金属纳米粒子与DNAzyme在电化学与比色传感中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术的出现为纳米材料的发展和应用开辟了新的思路。在现代科学中,纳米技术结合化学、生物、物理和医学发展超灵敏检测和成像方法在分析化学或生物科学中越来越重要,已经成为一个非常有前景的前沿领域。由于粒径小(通常在1-100nm范围),金属纳米粒子具有独特的不同于其他材料的化学、物理和电子性质,可用于构建和完善新颖的传感设备,特别是在电化学传感器与生物传感器等方面。金属纳米粒子用于电化学传感器主要利用其促进电子传递与催化性能以及大的比表面积;且由于具有大的表面积和小的质量,金属纳米粒子也可用作载体固定其他分子,如DNA、酶、小分子等。除了利用其催化与固定能力外,利用金属纳米粒子自身光学性质的报道也有很多。金属纳米粒子的运用能提高传感器的灵敏度,降低检测限,以及完成一些其他材料不能完成的工作。另外,纳米粒子之间的距离不同,其溶液颜色可能也会不同,因此他们在比色分析中具有非常广阔的应用前景。
     另外,DNAzyme(脱氧核酶,DNA enzyme, deoxyribozyme)是具有催化活性的DNA。科学家筛选出了多种具有不同催化活性的DNAzyme,具有切割核酸、链接核酸、激酶、过氧化物酶等活性。尤其是具有过氧化物酶活性的DNAzyme,其组成是核酸分子,比同功能蛋白质酶稳定,具有催化过氧化物的能力,从而可以替代蛋白质酶而运用到化学生物传感中实现放大检测,提高检测灵敏度。另外,DNAzyme的活性可以通过DNA的杂交/解链进行可逆调节,这也是比蛋白酶先进的地方。DNAzyme在过氧化物协助下能催化某些底物产生颜色,也可用于比色分析。但是,现有DNAzyme的活性却不及蛋白酶,因此通过简单的方法提高DNAzyme活性,将会是一项非常有意义且负挑战性的工作。
     基于以上考虑,综合文献报道,本论文利用金属纳米粒子与具有过氧化物酶活性的DNAzyme,发展了一系列的电化学与比色化学生物检测体系,研究了提高与抑制DNAzyme活性的方法。另外,利用金属特异结合多肽与金纳米粒子(AuNPs),设计了一组比色逻辑门。具体细节如下:1.基于金属纳米粒子的小分子电化学传感器研究
     利用层层自组装技术,第2章构建了一种由磷钼酸(H3PMO12O40, PMO12)与铂纳米粒子掺杂的壳聚糖(Pt-CHIT)多层复合膜((PMo12/Pt-CHIT)n)。带负电的磷钼酸纳米簇与带正电的壳聚糖分子能按照秩序,通过静电吸附作用一层层的交替构建到修饰有多壁碳纳米管的石墨电极表面,从而形成稳定的超薄多层膜。虽然壳聚糖的引入会部分阻碍电子的传递,但是铂纳米粒子的掺杂能促进电子传递,从而消除此不利因素。循环伏安法用来证实多层膜的一步一步的构建,并用来考察此多层膜的电化学行为。作为一个碘酸根(103-)传感器,(PMo12/Pt-CHIT)4/CPG电极展现出了良好的性能,如灵敏度高、线性范围宽、检测限低以及响应快速。
     基于AuNPs的放大作用,第3章开发了一个灵敏且无标记的电化学适体传感器用来检测小分子。此适体传感器包含3个DNA部分:组装在金电极表面的ADNA,修饰到AuNPs表面的RDNA,以及连接ADNA与RDNA的TRDNA。带正电的六氨合钌分子([Ru(NH3)6]3+, RuHex)按一定比例通过静电作用吸附到带负电的DNA上,通过计时库仑法可以获取其电化学信号。本章中,三磷酸腺苷(ATP)与抗ATP适体被当作模板分析物与模板分子识别部件。ATP的引入可以触发TRDNA结构转变成复杂的适体-ATP超分子,导致结合有RDNA的AuNPs从电极表面离去,使得电极表面的电活性物质减少。AuNPs的引入能明显提高灵敏度。在优化的条件下,此适体传感器对ATP的线性范围为1nM-10gM,最低可检测浓度低至亚nM级别(0.2nM)。这些结果表明,该基于AuNPs放大的方法对分析ATP是可行的,且提供了一个潜在的通用的构造其他小分子适体传感器的方法。
     2.基于DNAzyme的甲基转移酶与限制性内切酶活性的比色分析以及DNAzyme的活性改造的研究
     甲基转移酶(MTase)催化的DNA甲基化对调控基因表达而言是一个显著的表观遗传过程。研究甲基转移酶活性的传统方法需要费劲且昂贵的DNA标记。第4章中,我们提出了一个简单的、比色的而且不用标记的基于甲基化响应的DNAzyme (MR-DNAzyme)方法来分析甲基转移酶活性。这个新的分析策略依靠具有类辣根过氧化物酶活性的核酶(DNAzyme)和甲基化响应的DNA序列(methylation-responsive sequence, MRS)其中DNA可以通过甲基转移酶/核酸内切酶的偶联反应被甲基化后切断。甲基化诱导的MRS的断裂能激活DNAzyme, DNAzyme可以催化底物产生颜色信号,从而放大检测DNA甲基化行为。以Dam MTase和DpnI限制性内切酶为例,我们开发了两种基于MR-DNAzyme策略的比色检测方法。第一种方法是利用一条精心设计的发卡DNAzyme杂交探针来简便的turn-on检测Dam MTase活性,此方法拥有很宽的线性范围(6-100U/mL)和低的检测限(6U/mL)。此外,这个方法还能很容易的拓展到检测限制性内切酶的活性及筛选酶的抑制剂。第二个方法利用基于DNAzyme的甲基化触发的DNA机器,通过两步信号串联放大,实现了超高灵敏的检测Dam MTase活性(检测限低至0.25U/mL)。
     DNAzyme活性不及其对应的蛋白质酶活性,因此,提高DNAzyme活性对扩大其应用范围提高检测灵敏度有重要的促进意义。第5章提出了一种全新的DNAzyme活性调节方式——邻位增强效应。在DNAzyme序列3’末端有腺嘌呤A的存在下能使酶活性提高近5倍,并且该效应具有末端选择性和碱基选择性(仅3’端的A);此外还具有拓扑构象选择性,倾向于G四面体(G4)平行结构。A与G43’末端G平面以及hemin的相对位置也是重要的影响因素。我们推测了该现象可能的机理以及应用该效应检测了核酸酶活性。邻位增强效应相对于其它DNAzyme活性调节方法实现更加简单,仅在序列上延伸一个碱基即可实现,不引入外加成分或因素,因此在分析领域有广泛的应用前景,同时也有助于加深我们对DNAzyme催化机理的理解。
     抑制DNAzyme活性一般的方法是杂交部分DNAzyme序列。第6章提出了
     个更为简单可行的抑制DNAzyme活性的方法——邻位抑制效应。我们发现,如果DNAzyme序列3’端第一个碱基为嘌呤碱基,只需要把此碱基杂交即可几乎完全抑制DNAzyme活性。该方法不需要杂交DNAzyme序列中的任何一个碱基即可实现对DNAzyme活性的抑制,且抑制效果比杂交部分DNAzyme序列的抑制效果更佳。
     3.基于双功能多肽与未修饰AuNPs的Zn2+快速比色检测及比色逻辑门研究
     第7章开发了一种新型而简单的基于双功能化的多肽探针及未修饰AuNPs的方法来比色检测锌离子。此双功能多肽包含锌离子特异性结合位点和可导致AuNPs变色的精氨酸残基。多肽的巯基能与金作用,使精氨酸接近AuNPs表面,引起AuNPs不稳定而聚集;而多肽上巯基与Zn2+结合后,则不能与AuNPs结合,使多肽不能组装到AuNPs表面,精氨酸失去使AuNPs变色的能力。该Zn2+比色检测方法检测过程迅速(不到半分钟),灵敏度高,检测限低(10nM)且无需标记,已成功应用于营养品及药物中的Zn2+分析。
     利用第7章中提到的原理,我们在第8章中设计了一组基于多肽与AuNPs的比色逻辑门。以Zn2+与糜蛋白酶为输入信号,AuNPs溶液的颜色为输出信号,比较容易地实现了“是”(“非”)门、“或”门和“与”门。
Nanotechnology has given a new insight into the development and application of nanomaterials. In the modern science, combined with chemistry, biology, physics and medicine science, nanotechnology has become one of the most exciting forefront fields in developing the ultra-sensitive detection and imaging analysis. Owing to their small size (normally in the range of1-100nm), metal nanoparticles exhibit unique chemical, physical and electronic properties that are different from those of bulk materials, and can be used to construct novel and improved sensing devices; especially, electrochemical sensors and biosensors. We take advantage of the promotion of electronic transfer, catalytic performance and large specific surface area of the metal nanoparticles for electrochemical sensors; and with the large surface and the small mass, they can also be used as carriers fixed on other molecules, such as DNA, enzyme, and small molecule. In addition to the catalytic and fixed functions, some reports have focused on the optical properties of the metal nanoparticles. Using the metal nanoparticles can improve the sensitivity, lower the detection limit of the sensor, and perform the work that other materials can't finish. In addition, when the distance between the nanoparticles is different, the color of the solution may also be different, thus it owns broad application prospects in colorimetric analysis.
