锌—铈液流电池正极电解液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对锌-铈液流电池用正极电解液进行了比较全面而深入的研究,共有六章,主要内容如下:
     液流电池储能技术是一种高效的、大规模电化学储能技术,在可再生能源发电、智能电网建设等方面有广阔的应用前景。本章重点对全钒液流电池、全铬液流电池、多硫化钠-溴液流电池、锌-溴液流电池、可溶性铅酸液流电池和锌-铈液流电池等的工作原理、特点和国内外研究现状进行了综述,对部分活性物质的化学性质进行了比较详细的介绍。
     本章研究了甲基磺酸介质中的Ce3+/Ce4+电极过程动力学及电解液稳定性。在石墨电极上测得Ce3+/Ce4+电极反应的标准速率常数是4.06×10-4cm s-1; Ce3+的扩散系数为5.18~5.56×10-6cm2s-1, Ce4+的扩散系数为2.56~2.68×10-cm2s-1。沉淀生成的速率与温度、浓度及充电深度有关,电解液中甲基磺酸的最佳浓度范围为2~3mol dm-3。电流密度为20mA cm-2时,锌-铈液流电池的能量效率为74.8%。
     本章研究了混酸(CH3SO3H&H2SO4)介质中的Ce3+/Ce4+电极过程动力学及电解液的稳定性。在混酸介质中,Ce3+/Ce4+电极反应的标准速率常数是4.17×10-4cm s-1; Ce3+/Ce4+扩散系数比在单一酸介质中(CH3SO3H或H2SO4)都要大。铈盐在混酸中的溶解性比在硫酸中的要好,1mol dm-3Ce3++2mol dm-3CH3SO3H+0.5mol dm-3H2SO4电解液在温度高达313K时能稳定存在一个月以上。锌-铈液流电池使用混酸介质时的能量效率比使用单一甲基磺酸介质时的高。
     本章研究了磺基水杨酸、DTPA、乙酸钴等添加剂对Ce3+/Ce4+电极反应动力学及电解液稳定性的影响。磺基水杨酸和DTPA等对电极反应动力学和电解液稳定性都有正面作用。乙酸钴对电极反应有正面作用,但不能改善电解液稳定性。
     本章研究了多电对混合液在提高电池单位体积能量密度方面的应用。充放电实验结果显示,锌-铈&亚硝基红盐液流电池以及锌-铈&铁液流电池的充放电容量均比锌-铈液流电池的要大。锌-铈&铁液流电池的大电流充放电性能好于锌-铈&亚硝基红盐液流电池。
     本章概述了论文的一些重要结论,以及液流电池的市场前景、发展瓶颈和发展方向。指出锌-铈液流电池技术的开发是把我国稀土资源优势变为技术优势的重要方面和重要方向。
Investigation of Ce3+/Ce4+electrolyte for zinc-cerium redox flow battery application has been intensively carried out. This paper is divided into six parts:
     Redox flow cell technology is a new electrical energy storage technology with advantages of large scale and high efficiency. It can meet the great demands of boosting the wide application of the renewable resources, facilitating the construction of smart grid and accomplishing the target for energy saving and emission reduction. In this charpter, we centre around the introduction to the working principles, characteristics, research status at home and abroad of the all-vanadium, all-chromium, sodium polysulfide-bromine, zinc-bromine, soluble lead and zinc-cerium redox flow battery et al.. Chemical properties of some redox couples have been introduced detailedly.
     Electrode process and electrolyte stability of Ce3+/Ce4+in methane sulfonic acid (MSA) media were investigated. The standard rate constant of the Ce3+/Ce4+electrode reaction on graphite is4.06×10-4cm s-1. The diffusion coefficient of Ce3+in MSA is5.18~5.56×10-6cm2s-1,it is2.56~2.68×10-6cm2s-1for Ce4+. The rate of electrolyte precipitation is dependent on temperature, cerium and MSA concentrations as well as the state of charge of the electrolyte. The energy efficiency of zinc-cerium redox flow cell is74.8%at20mA cm-2current.
     Electrode process and electrolyte stability of Ce3+/Ce4+in mixed acid media were investigated. The standard rate constant of the Ce3+/Ce4+electrode reaction in mixed acid media is4.17×10-4cm s-1. The diffusion coefficients of Ce3+/Ce4+in mixed acid are larger than that in single acid. The solubility of cerium salt in mixed acid is larger than that in sulfuric acid; a solution of1mol dm-3Ce3+/Ce4++2mol dm-3CH3SO3H+0.5mol dm-3H2SO4is sufficiently stable for30days at temperatures up to313K. Energy efficiency of the test cell using mixed acid electrolyte is higher than that using single CH3SO3H electrolyte.
