient loading and controlled release of drugs has become a serious issue placed in front of the scientists and has become today's focus in the biomedical research field. In this thesis, we fabricated a series of intelligent drug delivery system to resolve the problems such as low drug loading capacity, functionality limitations, and so on. Our approach has excellent biocompatibility and stability and could accumulate in tumor sites. Then, the drug carriers would trigger release the loaded drugs and finally cure the cancer.
     (1) Biocompatible and water-soluble magnetic nanoparticles with core (Fe3O4)-mesoporous shell (mSiO2) structure were prepared and successfully modified with the flourescent polymer chain as labeling segments and folic acid as cancer targeting moieties and loaded drug for directional release. The porous silica oxide structure and long molecular chains of polymethacrylic acid embedded drug efficiently in the nanocomposites and did not affect the magnetic properties of the carrier. Sustained release of the loaded drug was observed under in vitro conditions. Furthermore, the drug carrier is able to drill into the cell membranes and obtain a sustained release of anti-cancer drug in cytoplasm. The in vitro cellular uptake of drug demonstrated that the drug-loaded nanocomposites could effectively target to the tumor cells to cure it. Our model experiments indicated that the multifunctional mesoporous core-shell magnetic nanoparticle can be exploited as an anti-cancer drug delivery vehicle for targeting and therapy applications.
     (2) A water-soluble, pH-responsive copolymer was synthesized successfully and used as a polymeric-carrier to deliver hydrophobic paramagnetic nanoparticles into cells. In an acidic environment, the nanoparticles aggregate as the copolymer degrades, resulting in the enhancement of an in vitro MRI signal. A novel long-chain monomer was synthesized and then polymerized with a water-soluble monomer. The as-synthesized amphiphilic copolymer drug carrier has excellent biocompatibility and degradability properties. The hydrophobic copolymer side-chain can insert into the oleic acid with the hydrophilic part on the surface to form water-soluble nanocomposites. Furthermore, this composite can also easily load hydrophobic drugs via hydrophobic interactions. Degradation of the polymer shell under weakly acidic conditions leads to the release of the SPIONPs and drugs from the polymeric carrier, resulting in the MRI signal switching and drug release, respectively. Our approach can achieve these outstanding dual functions, tumor diagnosis and therapy.
     (3) Multifunctional drug delivery systems with favorable compatibility, high selectivity and efficiency are appropriate candidates for future medical applications. For this purpose, a multifunctional nanocomposite that enables selective magnetic resonance imaging and anticancer therapy by encapsulating hydrophobic superparamagnetic nanoparticles and chemotherapeutic agent doxorubicin with a novel biodegradable pH-activated polymeric carrier was synthesized. The as-synthesized amphiphilic polymer has excellent biocompatibility and pH-responsibility. The obtained nanocomposites selectively release the encapsulated drug and magnetic nanoparticles in mild acidic endosomal/lysosomal compartments due to the degradation of the pH-responsive bonds, resulting in a change of imaging signal and cancer therapy. Furthermore, when compared with the nanocomposites without targeting moiety, as studied from over-express the folic acid receptor tumor cell culturing, the conjugates with folic acid showed a significantly more potent targeting capability.
     (4) We fabricated a novel multifunctional nanocomposites consisting of hydrophobic HMSNPs and folate-conjugated amphiphilic capping agent for receptor-mediated controlled drug release. The first step was the synthesis of HMSNPs using polystyrene (PS) as template and tetraethyl orthosilicate (TEOS) as the Si source. Then the surface of HMSNPs was coated with a widely used fluorescent probe for optical imaging. The obtained fluorescent HMSNPs were modified with the long-chain hydrophobic moieties octadecyltrimethoxysilane (C18), which could change the wettability of the surface (from highly hydrophilic to hydrophobic), increase the amount of hydrophobic drug adsorption and further delay the drug release. The second step was the self-assembly of hydrophobic HMSNPs, drugs and folate-conjugated amphiphilic capping agent, which could effectively decrease clearance by reticuloendothelial system (RES), prevent drug carriers'aggregation, and interface with cellular uptake by steric hindrance. After the hydrophobic and van der Waals interactions between the alkyl chains (C18from hydrophobic HMSNPs and C12from amphiphilic capping agent), the hydrophobic drug could be loaded in HMSNPs and blocked by capping agent. The obtained multifunctional nanocomposites could be well dispersed in aqueous solution. When specifically recognized and internalized by folate receptor (FR) over-expressed tumor cells, the pH-responsive shell would hydrolyzed due to cleavage of acetal moieties in the weakly acidic endosomal/lysosomal compartments, resulting in loaded drug release. Thus, our approach can achieve these outstanding functions, tumor targeting, diagnosis and therapy.
     Based on the above works, we further studied the potential applications of hollow porous iron oxide and silica in lithium-ion anode materials.
     (5) Graphene-encapsulated ordered aggregates of Fe3O4nanoparticles with nearly-spherical geometry and hollow interior were synthesized by a simple self-assembly process. We combine the unique properties of graphene sheets and a hollow assembly of nanoparticles to simultaneously provide a large reversible Li+storage capacity, good rate performance and long cycle life. A simple self-assembly process driven by electrostatic interaction was used to generate graphene-encapsulated hollow Fe3O4nanoparticle aggregates (G-HM, short for graphene-encapsulated hollow magnetite particles). In this process, graphene oxide and HM nanoparticle aggregates were first modified to acquire negative and positive charged respectively. The assembly was carried out under very mild reaction conditions and consequently perturbations to the intrinsic properties of the HM nanoparticles could be kept to a minimum. The G-HM composite particles synthesized as such showed remarkable cycle stability as well as lithium storage performance compared to the pristine HM nanoparticles or a mixture of graphene and HM particles. The graphene modification of porous nanoparticle aggregates is therefore a viable and facile approach to prepare high performance anode materials for the lithium ion batteries.
     (6) We report a facile approach to fabricate monodisperse hollow porous Si (HPSi) nanoparticles (~120nm) via the magnesiothermic reduction of hollow porous SiO2(HPSiO2) nanoparticles formed by a templating method. This is followed by Ag nanoparticle coating for conductivity enhancement. The HPSi anode prepared as such shows several desirable electrochemical features:a high specific reversible capacity (3762mAh g-1), good cycle stability (>93%capacity retention after99cycles), and good rate performance (>2000mAh g-1at4000mA g-1), surpassing the performance of anode materials based on micron size macroporous Si particles.