     DNAzymes are catalytic DNA. To date, various DNAzymes have emerged through in vitro selection. Some DNAzymes are able to catalyze the incision or ligation of nucleic acids, and others have the catalytic activity of kinase or peroxidase. One interesting example of DNAzymes is the horseradish peroxidase mimicking DNAzyme, which has the catalytic activity of horseradish peroxidase and is more stable than horseradish peroxidase. Thus, this kind of DNAzyme can be used to replace protein enzymes in chemo/biosensing for signal amplification and sensitive detection. Furthermore, the catalytic activity of DNAzyme can be regulated through DNA, which is superior to protein enzymes. Cooperating with peroxide, DNAzyme can catalyze some substrates to generate color change for colorimetric assay. However, the catalytic activity of DNAzyme is inferior to that of protein enzymes; therefore, increasing the activity of DNAzyme through straightforward methods will be a significant and challenging work.
     Based on the above consideration and literatures reported previously, takeing the advantage of AuNPs and mimicking-HRP DNAzyme, we have developed a series of electrochemical and colorimetric chemo/biosensors. We also have studied the way to improve and inhibit the activity of DNAzyme. Additionally, we have developed logic gates based on specific metal ions binding peptides and AuNPs. The details are summarized as follows:
     1. Electrochemical sensor based on the metal nanoparticles
     A strategy to construct H3PMo12O40(PMo12) and platinum nanoparticles-chitosan (Pt-CHIT) multilayer film ((PMo12/Pt-CHIT)n) has been developed in chapter2. Negatively charged PMo12and positively charged CHIT have been employed to fabricate stable ultrathin multilayer film on the multiwalled carbon nanotubes coated pyrolytic graphite (CPG) electrode using layer-by-layer self-assembly technique. The doping of Pt nanoparticles minimized the disadvantage of CHIT. Cyclic voltammetry was used to confirm the consecutive growth of the multilayer film and to investigate the electrochemical behavior of the resulting (PMo12/Pt-CHIT)4/CPG detailedly. As an IO3-sensor, the (PMo12/Pt-CHIT)4/CPG exhibits excellent characteristics, such as high sensitivity, wide linear range, lower detection limit and fast response time.
     A sensitive, label-free electrochemical aptasensor for small molecule detection has been developed in chapter3based on gold nanoparticles (AuNPs) amplification. This aptasensor was fabricated as a tertiary hybrid DNA-AuNPs system, which involved the anchored DNA (ADNA) immobilized on gold electrode, reporter DNA (RDNA) tethered with AuNPs and target-responsive DNA (TRDNA) linking ADNA and RDNA. Electrochemical signal is derived from chronocoulometric interrogation of [Ru(NH3)6]3+(RuHex) that quantitatively binds to surface-confined DNA via electrostatic interaction. Using adenosine triphosphate (ATP) as a model analyte and ATP-binding aptamer as a model molecular recognization element, the introduction of ATP triggers the structure switching of the TRDNA to form aptamer-ATP complex, which results in the dissociation of the RDNA capped AuNPs (RDNA-AuNPs) and the release of abundant RuHex molecules trapped by RDNA-AuNPs. The incorporation of AuNPs in this strategy significantly enhances the sensitivity because of the amplification of electrochemical signal by the RDNA-AuNPs/RuHex system. Under optimized conditions, a wide linear dynamic range of4orders of magnitude (1nM-10μM) was reached with the minimum detectable concentration at sub-nanomolar level (0.2nM). These results demonstrate that our nanoparticles-based amplification strategy is feasible for ATP assay and presents a potential universal method for other small molecule aptasensors.