     The effect of additives (sulfosalicylic acid, DTPA, Cobaltous acetate et al.) on kinetics of Ce3+/Ce4+electrode reaction and solubility of Ce3+/Ce4+electrolyte was investigated. Some additives (Sulfosalicylic acid and DTPA et al.) can improve kinetics of Ce3+/Ce4+electrode reaction and solubility of Ce3+/Ce4+electrolyte; Cobaltous acetate only has positive effect on kinetics of Ce3+/Ce4+electrode reaction without improvement of electrolyte stability.
     Study of mixed electrolyte used in redox flow cell to improve volume special energy was carried out. The results show that, charge-discharge capacity of zinc-cerium&nitroso as well as zinc-cerium&ferrum redox flow cell is larger than that of zinc-cerium redox flow cell. Performance of zinc-cerium&ferrum redox flow cell is better than that of zinc-cerium&nitroso redox flow cell at large charge-discharge current.
     Some important conclusions, market prospect, development bottleneck and development direction about redox flow battery were summarized in this charpter. It is pointed out that development of zinc-cerium redox flow battery technology is important area and direction for change step by step from country with rich rare earths sources to strong country with technology.
引文
[1]曹明良.抽水蓄能电站在我国电力工业发展中的重要作用.水电能源科学,2009,27(2):212-214
    [2]Sakayori A, Kuwabara T, Brando A, et al. Variable-speed pumped-storage power generating system. United States Patent,4816696,1989-03-28
    [3]Ibrahim H, Ilinca A, Perron J. Energy storage systems-Characteristics and comparisons. Renewable and Sustainable Energy Reviews,2008,12:1221-1250
    [4]Anagnostopoulos J S, Papantonis D E. Pumping station design for a pumped-storage wind-hydro power plant. Energy Conversion and Management,2007,48:3009-3017
    [5]唐晓军.压缩空气储能技术现状.能源研究与利用,1995,(3):25-27
    [6]Najjar Y S H, Zaamout M S. Performance analysis of compressed air energy storage (CAES) plant for dry regions. Energy Convers. Mgmt.,1998,39 (15):1503-1511
    [7]Ahrens F W, Kartsounes G T. Compressed air energy storage system. United States Patent,4281256,1981-07-28
    [8]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状.太阳能学报,2000,21(4):427-433
    [9]Gabrys C W. Flywheel energy storage system. United States Patent,6819012 B1, 2004-11-16
    [10]Tsao P, Senesky M, Sanders S R. An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive. IEEE Transactions on Industry Applications,2003,39 (6):1710-1725
    [11]Leclercq L, Saudemont C, Robyns B, et al. Flywheel energy storage system to improve the integration of wind generators into a network. Electromotion,2003,10:641-646
    [12]Kawamura T. Flywheel energy storage system. United States Patent,4612494, 1986-09-16
    [13]张辉,康勇,刘平,等.超导电力磁储能系统研究进展(二)-能量控制装置.电力系统自动化,2001,25(14):67-72
    [14]De Andrade Jr R, Ferreira A C, Sotelo G G, et al. A superconducting high-speed flywheel energy storage system. Physica C,2004,408-410:930-931.