引文
[1]Feynman R.P., There's plenty of room at the bottom, Talk at the annual meeting of American Physical Society,1959,12.
    [2]Keahler T., Nanotechnology:basic concepts and definitions, Clin. Chem.,1994,40, 1797.
    [3]Mnyusiwalla A., Daar A.S., Singer P.A.,'Mind the gap':science and ethics in nanotechnology, Nanotechnology,2003,14, R9.
    [4]Ritala M., Leskela M., Atomic layer epitaxy-a valuable tool for nanotechnology, Nanotechnology,1999,10,19.
    [5]Hersam M.C., Guisinger N.P., Lyding J.W., Silicon-based molecular nanotechnology, Nanotechnology,2000,11,70.
    [6]Whitesides G.M., The'Right'size in nanobiotechnology, Nat. Biotechnol.,2003,21, 1161.
    [7]Kim S., Fisher B., Eisler H.-J., Bawendi M., Type-Ⅱ quantum dots:CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures, J. Am. Chem. Soc.2003,125, 11466.
    [8]Klimov V.I., Ivanov S.A., Nanda J., Achermann M., Bezel I., McGuire J.A., Piryatinski A., Single-exciton optical gain in semiconductor nanocrystals, Nature 2007, 447,441.
    [9]Huynh W.U., Dittmer J.J., Alivisatos A.P., Hybrid nanorod-polymer solar cells, Science,2002,295,2425.
    [10]Costi R., Saunders A. E., Banin U., Colloidal hybrid nanostructures:a new type of functional materials, Angew. Chem. Int. Ed.,2010,49,4878.
    [11]Hao R., Xing R., Xu Z., Hou Y.L., Gao S., Sun S.H., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater.2010, 22,2729.
    [12]Cozzoli P.D., Pellegrino T., Manna L., Synthesis, properties and perspectives of hybrid nanocrystal structures, Chem. Soc. Rev.,2006,35,1195.
    [13]Huang S.S., Huang J.M., Yang. J., Peng J.J., Zhang Q.B., Peng F., Wang H.J., Yu H., Chemical synthesis, structure characterization, and optical properties of hollow PbSx-solid Au heterodimer nanostructures, Chem. Eur. J.,2010,16,5920.
    [14]Huang C.C., Yang Z. Chang H. T., Synthesis of dumbbell-shaped core-shell nanorods by seed-mediated growth under alkaline conditions, Langmuir,2004,20,6089.
    [15]Famulok M., Hartig J.S., Mayer M., Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy, Chem. Rev.,2007,107,3715.
    [16]Lal S., Clare S.E., Halas N.J., Nanoshell-enabled photothermal cancer therapy: impending clinical impact, Acc. Chem. Res.,2008,41,1842.
    [17]Giljohann D.A., Mirkin C.A., Drivers of biodiagnostic development, Nature,2009, 462,461.
    [18]Meledandri C.J., Stolarczyk J.K., Brougham D.F., Hierarchical gold-decorated magnetic nanoparticle clusters with controlled size, ACS Nano,2011,5,1747.
    [19]Joshi A., Narsingi K.Y., Manasreh M.O., Davis E.A., Weaver B.D., Temperature dependence of the band gap of colloidal CdSe/ZnS core/shell nanocrystals embedded into an ultraviolet curable resin, Appl. Phys. Lett.,2006,89,131907.
    [20]Evans C.M., Evans M.E., Krauss T.D., Mysteries of TOPSe revealed:insights into quantum dot nucleation, J. Am. Chem. Soc.,2010,132,10973.
    [21]Zhu Y.F., Shi, J.L., Shen, W.H., Dong, X.P., Feng, J.W., Ruan, M.L., Li, Y.S., Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure, Angew. Chem. Int. Ed.,2005,44, 5083.
    [22]Caruso F., Caruso R.A., Mohwald H., Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science,1998,282,1111.
    [23]黄琨,向明,周德惠,胡文军,核壳式无机-高分子纳米复合粒子的制备与表征,化工新型材料,2002,10,8。
    [24]Fleming M.S., Mandal T.K., Walt D.R., Nanosphere-microsphere assembly:methods for core-shell materials preparation, Chem. Mater.,2001,13,2210.
    [25]胡永红,容建华,刘应亮,满石清,金属介电核壳结构复合材料的制备、性质及应用,化学进展,2005,17(6):994。
    [26]Donath E., Sukhorukov G.B., Caruso F., Davis S.A., Mohwald H., Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem. Int. Ed.,1998,37,2202.
    [27]Pastoriza-Santos I., Scholer B., Caruso F., Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins, Adv. Funct. Mater.,2001,11,122.
    [28]Schneider G., Decher G., From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres, Nano Lett.,2004,4,1833.
    [29]Wang Y., Angelatos A.S., Caruso F., Template synthesis of nanostructured materials via layer-by-layer assembly, Chem. Mater.,2008,20,848.
    [30]Johnston A.P.R., Cortez C., Angelatos A.S., Caruso F., Layer-by-layer engineered capsules and their applications, Curr. Opin. Colloid Interface Sci.,2006,11,203.
    [31]Sexton A., Whitney P.G., De Rose R., Zelikin A.N., Chong S., Johnston A.P., Caruso F., Kent S.J., Nanoengineered layer-by-layer capsules as a novel delivery system for HIV vaccines retrovirology,2009,6,2.
    [32]Yu J., Javier D., Yaseen M.A., Nitin N., Richards-Kortum R., Anvari B., Wong M.S., Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules, J. Am. Chem. Soc.,2010,132,1929.
    [33]Sexton A., Whitney P.G, Chong S.F., Zelikin A.N., Johnston A.P.R., De Rose R., Brooks A.G., Caruso F., Kent S.J.A, Protective vaccine delivery system for in vivo T cell stimulation using nanoengineered polymer hydrogel capsules, ACS Nano,2009,3, 3391.
    [34]Chiappetta D.A., Hocht C., Taira C., Sosnik A., Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailaibility nanomedicine,2010,5,11.
    [35]Tong W.J., Gao C.Y., Multilayer microcapsules with tailored structures for bio-related applications, J. Mater. Chem.,2008,18,3799.
    [36]Chen Y., Chen H.R., Guo L.M., He Q.J., Chen F., Zhou J., Feng J.W., Shi J.L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy, ACS Nano,2010,4,529.