     2. Colorimetric detection of the activities of ethyltransferase and restriction endonuclease based on DNAzyme and the reform of the DNAzyme activity
     DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity required laborious and costly DNA labeling process. In chapter4, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100U/mL) and a low detection limit (6U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultra-high sensitive detection of Dam MTase activity (detection limit=0.25U/mL) by two-step signal amplification cascade.
     The activity of DNAzyme is much poorer than that of protein enzymes. Thus, it is significant to improve the activity of DNAzyme for expanding its application and improving the sensitivity. In chapter5, a new method to improve the activity of DNAzyme is introduced, called neighboring improved effect. We have found that if the DNAzyem sequence with an A base at3'terminal, its activity can be improved about5fold. This effect has terminal and base selectivity (A base at3'terminal). In addition, it also has the topology configuration selectivity that trends forming a G4parallel structure. The position of base A between hemin and G4(3'terminal) is a factor to affect the DNAzyme activity. In this chapter, we try to give a possible mechnism of the catalytic reaction and employ it to assay the activity of nuclease. Compared with other DNAzyme activity regulation method, neighboring improved effect is simple for that it can be realized only by adding an A base to the3'terminal of DNAzyme sequence. This method doesn't need to introduce extra components or factors, and can be widely applied in analytical field. It also can help us to deepen our understanding of the DNAzyme catalytic mechanism.
     General method for the inhibition of the DNAzyme activity is based on the binding or release of partial DNAzyme sequence. In chapter6, a more simple and feasible method for inhibition of the DNAzyme activity is developed, called neighboring inhibited effect. We found that, if the first base at3'terminal of DNAzyme sequence is purine base, DNAzyme activity can be almost fully inhibited just by hybriding this purine base. The inhibition effect of this strategy is superior to general methods, and it doesn't need to hybrid any base of DNAzyme sequence.
     3. Rapid colorimetric Zn2+assay and colorimetric logic gates based on bifunctional peptide and unmodified AuNPs
     In chapter7, a new and simple mechanism for the label-free and rapid colorimetric Zn2+assay is developed based on bifunctional peptide probe and unmodified AuNPs. This bifunctional peptide probe contains specific Zn2+binding site and arginine that can lead to the color change of AuNPs. The combination of hydrosulfuryl in peptide with Au in AuNPs can make the arginine residual close to AuNPs surface, and the AuNPs will be unstable and aggregated. Once the-SHs in the side chain of peptide are all coordinated with Zn2+, the peptide probe can't combine to the surface of AuNPs, therefore, the arginine residual cannot cause the aggregation of AuNPs. This colorimetric method for the detection of Zn2+exhibits excellent characteristics, such as rapid detection process (less than0.5min), high sensitivity, lower detection limit (10nM), and label-free. This strategy has been successfully used in Zn2+analysis of foods and drugs.
     Using the principle in chapter7, we have designed a series of colorimetric logic gates based on peptide and AuNPs in chapter8. Employing Zn2+and chymotrypsin as input, the color of the solution of AuNPs as output, it is easy to achieve the "YES"("NO"),"OR" and "AND" logic gates.
引文
[1]Roco M C. Nanoparticles and nanotechnology research. Journal of Nanoparticle Research,1999,1(1):1-6
    [2]Wang Z L. Splendid one-dimensional nanostructures of zinc oxide:A new nanomaterial family for nanotechnology. ACS Nano,2008,2(10):1987-1992
    [3]Sapsford K E, Tyner K M, Dair B J, et al. Analyzing nanomaterial bioconjugates:A review of current and emerging purification and characterization techniques. Analytical Chemistry,2011,83(12):4453-4488
    [4]Vikesland P J, Wigginton K R. Nanomaterial enabled biosensors for pathogen monitoring-A review. Environmental Science & Technology,2010,44(10): 3656-3669
    [5]Murray R W. Nanoelectrochemistry:metal nanoparticles, nanoelectrodes, and nanopores. Chemical Reviews,2008,108(7):2688-2720
    [6]李陈鑫.新型纳米材料在生物传感器中的应用研究:[华东师范大学硕士学位论文].上海:理工学院化学系,2006,8-9
    [7]张中太,林元华,唐子龙,et al纳米材料及其技术的应用前景.材料工程,2000,2000(3):42-48
    [8]Eychmuller A. Structure and photophysics of semiconductor nanocrystals. The Journal of Physical Chemistry B,2000,104(28):6514-6528
    [9]Daniel M-C, Astruc D. Gold Nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2003,104(1):293-346
    [10]Sardar R, Funston A M, Mulvaney P, et al. Gold nanoparticles:past, present, and future. Langmuir,2009,25(24):13840-13851
    [11]Gholivand M B, Pashabadi A, Azadbakht A, et al. A nano-structured Ni(Ⅱ)-ACDA modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of tryptophan. Electrochimica Acta, 2011,56(11):4022-4030
    [12]Gill P, Alvandi A-H, Abdul-Tehrani H, et al. Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagnostic Microbiology and Infectious Disease, 2008,62(2):119-124
    [13]Wang L, Sun Y, Che G, et al. Self-assembled silver nanoparticle films at an air-liquid interface and their applications in SERS and electrochemistry. Applied Surface Science,2011,257(16):7150-7155
    [14]Ahamed M, AlSalhi M S, Siddiqui M K J. Silver nanoparticle applications and human health. Clinica Chimica Acta,2010,411(23-24):1841-1848
    [15]Chu X, Fu X, Chen K, et al. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosensors and Bioelectronics,2005,20(9):1805-1812
    [16]Miao Y, Chen J, Wu X, et al. Preparation and characterization of hybrid platinum/Prussian blue nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,295(1-3):135-138
    [17]Su C, Zhang C, Lu G, et al. Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis,2010, 22(16):1901-1905
    [18]Han X, Zhu Y, Yang X, et al. Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Microchimica Acta,2010, 171(3):233-239
    [19]Zhang J, Oyama M. Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization:direct electrochemistry and catalysis to hydrogen peroxide. Journal of Electroanalytical Chemistry,2005,577(2): 273-279