    [15]Weinberger B R, Lynds L Jr, Hull J R. Flywheel energy storage with superconductor magnetic bearings. United States Patent,5214981,1993-06-01
    [16]刘春娜.超级电容器及其在新能源汽车中的应用.电源技术,2010,34(12):1223-1226
    [17]Shukla A K, Sampath S, Vijayamohanan K. Electrochemical supercapacitors:Energy storage beyond batteries. Current Science,2000,79 (12):1656-1661
    [18]Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources,1997,66:1-14
    [19]Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles. Journal of Power Sources,1999,84:261-269
    [20]张华民,张宇,刘宗浩,等.液流储能电池技术研究进展.化学进展,2009,21(11):2333-2340
    [21]Ponce de Leon C, Frias-Ferrer A, Gonzalez-Garcia J, et al. Redox flow cells for energy conversion. Journal of Power Sources,2006,160:716-732
    [22]崔艳华,孟凡明.全钒离子液流电池的应用研究.电源技术,2000,24(6):356358
    [23]Zhao P, Zhang H, Wen Y, et al. Charge-discharge behaviors and properties of a lab-scale all-vanadium redox-flow single cell. Electrochemistry,2007,13 (1):12-18
    [24]Skyllas-Kazacos M, Rychick M, Robins R. All-vanadium redox battery. United States Patent,4786567,1988-11-22
    [25]Kazacos M, Skyllas-Kazacos M. High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions. United States Patent,2003/0143456 A1,2003-07-31
    [26]Shinkle A A, Sleightholme A E S, Griffith L D, et al. Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery. Journal of Power Sources, Doi:10.1016/j.jpowsour.2010.12.096
    [27]张胜涛,张瑞,李丹.全铬液流电池的电性能研究.电池工业,2007,12(4):225-227,231
    [28]Bae C H, Roberts E P L, Dryfe R A W. Chromium redox couples for application to redox flow batteries. Electrochimica Acta,2002,48:279-287
    [29]Liu Q, Shinkle A A, Li Y, et al. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochemistry Communications,2010,12:1634-1637
    [30]Sleightholme A E S, Shinkle A A, Liu Q, et al. Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. Journal of Power Sources,2011,196: 5742-5745
    [31]Chakrabarti M H, Dryfe R A W, Roberts E P L. Evaluation of electrolytes for redox flow battery applications. Electrochimica Acta,2007,52:2189-2195
    [32]Li X, Pletcher D, Walsh F C. A novel flow battery:a lead acid battery based on an electrolyte with soluble lead(Ⅱ) Part Ⅶ. Further studies of the lead dioxide positive electrode. Electrochimica Acta,2009,54:4688-4695
    [33]Pletcher D, Zhou H, Kear G, et al. A novel flow battery-a lead acid battery based on an electrolyte with soluble lead(Ⅱ) Part Ⅵ. Studies of the lead dioxide positive electrode. Journal of Power Sources,2008,180:630-634
    [34]Pletcher D, Zhou H, Kear G, et al. A novel flow battery-a lead-acid battery based on an electrolyte with soluble lead(Ⅱ) V. Studies of the lead negative electrode. Journal of Power Sources,2008,180:621-629
    [35]Peng H Y, Chen H Y, Li W S, et al. A study on the reversibility of Pb(Ⅱ)/PbO2 conversion for the application of flow liquid battery. Journal of Power Sources,2007,168: 105-109
    [36]Wills R G A, Collins J, Stratton-Campbell D, et al. Developments in the soluble lead-acid flow battery. Journal of Applied Electrochemistry, doi:10.1007/s10800-009-9815-4
    [37]Ge S H, Yi B L, Zhang H M. Study of a high power density sodium polysulfide-bromine energy storage cell. Journal of Applied Electrochemistry,2004,34:181-185
    [38]周汉涛,张华民,赵平,等.多硫化钠/溴氧化还原液流电池.可再生能源,2005,(3):62-64
    [39]Zito R, Jr. Zinc-bromine battery with long term stability. United States Patent,4482614, 1984-11-13
    [40]Kantner E. Zinc-bromine batteries with improved electrolyte. United States Patent, 4491625,1985-01-1
    [41]Sasaki T, Tange K, Okawa M. Zinc-bromine battery. United States Patent,4663251, 1987-05-5
    [42]Tomazic G. Zinc-bromine battery with circulating electrolytes. United States Patent, 5607788,1997-03-4
    [43]Hoobin P M, Cathro K J. Stability of zinc/bromine battery electrolytes. Journal of Applied electrochemistry,1989,19:943-945
    [44]Skyllas-Kazacos M. Novel vanadium chloride/polyhalide redox flow battery. Journal of Power Sources,2003,124:299-302
    [45]Wen Y H, Zhang H M, Qian P, et al. A study of the Fe(Ⅲ)/Fe(Ⅱ)-triethanolamine complex redox couple for redox flow battery application. Electrochimica Acta,2006,51: 3769-3775
    [46]衣宝廉,梁炳春,张恩浚,等.铁铬氧化还原液流电池系统.化工学报,1992,43(3):330-337
    [47]Keshavarz M, Varadarajan A. Methods for the preparation of electrolytes for chromium-iron redox flow batteries. United States Patent,2010/0261070 A1,2010-10-14