    [37]Zhao W.R., Gu J.L., Zhang L.X., Chen H.R., Shi J.L., Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure, J. Am. Chem. Soc.,2005,127,8916.
    [38]Shi D.L., Cho H.S., Chen Y, Xu H., Gu H.C., Lian J., Wang W., Liu G.K., Huth C., Wang L.M., Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia, Adv. Mater.,2009,21,2170.
    [39]Lu C.W., Hung Y, Hsiao J.K., Yao M., Chung T.H., Lin Y.S., Wu S.H., Hsu S.C., Liu H.M., Mou C.Y., Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett.,2007,7,149.
    [40]Lee J.E., Lee N., Kim H., Kim J., Choi S.H., Kim J.H., Kim T., Song I.C., Park S.P., Moon W.K., Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery, J. Am. Chem. Soc.,2010,132,552.
    [41]Tsang S.C., Caps V., Paraskevas I., Chadwick D., Thompsett D., Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals, Angew. Chem. Int. Ed.,2004,43,5645.
    [42]Hyeon T., Chemical synthesis of magnetic nanoparticles, Chem. Commun.,2003,927.
    [43]Lee J.H., Sherlock S.P., Terashima M., Kosuge H., Suzuki Y, Goodwin A., Robinson J., Seo W.S., Liu Z., Luong R., McConnell M.V., Nishimura D.G., Dai H., High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals, Magn. Reson. Med.,2009,62,1497.
    [44]Qiu P., Jensen C., Charity N., Towner R., Mao C.B., Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters, J. Am. Chem. Soc., 2010,132,17724.
    [45]Dobson J., Magnetic nanoparticles for drug delivery, Drug Dev. Res.,2006,67,55.
    [46]Lee J.H., Lee K., Moon S.H., Lee Y, Park T.G., Cheon J., All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery, Angew. Chem., Int. Ed.,2009,48,4174.
    [47]Pantel K., Brakenhoff R.H., Brandt B., Detection, clinical relevance, and specific biological properties of disseminating tumour cells, Nat. Rev. Cancer,2008,8,329.
    [48]Wittrup A., Zhang S.H., Svensson K.J., Kucharzewska P., Johansson M.C., Morgelin M., Belting M., Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery, Proc. Natl. Acad. Sci,2010,107,13342.
    [49]Takafuji M., Ide S., Ihara H., Xu Z., Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions, Chem. Mater., 2004,16,1977.
    [50]Bagalkot V., Zhang L., Levy-Nissenbaum E., Jon S., Kantoff P.W., Langer R., Farokhzad O.C., Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, Nano Lett.,2007,7,3065.
    [51]Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435.
    [52]Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S., Quantum dots for live cells, in vivo imaging, and diagnostics science,2005,307,538.
    [53]Baron R., Willner B., Willner I., Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology, Chem. Commun.,2007,4,323.
    [54]Gopalakrishnan G, Danelon C., Izewska P., Prummer M., Bolinger P.-Y., Geissbuhler I., Demurtas D., Dubochet J., Vogel H., Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells, Angew. Chem. Int. Ed.,2006,45, 5478.
    [55]都有为,纳米磁性材料及其应用,材料导报,2001,15(7),6。
    [56]杨玉东,梁勇,线全刚,生物医用铁基磁性纳米粒子的制备、性能及应用,2004,22(4),617。
    [57]Kouassi G.K., Wang P., Sreevatan S., Irudayaraj J., Aptamer-mediated magnetic and gold-coated magnetic nanoparticles as detection assay for prion protein assessment, Biotechnol. Prog.,2007,23,1239.
    [58]Kouassi G.K., Irudayaraj J., Magnetic and gold-coated magnetic nanoparticles as a DNA sensor, Anal. Chem.,2006,78,3234.
    [59]Ji X.J., Shao R.P., Elliott A.M., Stafford R.J., Esparza-Coss E., Bankson J.A., Liang G, Luo Z.P., Park K., Markert J.T., Li C., Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy, J. Phys. Chem. C,2007,111,6245.
    [60]Kim J., Park S., Lee J.E., Jin S.M., Lee J.H., Lee I.S., Yang I., Kim J.S., Kim S.K., Cho M.H., Hyeon T., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy, Angew. Chem. Int. Ed.,2006,45,7754.
    [61]Tang D., Yuan R., Chai Y, Magnetic core-shell Fe3O4@Ag nanoparticles coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay, J. Phys. Chem. B,2006,110,11640.
    [62]Wang C.G., Irudayaraj J., Multifunctional Magnetic-Optical Nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens, Small, 2010,6,283.
    [63]Zhou L., Gao C., Xu W., Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers, Langmuir,2010,26,11217.
    [64]Choi J.S., Jun Y.W., Yeon S.I., Kim H.C., Shin J.S., Cheon J., biocompatible heterostructured nanoparticles for multimodal biological detection, J. Am. Chem. Soc., 2006,128,15982.
    [65]Corr S.A., Rakovich Y.P., Gun'ko Y.K., Multifunctional magnetic-fluorescent nanocomposites for biomedical applications, Nanoscale Res. Lett.,2008,3,87.
    [66]Bertorelle F., Wilhelm C., Roger J., Gazeau F., Menager C., Cabuil V., fluorescence-modified superparamagnetic nanoparticles:intracellular uptake and use in cellular imaging, Langmuir,2006,22,5385.
    [67]Gu H.W., Zheng R.K., Zhang X.X., Xu B., Facile one-pot synthesis of bifunctional heterodimers of nanoparticles:a conjugate of quantum dot and magnetic nanoparticles, J. Am. Chem. Soc.,2004,126,5664.
    [68]Xie H.Y., Zuo C., Liu Y., Zhang Z.L., Pang D.W., Li X.L., Gong J.P., Dickinson C., Zhou W.Z., Cell-targeting multifunctional nanospheres with both fluorescence and magnetism, Small,2005,1,506.
    [69]Wilson R., Spiller D.G., Prior I.A., Veltkamp K.J., Hutchinson A.A., Simple method for preparing spectrally encoded magnetic beads for multiplexed detection, ACS Nano, 2007,1,487.
    [70]Insin N., Tracy J.B., Lee H., Zimmer J.P., Westervelt R.M., Bawendi M.G., Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres, ACS Nano,2008,2,197.