    [20]Zhao X, Mai Z, Kang X, et al. Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin. Electrochimica Acta,2008,53(14):4732-4739
    [21]Xu Q, Mao C, Liu N-N, et al. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite. Biosensors and Bioelectronics,2006,22(5):768-773
    [22]Yang J, Zhang R, Xu Y, et al. Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan-CdS and its biosensoring for glucose. Electrochemistry Communications,2008,10(12):1889-1892
    [23]Yuan R, Chai Y Q, Yu R Q. Poly(vinyl chloride) matrix membrane pH electrode based on 4,4'-[N,N-dialkylaminomethyl] benzene with a wide linear pH response range. Analyst,1992,117(12):1891-1893
    [24]Ahirwal G K, Mitra C K. Direct electrochemistry of horseradish peroxidase-gold nanoparticles conjugate. Sensors,2009,9(2):881-894
    [25]Sun W, Qin P, Zhao R, et al. Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta,2010,80(5):2177-2181
    [26]Zhu N, Chang, Z., He, P., Fang, Y. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Analytica Chimica Acta, 2005,545(1):21-26
    [27]Yang M, Yang Y, Liu Y, et al. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosensors and Bioelectronics,2006,21(7):1125-1131
    [28]Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders. Advanced Materials,2007,19(17): 2257-2261
    [29]Gill R, Polsky R, Willner I. Pt Nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small,2006,2(8-9):1037-1041
    [30]Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles:catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [31]Zhang Z-F, Cui H, Lai C-Z, et al. Gold nanoparticle-catalyzed Luminol chemiluminescence and its analytical applications. Analytical Chemistry,2005, 77(10):3324-3329
    [32]Zhang J, Song S, Wang L, et al. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature Protocols,2007,2(11): 2888-2895
    [33]Cui R, Huang H, Yin Z, et al. Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosensors and Bioelectronics,2008,23(11):1666-1673
    [34]Yang Y, Wang Z, Yang M, et al. Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles. Sensors and Actuators B:Chemical,2006,114(1):1-8
    [35]Deng C, Chen J, Nie Z, et al. Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Analytical Chemistry,2008,81(2):739-745
    [36]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [37]Hill H D, Mirkin C A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nature Protocols, 2006,1(1):324-336
    [38]Wang Z, Lee J, Cossins A R, et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Analytical Chemistry, 2005,77(17):5770-5774
    [39]Cai W, Gao T, Hong H, et al. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications,2008,2008(1): 17-32
    [40]艾桃桃.纳米金在生物医学领域中的应用.陕西理工学院学报,2010,26(4):63-68
    [41]Pardo-Yissar V, Gabai R, Shipway A N, et al. Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Advanced Materials, 2001,13(17):1320-1323
    [42]Oh E, Hong M-Y, Lee D, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Journal of the American Chemical Society,2005,127(10): 3270-3271
    [43]Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. Journal of the American Chemical Society,1999, 121(35):8122-8123
    [44]Wargnier R, Baranov A V, Maslov V G, et al. Energy transfer in aqueous solutions of oppositely charged CdSe/ZnS core/shell quantum dots and in quantum dot-nanogold assemblies. Nano Letters,2004,4(3):451-457
    [45]Huang T, Murray R W. Quenching of [Ru(bpy)3]2+fluorescence by binding to Au nanoparticles. Langmuir,2002,18(18):7077-7081
    [46]Wang W, Chen C, Qian M, et al. Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry,2008,373(2):213-219
    [47]Liu J, Lee J H, Lu Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Analytical Chemistry, 2007,79(11):4120-4125
    [48]Klussmann S. The aptamer handbook.1. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2006,228-261
    [49]Breaker R R, Joyce G F. A DNA enzyme that cleaves RNA. Chemistry and Biology,1994,1(4):223-229
    [50]Baum D A, Silverman S K. Deoxyribozymes:useful DNA catalysts in vitro and in vivo. Cellular and Molecular Life Sciences,2008,65(14):2156-2174
    [51]Paquette J, Nicoghosian K, Qi G R, et al. The conformation of single-stranded nucleic acids tDNA versus tRNA. European Journal of Biochemistry,1990, 189(2):259-265
    [52]Perreault J P, Wu T F, Cousineau B, et al. Mixed deoxyribo-and ribo-oligonucleotides with catalytic activity. Nature,1990,344(6266):565-567
    [53]Breaker R R, Joyce G F. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chemistry and Biology,1995,2(10):655-660
    [54]Carmi N, Shultz L A, Breaker R R. In vitro selection of self-cleaving DNAs. Chemistry and Biology,1996,3(12):1039-1046
    [55]Sheppard T L, Ordoukhanian P, Joyce G F. A DNA enzyme with N-glycosylase activity. Proceedings of the National Academy of Sciences USA,2000,97(14): 7802-7807
    [56]Cuenoud B, Szostak J W. A DNA metalloenzyme with DNA ligase activity. Nature,1995,375(6532):611-614
    [57]Flynn-Charlebois A, Wang Y, Prior T K, et al. Deoxyribozymes with 2'-5'RNA ligase activity. Journal of the American Chemical Society,2003,125(9): 2444-2454
    [58]Flynn-Charlebois A, Prior T K, Hoadley K A, et al. In vitro evolution of an RNA-cleaving DNA enzyme into an RNA ligase switches the selectivity from 3-5'to 2'-5'. Journal of the American Chemical Society,2003,125(18): 5346-5350
    [59]Hoadley K A, Purtha W E, Wolf A C, et al. Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages. Biochemistry,2005,44(25): 9217-9231
    [60]Purtha W E, Coppins R L, Smalley M K, et al. General deoxyribozyme-catalyzed synthesis of native 3'-5'RNA linkages. Journal of the American Chemical Society,2005,127(38):13124-13125
    [61]Coppins R L, Silverman S K. A DNA enzyme that mimics the first step of RNA splicing. Nature Structural & Molecular Biology,2004,11(3):270-274
    [62]Li Y, Breaker R R. Phosphorylating DNA with DNA. Proceedings of the National Academy of Sciences USA,1999,96(6):2746-2751
    [63]Wang W, Billen L P, Li Y. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chemistry and Biology,2002,9(4):507-517
    [64]Li Y, Geyer R, Sen D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry,1996,35(21):6911-6922
    [65]Li Y, Sen D. A catalytic DNA for porphyrin metallation. Nature Structural & Molecular Biology,1996,3(9):743-747
    [66]Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chemistry and Biology,1998,5(9):505-517