    [48]Fedkiw P S, Watts R W. A mathematical model for the iron/chromium redox battery. J. Electrochem.Soc.,1984,131 (4):701-709
    [49]Fang B, Iwasa S, Wei Y, et al. A study of the Ce(Ⅲ)/Ce(Ⅳ) redox couple for redox flow battery application. Electrochimica Acta,2002,47:3971-3976
    [50]Clarke R L, Dougherty B, Harrison S, et al. Load leveling battery and methods thereof. United States Patent,2004/0197649 A1,2004-10-7
    [51]Clarke R L, Dougherty B, Harrison S, et al. Cerium batteries. United States Patent, 7625663 B2,2009-12-1
    [52]Leung P K, Ponce de Leon C, Low C T J, et al. Ce(Ⅲ)/Ce(Ⅳ) in methanesulfonic acid as the positive half cell of a redox flow battery. Electrochimica Acta,2011,56:2145-2153
    [53]Leung P K, Ponce de Leon C, Low C T J, et al. Characterization of a zinc-cerium flow battery. Journal of Power Sources,2011,196:5174-5185
    [54]Xu Y, Wen Y H, Cheng J, et al. A study of tiron in aqueous solutions for redox flow battery application. Electrochimica Acta,2010,55:715-720
    [55]Xie Z P, Xiong F J, Zhou D B. Nitroso-R-salt in aqueous solutions for redox flow battery application. Adwanced Materials Research,2011,239-242:2813-2816
    [56]Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications,2007,9:2639-2642
    [57]Xu Y, Wen Y H, Cheng J, et al. Study on a single flow acid Cd-chloranil battery. Electrochemistry Communications,2009,11:1422-1424
    [58]Pan J, Sun Y, Cheng J, et al. Study on a new single flow acid Cu-PbO2 battery. Electrochemistry Communications,2008,10:1226-1229
    [59]朱顺泉,陈金庆,王保国.电解液流动方式对全钒液流电池性能的影响.电池,2007,37(3):217-219
    [60]文越华,张华民,钱鹏,等.全钒液流电池高浓度下V(Ⅳ)/V(Ⅴ)的电极过程研究.物理化学学报,2006,22(4):403-408
    [61]罗冬梅,许茜,隋智通.添加剂对钒电池电解液性质的影响.电源技术,2004,28(2):94-96
    [62]梁艳,何平,于婷婷,等.添加剂对全钒液流电池电解液的影响.西南科技大学学报,2008,23(2):11-14
    [63]Skyllas-Kazacos M, Menictas C, Kazacos M. Thermal stability of concentrated (Ⅴ) electrolytes in the vanadium redox cell. J.Electrochem.Soc.,1996,143 (4):L86-L88
    [64]Yamamura T, Watanabe N, Yano T, et al. Electron-transfer kinetics of Np3+/Np4+, NpO2+/NpO22+, V2+/V3+, and VO2+/VO2+ at carbon electrodes. Journal of the Electrochemical Society,2005,152 (4):A830-A836
    [65]Kausar N, Howe R, Skyllas-Kazacos M. Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes. Journal of Applied Electrochemistry,2001,31: 1327-1332
    [66]Oriji G, Katayama Y, Miura T. Investigations on V(Ⅳ)/V(Ⅴ) and V(Ⅱ)/V(Ⅲ) redox reactions by various electrochemical methods. Journal of Power Sources,2005,139:321-324
    [67]Gattrell M, Park J, MacDougall B, et al. Study of the mechanism of the vanadium 4+/5+redox reaction in acidic solutions. Journal of The Electrochemical Society,2004,151 (1):A123-A130
    [68]Qin Y, Liu J G, Di Y Y, et al. Thermodynamic investigation of electrolytes of the vanadium redox flow battery (Ⅱ):a study on low-temperature heat capacities and thermodynamic properties of VOSO4·2.63H2O(s). J.Chem.Eng.Data,2010,55:1276-1279
    [69]Oriji G, Katayama Y, Miura T. Investigation on V(Ⅳ)/V(Ⅴ) species in a vanadium redox flow battery. Electrochimica Acta,2004,49:3091-3095
    [70]Rahman F, Skyllas-Kazacos M. Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. Journal of Power Sources,1998,72:105-110
    [71]Kazacos M, Cheng M, Skyllas-Kazacos M. Vanadium redox cell electrolyte optimization studies. Journal of Applied Electrochemistry,1990,20:463-467
    [72]Rahman F, Skyllas-Kazacos M. Vanadium redox battery:positive half-cell electrolyte studies. Journal of Power Sources,2009,189:1212-1219
    [73]伍秋美,黄可龙,桑商斌,等.全钒液流电池用聚丙烯腈石墨毡电极研究.电源技术,2005,29(7):456-458
    [74]李晓刚,黄可龙,谭宁,等.钒液流电池用石墨毡电极的电化学修饰.无机材料学报,2006,21(5):1114-1120
    [75]刘素琴,史小虎,黄可龙,等.钒液流电池用碳纸电极改性的研究.无机化学学报,2008,24(7):1079-1083
    [76]Zhu H Q, Zhang Y M, Yue L, et al. Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery. Journal of Power Sources,2008,184:637-640
    [77]Wang W H, Wang X D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta,2007,52:6755-6762
    [78]Qian P, Zhang H, Chen J, et al. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications. Journal of Power Sources,2008,175:613-620
    [79]Li X, Huang K, Liu S, et al. Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application. Trans. Nonferrous Met. Soc. China,2007, 17:195-199 [80] Yue L, Li W, Sun F, et al. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery. Carbon,2010,48:3079-3090
    [81]Li W, Liu J, Yan C. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+for a vanadium redox flow battery. Doi:10.1016/j.carbon. 2011.04.045.