    [71]Tian Z.Q., Zhang Z.L., Gao J.H., Huang B.H., Xie H.Y, Xie M., Abruna H.D., Pang D.W., Color-tunable fluorescent-magnetic core/shell multifunctional nanocrystals, Chem. Commun.,2009,27,4025.
    [72]Xie M., Hu J., Long Y.M., Zhang Z.L., Xie H.Y, Pang D.W., Lectin-modified trifunctional nanobiosensors for mapping cell surface glycoconjugates, Biosens. Bioelectron.,2009,24,1311.
    [73]Sun P., Zhang H.Y., Liu C., Fang J., Wang M., Chen J., Zhang J.P., Mao C.B., Xu S.K., Preparation and characterization of fe3o4/cdte magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells, Langmuir,2010,26,1278.
    [74]Wang D.S., He J.B., Rosenzweig N., Rosenzweig Z., Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation, Nano Lett.,2004,4,409.
    [75]Salgueirino-Maceira V., Correa-Duarte M.A., Spasova M., Liz-Marzan L.M., Farle M., composite silica spheres with magnetic and luminescent functionalities, Adv. Funct. Mater.,2006,16,509.
    [76]Cho H.S., Dong Z., Pauletti G.M., Zhang J., Xu H., Gu H., Wang L., Ewing R.C., Huth C., Wang F., et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging:a multifunctional nanocarrier system for cancer diagnosis and treatment, ACS Nano,2010,4,5398.
    [77]Xie H.Y., Xie M., Zhang Z.L., Long Y.M., Liu X., Tang M.L., Pang D.W., Tan Z., Dickinson C., Zhou W., Wheat germ agglutinin-modified trifunctional nanospheres for cell recognition, Bioconjugate Chem.,2007,18,1749.
    [78]Selvan S.T., Patra P.K., Ang C.Y., Ying J.Y., Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells, Angew. Chem. Int. Ed.,2007,46,2448.
    [79]Song E.Q., Wang G.P., Xie H.Y., Zhang Z.L., Hu J., Peng J., Wu D.C., Shi Y.B., Pang D.W., Visual recognition and efficient isolation of apoptotic cells with a fluorescent-magnetic-biotargeting multifunctional nanospheres, Clin. Chem.,2007,53, 2177.
    [80]Wang G.P., Song E.Q., Xie H.Y., Zhang Z.L., Tian Z.Q., Zuo C, Pang D.W., Wu D.C., Shi Y.B., Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications, Chem. Commun.,2005,34,4276.
    [81]Sathe T.R., Agrawal A., Nie S.M., Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals:dual-function microcarriers for optical encoding and magnetic separation, Anal. Chem.,2006,78,5627.
    [82]Yong K.T., Roy I., Swihart M.T., Prasad P.N., Multifunctional Nanoparticles As Biocompatible Targeted Probes for Human Cancer Diagnosis and Therapy, J. Mater. Chem.,2009,19,4655.
    [83]Beaune G., Dubertret B., Clement O., Vayssettes C., Cabuil V., Menager C., Giant vesicles containing magnetic nanoparticles and quantum dots:feasibility and tracking by fiber confocal fluorescence microscopy, Angew. Chem. Int. Ed.,2007,46,5421.
    [84]Fernandez B., Galvez N., Cuesta R., Hungria A.B., Calvino J.J., Dominguez-veraj. m., quantum dots decorated with magnetic bionanoparticles, Adv. Funct. Mater.,2008,18, 3931.
    [85]Gao J.H., Zhang W., Huang P.B., Zhang B., Zhang X.X., Xu B., Intracellular spatial control of fluorescent magnetic nanoparticles, J. Am. Chem. Soc.,2008,130,3710.
    [76]Roullier V., Grasset F., Boulmedais F., Artzner F., Cador O., Marchi-Artzner V., Small bioactivated magnetic quantum dot micelles, Chem. Mater.,2008,20,6657.
    [87]Ang C.Y., Giam L., Chan Z.M., Lin A.W.H., Gu H., Devlin E., Papoefthymiou G.C., Selvan S.T., Ying J.Y., Facile synthesis of Fe2O3 nanocrystals without Fe(CO)5 precursor and one-pot synthesis of highly fluorescent Fe2O3-CdSe nanocomposites, Adv. Mater.,2009,21,869.
    [88]Lu C.W., Hung Y., Hsiao J.K., Yao M., Chung T.H., Lin Y.S., Wu S.H., Hsu S.C., Liu H.M., Mou C.Y, et al, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett.,2007,7,149.
    [89]Quarta A., Di Corato R., Manna L., Ragusa A., Pellegrino T., Fluorescent-magnetic hybrid nanostructures preparation, properties, and applications in biology, IEEE Trans. Nanobiosci.,2007,6,298.
    [90]Peng S., Sun S., Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles, Angew. Chem. Int. Ed.,2007,46,4155.
    [91]Piao Y, Kim J., Na H.B., Kim D., Baek J.S., Ko M.K., Lee J.H., Shokouhimehr M., Hyeon T., Wrap/bake/peel process for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules, Nature Mater.,2008,7,242.
    [92]Chen J., Xu L., Li W., Gou X., a-Fe2O3 Nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater.,2005,17,582.
    [93]Taberna P.L., Mitra S., Poizot P., Simon P., Tarascon J.M., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater.,2006,5,567.
    [94]Poizot P., Laruelle S., Grugcon S., Dupont L., Tarascon J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000,407,496.
    [95]Piao Y., Kim H.S., Sung Y.E., Hyeon T., Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries, Chem. Commun.,2010,46,118.
    [96]Zhou G., Wang D.W., Li F., Zhang L., Li N., Wu Z.S., Wen L., Lu G.Q., Cheng H.M., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chem. Mater.,2010,22,5306.
    [97]Yuan S.M., Li J.X., Yang L.T., Su L.W., Liu L., Zhou Z., Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules, ACS Appl. Mater. Interfaces,2011,3,705.
    [98]Lian P., Zhu X., Xiang H., Li Z., Yang W., Wang H., Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries, Electrochim. Acta,2010,56,834.
    [99]马树华,国汉举,李季,梁洪泽,景遐斌,王佛松,锂离子电池负极碳材料的表面改性与修饰,电化学,1996,2(4),413。
    [100]周恒辉,慈云祥,锂离子电池电极材料研究进展,化学进展,1998,10(1),85。
    [101]瞿其曙,何友昭,淦五二,李敏,林祥钦,超细二氧化硅的制备及研究进展,硅酸盐通报,2000,5,57。
    [102]Fang, X.H., Liu, X., Schuster, S., Tan W., Designing a novel molecular beacon for surface-immobilized dna hybridization studies, J. Am. Chem. Soc.,1999,121, 2921.