    [67]Travascio P, Bennet A J, Wang D Y, et al. A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chemistry and Biology,1999,6(11):779-787
    [68]Travascio P, Sen D, Bennet A J. DNA and RNA enzymes with peroxidase activity- An investigation into the mechanism of action. Canadian Journal of Chemistry,2006,84(4):613-619
    [69]Xiao Y, Pavlov V, Gill R, et al. Lighting Up Biochemiluminescence by the Surface Self-Assembly of DNA-Hemin Complexes. ChemBioChem,2004,5(3): 374-379
    [70]Xiao Y, Pavlov V, Niazov T, et al. Catalytic beacons for the detection of DNA and telomerase activity. Journal of the American Chemical Society,2004, 126(24):7430-7431
    [71]Pavlov V, Xiao Y, Gill R, et al. Amplified chemiluminescence surface detection of DNA and telomerase activity Using catalytic nucleic acid labels. Analytical Chemistry,2004,76(7):2152-2156
    [72]Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition,2006, 45(44):7384-7388
    [73]Cheglakov Z, Weizmann Y, Beissenhirtz M K, et al. Ultrasensitive detection of DNA by the PCR-Induced generation of DNAzymes:The DNAzyme primer approach. Chemical Communications,2006,2006(30):3205-3207
    [74]Cheng X, Liu X, Bing T, et al. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry,2009,48(33):7817-7823
    [75]Mellon M G. Colorimetric chemical analytical methods (The tintometer limited). Journal of Chemical Education,1960,37(5):273
    [76]Su X, Kanjanawarut R. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and Its application for colorimetric DNA detection. ACS Nano,2009,3(9):2751-2759
    [77]Chai F, Wang C, Wang T, et al. Colorimetric detection of Pb2+using glutathione functionalized gold nanoparticles. ACS Applied Materials & Interfaces,2010,2(5):1466-1470
    [78]Li Y, Bai H, Li C, et al. Colorimetric assays for acetylcholinesterase activity and inhibitor screening based on the disassembly-assembly of a water-soluble polythiophene derivative. ACS Applied Materials & Interfaces,2011,3(4): 1306-1310
    [79]Zhong Z, Anslyn E V. A colorimetric sensing ensemble for heparin. Journal of the American Chemical Society,2002,124(31):9014-9015
    [80]Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials. Advanced Materials,2011,23(37):4215-4236
    [81]Peters C, French C. Study of ferric thiocyanate reaction. Industrial & Engineering Chemistry Analytical Edition,1941,13(9):604-607
    [82]Platte J A, Marcy V M. Photometric determination of zinc with zincon. Application to water containing heavy metals. Analytical Chemistry,1959, 31(7):1226-1228
    [83]Zhang C, Suslick K S. A colorimetric sensor array for organics in water. Journal of the American Chemical Society,2005,127(33):11548-11549
    [84]Grabchev I, Dumas S, Chovelon J-M. A polyamidoamine dendrimer as a selective colorimetric and ratiometric fluorescent sensor for Li+cations in alkali media Dyes and Pigments,2009,82(3):336-340
    [85]Singh N, Mulrooney R C, Kaur N, et al. A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. Chemical Communications,2008,2008(40):4900-4902
    [86]Liu H-h, Chen Y. A bifunctional metal probe with independent signal outputs and regulable detection limits. European Journal of Organic Chemistry,2009, 2009(30):5261-5265
    [87]Xu Z, Kim G-H, Han S J, et al. An NBD-based colorimetric and fluorescent chemosensor for Zn2+and its use for detection of intracellular zinc ions. Tetrahedron,2009,65(11):2307-2312
    [88]Sheng R, Wang P, Liu W, et al. A new colorimetric chemosensor for Hg2+based on coumarin azine derivative. Sensors and Actuators B:Chemical,2008,128(2): 507-511
    [89]Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society,2002,124(33):9678-9679
    [90]Jolly W L, Boyle E A, Javet M L. The use of indicators in acid-base titrations in liquid ammonia. Journal of Inorganic and Nuclear Chemistry,1971,33(3): 783-789
    [91]Sen B, Berg E W, West P W. A New acid-base indicator. Analytica Chimica Acta,1957,17(0):355-359
    [92]Clark D D. Analysis and identification of acid-base indicator dyes by thin-layer chromatography. Journal of Chemical Education,2007,84(7):1186
    [93]Papariello G J, Commanday S. Investigation of p-nitrobenzhydrazide as an acid-base indicator. Analytical Chemistry,1964,36(6):1028-1030
    [94]McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews,2000,100(7):2537-2574
    [95]Liu B, Bazan G C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chemistry of Materials,2004,16(23): 4467-4476
    [96]Ho H-A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society,2004,126(5): 1384-1387
    [97]Ho H-A, Bera-Aberem M, Leclerc M. Optical sensors based on hybrid DNA/conjugated polymer complexes. Chemistry-A European Journal,2005, 11(6):1718-1724
    [98]Tang Y, Feng F, He F, et al. Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. Journal of the American Chemical Society,2006, 128(46):14972-14976
    [99]Wang S, Gaylord B S, Bazan G C. Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. Journal of the American Chemical Society,2004,126(17):5446-5451
    [100]Fan C, Plaxco K W, Heeger A J. High-efficiency fluorescence quenching of conjugated polymers by proteins. Journal of the American Chemical Society, 2002,124(20):5642-5643
    [101]Charych D H, Nagy J O, Spevak W, et al. Direct colorimetric detection of a receptor-ligand interactions by a polymerized bilayer assembly. Science,1993, 261(5121):585-588
    [102]Storrs R W, Tropper F D, Li H Y, et al. Paramagnetic polymerized liposomes: synthesis, characterization, and applications for magnetic resonance imaging. Journal of the American Chemical Society,1995,117(28):7301-7306
    [103]Trester-Zedlitz M, Kamada K, Burley S K, et al. A modular cross-linking approach for exploring protein interactions. Journal of the American Chemical Society,2003,125(9):2416-2425
    [104]Jung Y K, Park H G, Kim J-M. Polydiacetylene (PDA)-based colorimetric detection of biotin-streptavidin interactions. Biosensors and Bioelectronics, 2006,21(8):1536-1544
    [105]Hong W, Li W, Hu X, et al. Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. Journal of Materials Chemistry,2001,21(1):17193-17201
    [106]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:I. Theory. Analytical Biochemistry,1998,262(2): 137-156
    [107]Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society,2003, 125(6):1643-1654
    [108]Bohren C F, Huffman D R. Absorption and scattering of light by small particles. 1. New York:Wiley,1983,1-530