    [82]Xue F, Zhang H, Wu C, et al. Performance and mechanism of Prussian blue modified carbon felt electrode. Trans. Nonferrous Met. Soc. China,2009,19:s594-s599
    [83]Han P, Wang H, Liu Z, et al. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery. Carbon,2011,49:693-700
    [84]Haddadi-asl V, Kazacos M, Skyllas-Kazacos M. Conductive carbon-polypropylene composite electrodes for vanadium redox battery. Journal of Applied Electrochemistry, 1995,25:29-33
    [85]Rychcik M, Skyllas-Kazacos M. Evaluation of electrode materials for vanadium redox cell. Journal of Power Sources,1987,19:45-54
    [86]Zhong S, Kazacos M, Skyllas Kazacos M, et al. Flexible, conducting plastic electrode and process for its preparation. United States Patent,5665212,1997-09-9
    [87]Li W, Liu J, Yan C. Graphite-graphite oxide composite electrode for vanadium redox flow battery. Doi:10.1016/j.electacta.2011.02.083
    [88]桑商斌,黄可龙,石瑞成,等.PVA-ZrP复合膜作为全钒液流电池隔膜的研究.中南大学学报,2005,36(6):1011-1016
    [89]尹海涛,王保国.隔膜扩散特性对全钒液流单电池性能的影响.电池,2006,36(1):60-61
    [90]文越华,张华民,钱鹏,等.离子交换膜全钒液流电池的研究.电池,2005,35(6):414-416
    [91]柳东东,林茂才,管涛,等.全钒氧化还原液流电池Nafion/SiO2复合膜的研究.电化学,2010,16(4):455-459
    [92]薛方勤,王文红,王新东.全钒氧化还原液流电池隔膜的改性研究.有色金属,2007,(6):42-45
    [93]Luo Q, Zhang H, Chen J, et al. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. Journal of Membrane Science,2008,325:553-558.
    [94]Hwang G J, Ohya H. Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery. Journal of Membrane Science,1997,132:55-61
    [95]Sukkar T, Skyllas-Kazacos M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery. Journal of Membrane Science,2003,222:235-247
    [96]Sukkar T, Skyllas-Kazacos M. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery. Journal of Membrane Science,2003,222:249-264
    [97]Sukkar T, Skyllas-Kazacos M. Membrane stability studies for vanadium redox cell applications. Journal of Applied Electrochemistry,2004,34:137-145
    [98]Tian B, Yan C W, Wang F H. Modification and evaluation of membranes for vanadium redox battery applications. Journal of Applied Electrochemistry,2004,34:1205-1210
    [99]Tian B, Yan C W, Wang F H. Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery. Journal of Membrane Science,2004,234: 51-54
    [100]Zhang S, Yin C, Xing D, et al. Preparation of chloromethylated/quaternized poly(phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications. Journal of Membrane Science,2010,363:243-249
    [101]Vijayakumar M, Bhuvaneswari M S, Nachimuthu P, et al. Spectroscopic investigations of the fouling process on Nation membranes in vanadium redox flow batteries. Journal of Membrane Science,2011,366:325-334
    [102]Luo Q, Zhang H, Chen J, et al. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. Journal of Membrane Science, 2008,311:98-103
    [103]Qiu J, Zhai M, Chen J, et al. Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method. Journal of Membrane Science,2009,342:215-220
    [104]Xing D, Zhang S, Yin C, et al. Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application. Journal of Membrane Science,2010,354:68-73