    [103]Ow H., Larson D.R., Srivastava M., Baird B.A., Webb W.W., Wiesner U., Bright and stable core-shell fluorescent silica nanoparticles, Nano Lett.,2005,5,113.
    [104]Zhao X., Tapec-Dytioco R., Tan W., Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles, J. Am. Chem. Soc.,2003,125,11474.
    [105]Jain T.K., Roy I., De T.K., Maitra A.N., Nanometer silica particles encapsulating active compounds:a novel ceramic drug carrier, J. Am. Chem. Soc.,1998,120, 11092.
    [106]Holm B.A., Bergey E.J., De T., Rodman D.J., Kapoor R., Levy L., Friend C.S., Prasad P.N., Nanotechnology in biomedical applications, Mol. Cryst. Liq. Cryst., 2002,374,589.
    [107]Brigger I., Dubernet C., Couvreur P., Nanoparticles in cancer therapy and diagnosis, Adv. Drug Delivery Rev.,2002,54,631.
    [108]Cordek J., Wang X., Tan W., Direct immobilization of glutamate dehydrogenase on optical fiber probes for ultrasensitive glutamate detection, Anal. Chem.,1999, 71,1529.
    [109]Andersson J., Rosenholm J., Areva S., Linden M., Influences of materials characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices, Chem. Mater.,2004,16,4160.
    [110]Rosenholm J.M., Linden M., Towards establishing structure-activity relationships for mesoporous silica in drug delivery applications, J. Controlled Release,2008, 128,157.
    [111]Brunner T.J., Wick P., Manser P., Spohn P., Grass R.N., Limbach L.K., Bruinink A., Stark W.J., In vitro cytotoxicity of oxide nanoparticles:comparison to asbestos, silica, and the effect of particle solubility, Environ. Sci. Technol.,2006,40,4374.
    [112]Slowing I.I., Vivero-Escoto L., Wu C.-W., Lin, V.S.-Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv. Drug Delivery Rev.,2008,60,1278.
    [113]Slowing I.I., Trewyn B.G., Giri S., Lin V.S.-Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications, Adv. Funct. Mater.,2007,17,1225.
    [114]Giri S., Trewyn B.G., Lin V.S.-Y., Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems, Nanomedicine,2007,2,99.
    [115]Trewyn B.G., Giri S., Slowing I.I., Lin V.S.-Y., Mesoporous silica nanoparticle based controlled drug release, drug delivery, and biosensor systems, Chem. Commun.,2007,3236.
    [116]Vallet-Regi M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed.,2007,46,7548.
    [117]Giraldo L.F., Lopez B.L., Perez L., Urrego S., Sierra L., Mesa M., Mesoporous silica applications, Macromol. Symp.,2007,258,129.
    [118]Wan H., Liu L., Li C., Xue X., Liang X., Facile Synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography, J. Colloid Interface Sci.,2009,337,420.
    [119]Moreno J., Sherrington D.C., Well-defined mesostructured organic inorganic hybrid materials via atom transfer radical grafting of oligomethacrylates onto SBA-15 pore surfaces, Chem. Mater.,2008,20,4468.
    [120]Hoffmann F., Cornelius M., Morell J., Froba M., Silica-based mesoporous organic inorganic hybrid materials, Angew. Chem. Int. Ed.,2006,45,3216.
    [121]Angelos S., Liong M., Choi E., Zink J.I., Mesoporous silicate materials as substrates for molecular machines and drug delivery, Chem. Eng. J.,2008,137,4.
    [122]Sujandi, Park S.-E., Han D.-S., Han S.-C., Jin M.-J., Ohsuna T. Amino-functionalized SBA-15 type mesoporous silica having nanostructured hexagonal platelet morphology, Chem. Commun.,2006,4131.
    [123]Stein A., Advances in microporous and mesoporous solids-highlights of recent progress, Adv. Mater.,2003,15,763.
    [124]Hartmann M., Ordered mesoporous materials for bioadsorption and biocatalysis, Chem. Mater.,2005,17,4577.
    [125]Vallet-Regi M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed.,2007,46,7548.
    [126]Katiyar A., Yadav S., Smirniotis P.G., Pinto N.G., Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules, J. Chromatogr. A, 2006,1122,13.
    [127]Slowing I.I., Trewyn B.G., Lin V.S.-Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells, J. Am. Chem. Soc.,2006,128,14792.
    [128]Trewyn B.G., Giri S., Slowing I.I., Lin V.S.Y., Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems, Chem. Commun., 2007,3236.
    [129]Gonzalez B., Colilla M., Laorden C.L.d., Vallet-Regi M., A novel synthetic strategy for covalently bonding dendrimers to ordered mesoporous silica:potential drug delivery applications, J. Mater. Chem.,2009,19,9012.
    [130]Wang T., Chai F., Fu Q., Zhang L., Liu H., Li L., Liao Y, Su Z., Wang C., Duan B., Ren D., Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy, J. Mater. Chem.,2011,21,5299.
    [131]Kasavajjula U., Wang C., Appleby A.J., Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources,2007,163,1003.
    [132]Chan C.K., Peng H., Liu G, Mcllwrath K., Zhang X., Huggins R.A., Cui Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol.,2008,3,31.
    [133]Park M.H., Kim M.G., Joo J., Kim K., Kim J., Ahn S., Cui Y., Cho J., Silicon nanotube battery anodes, Nano Lett.,2009,9,3844.
    [134]Cahen S., Janot R., Laffont-Dantras L., Tarascon J.M., Chemical reduction of SiCl4 for the preparation of silicon graphite composites used as negative electrodes in lithium-ion batteries, J. Electrochem. Soc.,2008,155, A512.
    [135]Obrovac M.N., Christensen L., Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett.,2004,7, A93.
    [136]Hatchard T.D., Dahn J.R., In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc.,2004,151, A838.
    [137]Boukamp B.A., Lesh G.C., Huggins R.A., All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc.,1981,128,725.
    [138]Limthongkul P., Jang Y., Dudney N.J., Chiang Y., Electrochemically-driven solid-state amorphization in lithium silicon alloys and implications for lithium storage, Acta Mater.,2003,51,1103.