    [109]李向华,黄胜堂.银纳米粒子比色传感器的研究进展.广州化工,201 0,38(12):20-21
    [110]Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009, 109(5):1948-1998
    [111]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996, 382(6592):607-609
    [112]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277(5329):1078-1081
    [113]Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society,1998,120(9):1959-1964
    [114]Hirsch L R, Jackson J B, Lee A, et al. A whole blood immunoassay using gold nanoshells. Analytical Chemistry,2003,75(10):2377-2381
    [115]Roll D, Malicka J, Gryczynski I, et al. Metallic colloid wavelength-ratiometric scattering sensors. Analytical Chemistry,2003,75(14):3440-3445
    [116]Riboh J C, Haes A J, McFarland A D, et al. A nanoscale optical biosensor: Real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. The Journal of Physical Chemistry B,2003,107(8): 1772-1780
    [117]Liu J, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [118]Kim Y, Johnson R C, Hupp J T. Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions. Nano Letters,2001,1(4):165-167
    [119]Macaya R F, Waldron J A, Beutel B A, et al. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry,1995,34(13):4478-4492
    [120]Padmanabhan K, Padmanabhan K P, Ferrara J D, et al. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. Journal of Biological Chemistry,1993,268(24):17651-17654
    [121]Huang C-C, Huang Y-F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [122]Lee J-S, Mirkin C A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Analytical Chemistry,2008,80(17): 6805-6808
    [123]Lee J-S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition,2007,46(22):4093-4096
    [124]Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition,2006,45(1):90-94
    [125]Liu J, Lu Y. Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Advanced Materials,2006,18(13):1667-1671
    [126]Kanaras A G, Wang Z, Bates A D, et al. Towards multistep nanostructure synthesis:programmed enzymatic self-assembly of DNA/gold systems. Angewandte Chemie International Edition,2003,42(2):191-194
    [127]Ghadiali J E, Stevens M M. Enzyme-responsive nanoparticle systems. Advanced Materials,2008,20(22):4359-4363
    [128]Xu W, Xue X, Li T, et al. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angewandte Chemie International Edition,2009,48(37):6849-6852
    [129]Chow E, Gooding J J. Peptide modified electrodes as electrochemical metal Ion sensors. Electroanalysis,2006,18(15):1437-1448
    [130]Liu L, Franz K. Phosphorylation-dependent metal binding by a-synuclein peptide fragments. Journal of Biological Inorganic Chemistry,2007,12(2): 234-247
    [131]Li X, Wang J, Sun L, et al. Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces. Chemical Communications,2010,46(6):988-990
    [132]Slocik J M, Zabinski J S, Phillips D M, et al. Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small,2008,4(5): 548-551
    [133]Slocik J M, Stone M O, Naik R R. Synthesis of gold nanoparticles using multifunctional peptides. Small,2005,1(11):1048-1052
    [134]Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. Journal of the American Chemical Society,2003,125(27):8102-8103
    [135]Zhao W, Chiuman W, Brook M A, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem,2007,8(7):727-731
    [136]Chen S-J, Huang Y-F, Huang C-C, et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics,2008,23(11):1749-1753
    [137]Zhao W, Chiuman W, Lam J C F, et al. DNA aptamer folding on gold nanoparticles:from colloid chemistry to biosensors. Journal of the American Chemical Society,2008,130(11):3610-3618
    [138]Li, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. Journal of the American Chemical Society,2004,126(35):10958-10961
    [139]Shen Q, Nie Z, Guo M, et al. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chemical Communications,2009, 2009(8):929-931
    [140]Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications,2006, 2006(36):3780-3782
    [141]Liu D, Qu W, Chen W, et al. Highly sensitive, colorimetric detection of mercury(Ⅱ) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry,2010,82(23): 9606-9610
    [142]Choi Y, Ho N-H, Tung C-H. Sensing phosphatase activity by using gold nanoparticles. Angewandte Chemie International Edition,2007,46(5):707-709
    [143]Wang Y, Yang F, Yang X. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Applied Materials & Interfaces,2010,2(2):339-342
    [144]Wei H, Chen C, Han B, et al. Enzyme colorimetric assay using unmodified silver nanoparticles. Analytical Chemistry,2008,80(18):7051-7055
    [145]Li H, Cui Z, Han C. Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ion. Sensors and Actuators B:Chemical,2009,143(1):87-92
    [146]Hajizadeh S, Farhadi K, Forough M, et al. Silver nanoparticles as a cyanide colorimetric sensor in aqueous media. Analytical Methods,2011,3(11): 2599-2603
    [147]Zhou X-H, Kong D-M, Shen H-X. Ag+and cysteine quantitation based on G-quadruplex-hemin DNAzymes disruption by Ag+. Analytical Chemistry, 2009,82(3):789-793
    [148]Higuchi A, Siao Y-D, Yang S-T, et al. Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Analytical Chemistry,2008,80(17):6580-6586
    [149]Li B, Du Y, Li T, et al. Investigation of 3,3',5,5'-tetramethylbenzidine as colorimetric substrate for a peroxidatic DNAzyme. Analytica Chimica Acta, 2009,651(2):234-240
    [150]Izatt R M, Christensen J J, Rytting J H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and and nucleotides. Chemical Reviews,1971,71(5):439-481
    [151]Cox J A, Jaworski R, Kulesza P J. Electroanalysis with electrodes modified by inorganic films. Electroanalysis,1991,3(9):869-877
    [152]DeLongchamp D M, Hammond P T. Multiple-color electrochromism from layer-by-layer-assembled polyaniline/prussian blue nanocomposite thin films. Chemistry of Materials,2004,16(23):4799-4805
    [153]Macor K A, Spiro T G. Oxidative electrochemistry of electropolymerized metalloprotoporphyrin films. Journal of Electroanalytical Chemistry,1984, 163(1-2):223-236
    [154]Zak J, Kuwana T. Electrooxidative catalysis using dispersed alumina on glassy carbon surfaces. Journal of the American Chemical Society,1982,104(20): 5514-5515
    [155]Miller C J, Majda M. Microporous aluminum oxide films at electrodes. Journal of the American Chemical Society,1985,107(5):1419-1420
    [156]Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts. Chemical Reviews,1998,98(1):219-238