    [105]Kim J G, Lee S H, Choi S, et al. Application of Psf-PPSS-TPA composite membrane in the all-vanadium redox flow battery. Journal of Industrial and Engineering Chemistry, 2010,16:756-762
    [106]Kim S, Yan J, Schwenzer B, et al. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochemistry Communications,2010,12:1650-1653
    [107]Zeng J, Jiang C, Wang Y, et al. Studies on polypyrrole modified nafion membrane for vanadium redox flow battery. Electrochemistry Communications,2008,10:372-375
    [108]黄文章,李丹,张胜涛,等.液流铬电池的电性能.电源技术,2007,31(11):906-910
    [109]李丹.液流铬电池的电性能及电极反应机理的研究:[硕士学位论文].重庆:重庆大学,2005
    [110]葛善海,衣宝廉,张华民.多硫化钠-溴储能电池高效电极的研究.电源技术,2003,27(5):446-450
    [111]葛善海,周汉涛,衣宝廉,等.多硫化钠-溴储能电池组.电源技术,2004,28(6):373-375
    [112]赵平,张华民,周汉涛,等.Nafion膜对多硫化钠/溴电池性能的影响.电池工业,2006,11(3):154-158
    [113]赵平,张华民,周汉涛,等.多硫化钠-溴化钠氧化还原液流电池研究.电源技术,2005,29(5):322-324
    [114]周汉涛,张华民,葛善海,等.多孔碳电极用于多硫化钠-溴储能电池.电源技术,2005,29(3):170-174
    [115]周汉涛,赵平,张华民,等.多硫化钠-溴储能电池的阳极电解液制备方法.中国专利,CN 1713436A,2005-12-28
    [116]Jelinek L, Wei Y, Mikio K. Electro-oxidation of concentrated Ce(ⅲ) at carbon felt anode in nitric acid media. Journal of Rare Earths,2006,24:257-263
    [117]Wei Y, Fang B, Arai T, et al. Electrolytic oxidation of Ce(ⅲ) in nitric acid and sulfuric acid media using a flow type cell. Journal of Applied Electrochemistry,2005,35:561-566
    [118]Paulenova A, Creager S E, Navratil J D, et al. Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions. Journal of Power Sources,2002,109:431-438
    [119]Vijayabarathi T, Velayutham D, Noel M. Influence of aromatic reactants and products involved in the two stage electrochemical oxidation on the voltammetric behaviour of Ce(iv)/Ce(iii) redox couple. Journal of Applied Electrochemistry,2001,31:979-986
    [120]Modiba P, Crouch A M. Electrochemical study of cerium(iv) in the presence of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetate (DTPA) ligands. Journal of Applied Electrochemistry,2008,38:1293-1299
    [121]Liu Y, Xia X, Liu H. Studies on cerium (Ce4+/Ce3+)-vanadium (V2+/V3+) redox flow cell- cyclic voltammogram response of Ce4+/Ce3+redox couple in H2SO4 solution. Journal of Power Sources,2004,130:299-305
    [122]Chang C C, Hsu S H, Jung Y F, et al. Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium ion battery. Journal of Power Sources, 2010, doi:10.1016/j.jpowsour.2011.06.058
    [123]Li S, Huang K, Liu S, et al. Effect of organic additives on positive electrolyte for vanadium redox battery. Electrochimica Acta,2011,56:5483-5487
    [124]Yin X, Tan W, Zhang J, et al. The effect mechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on the performance of dye-sensitized solar cell. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,326:42-47
    [125]金天柱,赵世福,徐光宪,等.稀土胺羧配合物的研究 Ⅰ.{[MnGd(DTPA)(H2O)5]2-H2O}n配合物的合成和晶体结构.化学学报,1991,49:569-575
    [126]王君,王钰,张朝红,等.稀土-氨基多羧配合物的配位结构及变化规律的研究.Ⅱ.二乙三胺五乙酸(DTPA)和三乙四胺六乙酸(TTHA)系列.结构化学,2004,23(12):1420-1431
    [127]Balaji S, Chung S J, Matheswaran M, et al. Destruction of organic pollutants by cerium(IV) MEO process:a study on the influence of process conditions for EDTA mineralization. Journal of Hazardous Materials,2008,150:596-603

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700