    [139]Ryu J.H., Kim J.W., Sung Y, Oh S.M., Failure modes of silicon powder negative electrode in lithium secondary batteries, Electrochem. Solid-State Lett.,2004,7, A306.
    [140]Li J., Dahn J.R., An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc.,2007,154, A156.
    [141]Kim H., Seo M., Park M.H., Cho J., A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed.,2010,49,2146.
    [142]Zhou S., Liu X., Wang D., Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries, Nano Lett.,2010,10,860.
    [143]Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater.,2010,9,353.
    [144]Chen H., Dong Z., Fu Y., Yang Y., Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries, J. Solid State Electrochem., 2010,14,1829.
    [145]Chan C.K., Patel R.N., O'Connell M.J., Korgel B.A., Cui Y., Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano,2010,4,1443.
    [146]Chan C.K., Peng H., Liu G, McIlwrath K., Zhang X.F., Huggins, R.A., Cui, Y, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol.2008,3,31.
    [147]Yao Y, McDowell M.T., Ryu, I., Wu H., Liu N., Hu L., Nix W.D., Cui Y, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett.,2011,11,2949.
    [148]Yu Y, Gu L., Zhu C., Tsukimoto S., van Aken P.A., Maier J., Reversible storage of lithium in silver-coated three-dimensional macroporous silicon,2010,22,2247.
    [149]Guzelian A.A., Katari J.E.B., Kadavanich A.V., Banin U., Hamad K., Juban E., Alivisatos A.P., Wolters R.H., Arnold C.C., Heath J.R., Synthesis of size-selected, surface-passivated InP nanocrystals, J. Phys. Chem.,1996,100,7212.
    [150]Li L., Reiss P., One-Pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection, J. Am. Chem. Soc.,2008,130,11588.
    [151]Reiss P., Protiere M., Li L., Core/shell semiconductor nanocrystals, Small,2009,5, 154.
    [152]Klimov V.I., Mikhailovsky A.A., Xu S., Malko A., Hollingsworth J.A., Leatherdale C.A., Eisler H.J., Bawendi M.G., Optical gain and stimulated emission in nanocrystal quantum dots, Science,2000,290,314.
    [153]Valerini D., Creti A., Lomascolo M., Manna L., Cingolani R., Anni M., Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix, Phys. Rev. B,2005,71,235409.
    [154]Chin P.T.K., De Mello Donega C., Van Bavel S.S., Meskers S.C.J., Sommerdijk N.A.J.M., Janssen R.A.J., Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color, J. Am. Chem. Soc., 2007,129,14880.
    [155]Al Salman A., Tortschanoff A., Mohamed M.B., Tonti D., Van Mourik F., Chergui M., Temperature effects on the spectral properties of colloidal cdse nanodots, nanorods, and tetrapods, Appl. Phys. Lett.,2007,90,093104.
    [156]Liu T.-C., Huang Z.-L., Wang H.-Q., Wang J.-H., Li X.-Q., Zhao Y.-D., Luo Q.-M., Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe, Anal. Chim. Acta,2006,559,120.
    [157]Ryu E., Kim, S., Jang E., Jun S., Jang H., Kim B., Kim S.-W., Step-wise synthesis of InP/ZnS core shell quantum dots and the role of zinc acetate, Chem. Mater., 2009,21,573.
    [158]Colvin V.L., Schlamp M.C., Alivisatos A.P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature,1994,370, 354.
    [159]Xu S., Ziegler J., Nann T., Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals, J. Mater. Chem.,2008,18,2653.
    [160]Xie R., Battaglia D., Peng X., Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared, J. Am. Chem. Soc.,2007,129,15432.
    [160]Chan W.C.W., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281,2016.
    [161]Xu S., Kumar S., Nann T., Rapid synthesis of high-quality InP nanocrystals, J. Am. Chem. Soc.,2006,128,1054.
    [162]Lucey D.W., MacRae D.J., Furis M., Sahoo Y., Cartwright A.N., Prasad P.N., Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent, Chem. Mater.,2005,17,3754.
    [163]Battaglia D., Peng X., Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent, Nano Lett.,2002,2,1027.
    [164]Goldman E.R., Balighian E.D., Mattoussi H., Kuno M.K., Mauro J.M., Tran P.T. Anderson G.P., Avidin:a natural bridge for quantum dot-antibody conjugates, J. Am. Chem. Soc.,2002,124,6378.
    [165]Lacoste T.D., Michalet X., Pinaud F., Chemla D.S., Alivisatos A.P., Weiss S., Ultrahigh-resolution multicolor colocalization of single fluorescent probes, PNAS, 2000,97,9461.
    [166]Cang H., Sun T., Li Z.Y., Chen J., Wiley B.J., Xia Y, Li X., Gold nanocages as contrast agents for spectroscopic and conventional optical coherence tomography, Optics Lett.,2005,441,479.
    [167]Chen J., Wang D., Xia Y., et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett.,2007, 7,1318.
    [168]Cobley C.M., Campbell D.J., Xia Y., Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium, Adv. Mater., 2008,20,748.
    [169]Chen J., Saeki F., Benjamin J., Cang H., Cobb M.J., Li Z.Y., Au L., Zhang H., Kimmey M.B., Li X., Xia Y., et al. Gold nanocages:bioconjugation and their potential use as optical imaging contrast agents, Nano Lett.,2005,5,473.
    [170]Yang X., Wang L., Xia Y., et al. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent, Nano Lett.,2007,7,3798.
    [171]Chen J., Wiley B., Xia Y., et al. Gold nanocages:engineering their structure for biomedical applications, Adv. Mater.,2005,17,2255.
    [172]Skrabalak S., Chen J., Xia Y., et al. Gold nanocages for biomedical applications, Adv. Mater.,2007,19,3177.
    [173]Lu X., Chen J., Xia Y., et al. Galvanic replacement reaction:a simple and powerful route to hollow and porous metal nano structures, J. Nanoeng. Nanosyst., 2007,221,1.
    [174]Skrabalak S., Au L., Xia Y., et al. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc.,2007,2,2182.
    [175]Hu M., Chen J., Xia Y., et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev.,2006,35,1084.
    [176]Liang J., Huang Y, Zhang L., Wang Y, Ma Y, Guo T., Chen Y, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater.,2009,19,2297.
    [177]Kamat P.V., Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 2010,1,520.