    [157]Coronado E, Gomez-Garcia C J. Polyoxometalate-based molecular materials. Chemical Reviews,1998,98(1):273-296
    [158]Yang L, Naruke H, Yamase T. A novel organic/inorganic hybrid nanoporous material incorporating Keggin-type polyoxometalates. Inorganic Chemistry Communications,2003,6(8):1020-1024
    [159]Witvrouw M, Weigold H, Pannecouque C, et al. Potent anti-HIV (type 1 and type 2) activity of polyoxometalates:structure-activity relationship and mechanism of action. Journal of Medicinal Chemistry,2000,43(5):778-783
    [160]Kuhn A, Anson F C. Adsorption of monolayers of P2MO18O626- and deposition of multiple layers of Os(bpy)32+-P2Mo18O626- on electrode surfaces. Langmuir, 1996,12(22):5481-5488
    [161]Keita B, Nadjo L. Scanning tunnelling microscope monitoring of the surface morphology of the basal plane of highly oriented pyrolytic graphite during the cyclic voltammetry of isopoly and heteropolyanions. Journal of Electroanalytical Chemistry,1993,354(1-2):295-304
    [162]Zou X, Shen Y, Peng Z, et al. Preparation of a phosphopolyoxomolybdate P2Mo18O626-doped polypyrrole modified electrode and its catalytic properties. Journal of Electroanalytical Chemistry,2004,566(1):63-71
    [163]Sung H, So H, Paik W-k. Polypyrrole doped with heteropolytungstate anions. Electrochimica Acta,1994,39(5):645-650
    [164]Barth M, Lapkowski M, Lefrant S. Electrochemical behaviour of polyaniline films doped with heteropolyanions of Keggin structure. Electrochimica Acta, 1999,44(12):2117-2123
    [165]Dong S, Liu M. Preparation and properties of polypyrrole film doped with a Dawson-type heteropolyanion. Electrochimica Acta,1994,39(7):947-951
    [166]Wang B, Dong S. Electrochemical study of isopoly-and heteropoly-oxometallate film modified microelectrodes-Part 2. Electrochemical behaviour of isopolymolybdic acid monolayer modified carbon fibre microelectrodes. Electrochimica Acta,1992,37(10):1859-1864
    [167]Zlotnikov I, Gotman I, Gutmanas E Y. Characterization and nanoindentation testing of thin ZrO2 films synthesized using layer-by-layer (LbL) deposited organic templates. Applied Surface Science,2008,255(5, Part 2):3447-3453
    [168]de Villiers M M, Otto D P, Strydom S J, et al. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Advanced Drug Delivery Reviews,2011,63(9):701-715
    [169]Powell T J, Palath N, DeRome M E, et al. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo. Vaccine,2011,29(3):558-569
    [170]Mahmoud M E, Haggag S S. Implementation of layer-by-layer chemical deposition technique for static removal of magnesium from various matrices. Chemical Engineering Journal,2011,171(1):181-189
    [171]Yadav S, Devi R, Kumar A, et al. Tri-enzyme functionalized ZnO-NPs/CHIT/c-MWCNT/PANI composite film for amperometric determination of creatinine. Biosensors and Bioelectronics,2011,28(1):64-70
    [172]Tang J, Hu R, Wu Z-S, et al. A highly sensitive electrochemical immunosensor based on coral-shaped AuNPs with CHITs inorganic-organic hybrid film. Talanta,2011,85(1):117-122
    [173]Qu Y, Min H, Wei Y, et al. Au-TiO2/Chit modified sensor for electrochemical detection of trace organophosphates insecticides. Talanta,2008,76(4):758-762
    [174]Habibi B, Delnavaz N. Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate. International Journal of Hydrogen Energy,2010,35(17):8831-8840
    [175]Brondani D, Scheeren C W, Dupont J, et al. Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline. Sensors and Actuators B:Chemical,2009,140(1):252-259
    [176]Li M, Ni F, Wang Y, et al. LDH modified electrode for sensitive and facile determination of iodate. Applied Clay Science,2009,46(4):396-400
    [177]Rebary B, Paul P, Ghosh P K. Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection. Food Chemistry,2010,123(2):529-534
    [178]Shabani A M H, Ellis P S, McKelvie I D. Spectrophotometric determination of iodate in iodised salt by flow injection analysis. Food Chemistry,2011,129(2): 704-707
    [179]Yang M, Yang Y, Yang H, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials,2006,27(2):246-255
    [180]Bystrzejewski M, Huczko A, Lange H, et al. Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions. Journal of Colloid and Interface Science,2010,345(2):138-142
    [181]Kerman K, Nagatani N, Chikae M, et al. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Analytical Chemistry,2006,78(15):5612-5616
    [182]Liu B-F, Ozaki M, Hisamoto H, et al. Microfluidic chip toward cellular ATP and ATP-conjugated metabolic analysis with bioluminescence detection. Analytical Chemistry,2004,77(2):573-578
    [183]Hua M, Li P, Li L, et al. Quantum dots as immobilized substrate for electrochemical detection of cocaine based on conformational switching of aptamer. Journal of Electroanalytical Chemistry,2011,662(2):306-311
    [184]Li Y, Qi H, Peng Y, et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochemistry Communications, 2007,9(10):2571-2575
    [185]Swensen J S, Xiao Y, Ferguson B S, et al. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. Journal of the American Chemical Society,2009, 131(12):4262-4266
    [186]Ducey Jr M W, Smith A M, Guo X, et al. Competitive nonseparation electrochemical enzyme binding/immunoassay (NEEIA) for small molecule detection. Analytica Chimica Acta,1997,357(1-2):5-12
    [187]McKenna K, Boyette S E, Brajter-Toth A. Electrochemical behavior of small biological molecules at organic donor-acceptor electrodes in aqueous media. Analytica Chimica Acta,1988,206(0):75-84
    [188]Freund M S, Brajter-Toth A, Ward M D. Electrochemical and quartz crystal microbalance evidence for mediation and direct electrochemical reactions of small molecules at tetrathiafulvalene-te. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1990,289(1-2):127-141
    [189]Kienen V, Costa W F, Visentainer J V, et al. Development of a green chromatographic method for determination of fat-soluble vitamins in food and pharmaceutical supplement. Talanta,2008,75(1):141-146
    [190]Kundu P P, Pavan Kumar G V, Mantelingu K, et al. Raman and surface enhanced Raman spectroscopic studies of specific, small molecule activator of histone acetyltransferase p300. Journal of Molecular Structure,2011,999(1-3): 10-15
    [191]Schulze H G, Greek L S, Barbosa C J, et al. Measurement of some small-molecule and peptide neurotransmitters in-vitro using a fiber-optic probe with pulsed ultraviolet resonance Raman spectroscopy. Journal of Neuroscience Methods,1999,92(1-2):15-24