    [178]Wang W.D., Silva C.G., Faria J.L., Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts, Appl. Catal., B, 2007,70,470.
    [179]Oh W.C., Jung A.R., Ko W.B., Preparation of fullerene/TiO2 composite and its photocatalytic effect, J. Ind. Eng. Chem.,2007,13,1208.
    [180]Li Y.J., Li X.D., Li J.W., Yin J., Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res.,2006,40,1119.
    [181]Yao Y, Li G.H., Ciston S., Lueptow R.M., Gray K.A., Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity, Environ. Sci. Technol.,2008,42, 4952.
    [182]Tryba B., Morawski A.W., Inagaki M., Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal., B 2003,41,427.
    [183]Yu Y, Yu J.C., Yu J.G., Kwok Y.C., Che Y.K., Zhao J.C., Ding L., Ge W.K., Wong P.K., Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Appl. Catal. A,2005,289,186.
    [184]Yang P., Quan Z., Hou Z., Li C, Kang X, Cheng Z, Lin J., A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier, Biomaterials,2009,30,4786.
    [185]Tan H., Xue J.M., Shuter B., Li X., Wang J., Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging, Adv. Funct. Mater.,2010,20,722.
    [186]Zhu C.L., Lu C.H., Song X.Y, Yang H.H., Wang X.R., Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate, J. Am. Chem. Soc.,2011,133,1278.
    [187]Zhou G, Wang D.W., Li F., Zhang L., Li N., Wu Z.-S., Wen L., Lu G.Q., Cheng H.-M., Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries, Chem. Mater.,2010,22, 5306.
    [188]Gao P., Nuli Y, He Y.S., Wang J., Minett A.I., Yang J., Chen J., Direct scattered growth of MWNT on Si for high performance anode material in Li-ion batteries, Chem. Commun.,2010,46,9149.
    [189]El-Boubbou K., Gruden C., Huang X., Magnetic glyco-nanoparticles:a unique tool for rapid pathogen detection, decontamination, and strain differentiation, J. Am. Chem. Soc.,2007,129,13392.
    [190]Lee J.H., Jun Y.W., Yeon S.I., Shin J.S., Cheon J., Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma, Angew. Chem. Int. Ed.,2006,45,8160.
    [191]Hao R., Xing R., Xu Z., Hou Y., Gao S., Sun S., Synthesis, functionalization and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater., 2010,22,2729.
    [192]Ko J., Park K., Kim Y.-S., Kim M.S., Han J.K., Kim K., Park R.-W., Kim I.-S., Song H.K., Lee D.S., et al. Tumoral acidic extracellular pH targeting of pH-responsive mpeg-poly([beta]-amino ester) block copolymer micelles for cancer therapy, J. Controlled Release,2007,123,109.
    [193]Lee E.S., Gao Z., Bae Y.H., Recent progress in tumor ph targeting nanotechnology, J. Controlled Release,2008,132,164.
    [194]Duncan R., The dawning era of polymer therapeutics, Nat. Rev. Drug Discovery, 2003,2,347.
    [195]Bae Y, Fukushima S., Harada A., Kataoka K., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular ph change, Angew. Chem. Int. Ed.,2003,42,4640.
    [196]Miyata K., Kakizawa Y, Nishiyama N., Harada A., Yamasaki Y, Koyama H., Kataoka K., Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression, J. Am. Chem. Soc., 2004,126,2355.
    [197]Biswas A., Joo K.I., Liu J., Zhao M., Fan G, Wang P., Gu Z., Tang Y., Endoprotease-mediated intracellular protein delivery using nanocapsules, ACS Nano,2011,5,1385.
    [198]Lee S.M., Ahn R.W., Chen F., Fought A.J., O'Halloran T.V., Cryns V.L., Nguyen S.T., Biological evaluation of ph-responsive polymer-caged nanobins for breast cancer therapy, ACS Nano,2010,4,4971.
    [199]Koo A.N., Lee H.J., Kim S.E., Chang J.H., Park C., Kim C., Park J.H., Lee S.C., Disulfide-cross-linked peg-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery, Chem. Commun.,2008,6570.
    [200]Lee Y, Fukushima S., Bae Y., Hiki S., Ishii T., Kataoka K., A protein nanocarrier from charge-conversion polymer in response to endosomal pH, J. Am. Chem. Soc., 2007,129,5362.
    [201]Qian X., Peng X.-H., Ansari D.O., Yin-Goen Q., Chen G.Z., Shin D.M., Yang L., Young A.N., Wang M.D., Nie S., In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags, Nat. Biotechnol.,2008, 26,-83.
    [202]Inoue Y., Izawa K., Yoshikawa K., Yamada H., Tojo A., Ohtomo K., In vivo fluorescence imaging of the reticuloendothelial system using quantum dots in combination with bioluminescent tumour monitoring, Eur. J. Nucl. Med. Mol. Imaging,2007,34,2048.
    [203]Wood K.C., Azarin S.M., Arap W., Pasqualini R., Langer R., Hammond P.T., Tumor-targeted gene delivery using molecularly engineered hybrid polymers functionalized with a tumor-homing peptide, Bioconjugate Chem.,2008,19,403.
    [204]Kim J., Lee J.E., Lee S.H., Yu J.H., Lee J.H., Park T.G., Hyeon T., Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery, Adv. Mater.2008, 20,478.
    [205]Santra S., Kaittanis C., Grimm J., Perez J.M., Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging, Small 2009,5,1862.
    [206]Choi J.S., Park J.C., Nah H., Woo S., Oh J., Kim K.M., Cheon G.J., Chang Y., Yoo J., Cheon J., A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging, Angew. Chem. Int. Ed.2008,47, 6259
    [207]Xu C., Wang B., Sun S., Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery, J. Am. Chem. Soc.,2009,131,4216.
    [208]Cheng K., Peng S., Xu C. J., Sun S., Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc.,2009,131, 10637.
    [209]Wang F., Wang Y.C., Dou S., Xiong M.H., Sun T.M., Wang J., Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells, ACS Nano,2011,5, 3679.
    [210]Yuan J., Schacher F., Drechsler M., Hanisch A., Lu Y, Ballauff M., Muller A.H.E., Stimuli-responsive organosilica hybrid nanowires decorated with metal nanoparticles, Chem. Mater.,2010,22,2626.
    [211]Gao J., Gu H., Xu B., Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications, Acc. Chem. Res.,2009,42,1097.
    [212]Sun C., Lee J.S.H., Zhang M., Magnetic nanoparticles in MR imaging and drug delivery, Adv. Drug. Delivery. Rev.,2008,60,1252.
    [213]Lee H., Lee E., Jang N.K., Jeong Y.Y., Jon S., Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging, J. Am. Chem. Soc.,2006,128,7383.
    [214]Park J., Yu M.K., Jeong Y.Y., Kim J.W., Lee K., Phan V.N., et al. Antibiofouling amphiphilic polymer-coated superparamagnetic iron oxide nanoparticles: synthesis, characterization, and use in cancer imaging in vivo, J. Mater. Chem., 2009,19,6412.
    [215]Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., et al. Quantum dots for live cells, in vivo imaging, and diagnostics, Science,2005,307, 538.
    [216]Pradhan N., Battaglia D.M., Liu Y, Peng X., Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels, Nano Lett.,2007,7,312.
    [217]Qin J., Jo Y.S., Muhammed M., Coating nanocrystals with amphiphilic thermosensitive copolymers, Angew. Chem. Int. Ed.,2009,48,7845.
    [218]Hao R., Xing R., Xu Z., Hou Y, Gao S., Sun S., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater., 2010,22,2729.
    [219]Zhao M., Beauregard D.A., Loizou L., Davletov B., Brindle K.M., Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent, Nat. Med.,2001,7,1241.
    [220]Laurent S., Forge D., Port M., Roch A., Robic C., Vander E.L., et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev.,2008,108,2064.
    [221]Nasongkla N., Bey E., Ren J., Ai H., Khemtong C., Guthi J.S., et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems, Nano Lett.,2006,6,2427.
    [222]Torchilin V.P., Multifunctional nanocarriers, Adv. Drug Delivery Rev.,2006,58, 1532.
    [223]Kawaguchi H., Functional polymer microspheres, Prog. Polym. Sci.,2000,25, 1171.
    [224]Sawant R.M., Hurley J.P., Salmaso S., Kale A., Tolcheva E., Levchenko T.S., et al. "SMART" drug delivery systems:double-targeted pH-responsive pharmaceutical nanocarriers, Bioconjugate Chem.,2006,17,943.
    [225]Schmaljohann D., Thermo-and pH-responsive polymers in drug delivery, Adv. Drug Delivery Rev.,2006,58,1655.
    [226]Bajpai A.K., Shukla S.K., Bhanu S., Kankane S., Responsive polymers in controlled drug delivery, Prog. Polym. Sci.,2008,33,1088.
    [227]Ganta S., Devalapally H., Shahiwala A., Amiji M, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Controlled Release,2008,126,187.
    [228]Linderoth L., Peters G.H., Madsen R., Andresen T.L., Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties, Angew. Chem. Int. Ed.,2009,121,1855.
    [229]Guthi J.S., Yang S.G., Huang G., Li S., Khemtong C., Kessinger C.W., et al. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells, Mol. Pharmaceutics,2010,7,32.
    [230]Sun H., Guo B., Li X., Cheng R., Meng F., Liu H., et al. Shell-sheddable micelles based on dextran-SS-poly(s-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin, Biomacromolecules,2010,11,848.
    [231]York A.W., Huang F., McCormick C.L., Rational design of targeted cancer therapeutics through the multiconjugation of folate and cleavable siRNA to RAFT-synthesized (HPMA-s-APMA) copolymers, Biomacromolecules,2010,11, 505.
    [232]York A.W., Kirkland S.E., McCormick C.L., Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization:stimuli-responsive drug and gene delivery, Adv. Drug Delivery Rev.,2008,60,1018.
    [233]Smith A.E., Xu X., McCormick C.L., Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization, Prog. Polym. Sci.,2009,55,45.
    [234]Boyer-Kowollik C., Bulmus V., Davis T.P., Ladmiral V., Liu J., Perrier S., Bioapplications of RAFT polymerization, Chem. Rev.,2009,109,5402.
    [235]Barner-Kowollik C., Perrier S., The future of reversible addition fragmentation chain transfer polymerization, J. Polym. Sci. Part A:Polym. Chem.,2008,46, 5715.
    [236]Ding C., Gu J., Qu X., Yang Z., Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker, Bioconjugate Chem.,2009,20,1163.
    [237]Gao Y, Chen Y, Ji X., He X., Yin Q., Zhang Z., Shi J., Li Y, Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles, ACS Nano,2011,5,9788.
    [238]Mulder W.J.M., Strijkers G.J., van Tilborg G.A.F., Cormode D.P., Fayad Z.A., Nicolay K., Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging, Acc. Chem. Res.,2009,42,904.
    [239]Vivero-Escoto J.L., Slowing I.I., Trewyn B.G., Lin V.S.Y, Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small,2010,6,1952.
    [240]Chen Y, Chen H.R., Zeng D.P., Tian Y.B., Chen F., Feng J.W., Shi J.L., Core/shell structured hollow mesoporous nanocapsules:a potential platform for simultaneous cell imaging and anticancer drug delivery, ACS Nano,2010,4,6001.
    [241]Liu T., Li L., Teng X., Huang X., Liu H., Chen D., Ren J., He J., Tang F., Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice, Biomaterials,2011,32,1657.
    [242]Jiang X., Ward T.L., Cheng Y.S., Liu J., Brinker C.J., Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of L-methionine as a candidate drug cargo, Chem. Commun.,2010,46,3019.
    [243]Zhu Y, Fang Y, Borchardt L., Kaskel S., PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles, Micropor. Mesopor. Mater.,2011, 141,199.
    [244]Zhu Y.F., Shi J.L., Shen W.H., Dong X.P., Feng J.W., Ruan M.L., Li Y.S., Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure, Angew. Chem. Int. Ed., 2005,44,5083.
    [245]Zhao Y, Lin L.N., Lu Y., Chen S.F., Dong L., Yu S.H., Templating synthesis of preloaded doxorubicin in hollow mesoporous silica nanospheres for biomedical applications, Adv. Mater.,2010,22,5255.
    [246]Shim M.S., Kim C.S., Ahn Y.C., Chen Z., Kwon Y.J., Combined multimodal optical imaging and targeted gene silencing using stimuli-transforming nanotheragnostics, J. Am. Chem. Soc.,2010,132,8316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700