    [192]Smiechowski M F, Lvovich V F, Roy S, et al. Electrochemical detection and characterization of proteins. Biosensors and Bioelectronics,2006,22(5): 670-677
    [193]Gerhardt G A, Palmer M R, Seiger A, et al. Adrenergic transmission in hippocampus-locus coeruleus double grafts in oculo:Demonstration by in vivo electrochemical detection. Brain Research,1984,306(1-2):319-325
    [194]Abad-Valle P, Fernandez-Abedul M T, Costa-Garcia A. Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. Biosensors and Bioelectronics,2005,20(11):2251-2260
    [195]Kang Y, Feng K-J, Chen J-W, et al. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry,2008, 73(1):76-81
    [196]Dill K, Montgomery D D, Ghindilis A L, et al. Immunoassays based on electrochemical detection using microelectrode arrays. Biosensors and Bioelectronics,2004,20(4):736-742
    [197]Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006,8(3):505-511
    [198]Du Y, Li B, Wang F, et al. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosensors and Bioelectronics,2009,24(7):1979-1983
    [199]Zhang H, Jiang B, Xiang Y, et al. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules. Analytica Chimica Acta, 2011,688(2):99-103
    [200]Cheng A K H, Sen D, Yu H-Z. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry,2009,77(1):1-12
    [201]Liu Z, Yuan R, Chai Y, et al. Highly sensitive, reusable electrochemical aptasensor for adenosine. Electrochimica Acta,2009,54(26):6207-6211
    [202]Marko D. SELEX experiments:New prospects, applications and data analysis in inferring regulatory pathways. Biomolecular Engineering,2007,24(2): 179-189
    [203]Levine H A, Nilsen-Hamilton M. A mathematical analysis of SELEX. Computational Biology and Chemistry,2007,31(1):11-35
    [204]Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angewandte Chemie International Edition, 2004,43(33):4300-4302
    [205]Tanaka Y, Oda S, Yamaguchi H, et al.15N-15N J-Coupling across Hg":direct observation of Hgn-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,2006,129(2):244-245
    [206]Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Analytical Chemistry,2008, 80(4):1067-1072
    [207]Willner I, Zayats M. Electronic aptamer-based sensors. Angewandte Chemie International Edition,2007,46(34):6408-6418
    [208]Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society, 2007,129(18):5804-5805
    [209]Wang Y, Wang y, Zhan R, et al. Visual detection of single nucleotide polymorphism using cationic conjugated polyelectrolyte. Langmuir,2011,0(0): In press
    [210]Shlyahovsky B, Li D, Weizmann Y, et al. Spotlighting of cocaine by an autonomous aptamer-based machine. Journal of the American Chemical Society, 2007,129(13):3814-3815
    [211]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chemical Reviews, 2005,105(4):1547-1562
    [212]He P, Shen L, Cao Y, et al. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle Bio Bar codes. Analytical Chemistry, 2007,79(21):8024-8029
    [213]Zhang J, Song S, Zhang L, et al. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. Journal of the American Chemical Society,2006,128(26): 8575-8580
    [214]Cai L, Chen Z-Z, Dong X-M, et al. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter. Biosensors and Bioelectronics,2011,29(1):46-52
    [215]Huang Y, Sudibya H G, Fu D, et al. Label-free detection of ATP release from living astrocytes with high temporal resolution using carbon nanotube network. Biosensors and Bioelectronics,2009,24(8):2716-2720
    [216]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London), Phys. Sci.,1973,241(1): 20-22
    [217]Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry,1998,70(22):4670-4677
    [218]Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society,2003,125(16):4771-4778
    [219]Lao R, Song S, Wu H, et al. Electrochemical interrogation of DNA monolayers on gold surfaces. Analytical Chemistry,2005,77(19):6475-6480
    [220]Shen L, Chen Z, Li Y, et al. A chronocoulometric aptamer sensor for adenosine monophosphate. Chemical Communications,2007,2007(21):2169-2171
    [221]Das J, Huh C-H, Kwon K, et al. Comparison of the nonspecific binding of DNA-conjugated gold nanoparticles between polymeric and monomeric self-assembled monolayers. Langmuir,2008,25(1):235-241
    [222]Heithoff D M, Sinsheimer R L, Low D A, et al. An essential role for DNA adenine methylation in bacterial virulence. Science,1999,284(5416):967-970
    [223]Shames D S, Minna J D, Gazdar A F. DNA methylation in health, disease, and cancer. Current Molecular Medicine,2007,7(1):85-102
    [224]Song G, Chen C, Ren J, et al. A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano,2009,3(5):1183-1189
    [225]Jeltsch A. Beyond watson and crick:DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem,2002,3(4):274-293
    [226]Esteller M. CpG island hypermethylation and tumor suppressor genes:a booming present, a brighter future. Oncogene,2002,21(35):5427-5440
    [227]Jones R. Worms gang up on bacteria. Nature Reviews Genetics,2002,3(12): 900
    [228]Thielkinga V, Du Bois S, Eritja R, et al. Dam methyltransferase from escherichia coli:kinetic studies using modified DNA oligomers:nonmethylated substrates. Biological Chemistry,1997,378(5):407-416
    [229]Bergerat A, Guschlbauer W, Fazakerley G V. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR. Proceedings of the National Academy of Sciences, 1991,88(15):6394-6397
    [230]Messer W, Noyer-Weidner M. Timing and targeting:The biological functions of Dam methylation in E. coli. Cell,1988,54(6):735-737
    [231]Li J, Yan H, Wang K, et al. Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Analytical Chemistry,2007,79(3):1050-1056
    [232]Liu T, Zhao J, Zhang D, et al. Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Analytical Chemistry,2009,82(1):229-233
    [233]Feng F, Tang Y, He F, et al. Cationic conjugated polymer/DNA complexes for amplified fluorescence assays of nucleases and methyltransferases. Advanced Materials,2007,19(21):3490-3495
    [234]Zhu X, Zhang W, Xiao H, et al. Electrochemical study of a hemin-DNA complex and its activity as a ligand binder. Electrochimica Acta,2008,53(13): 4407-4413
    [235]Yang Q, Nie Y, Zhu X, et al. Study on the electrocatalytic activity of human telomere G-quadruplex-hemin complex and its interaction with small molecular ligands. Electrochimica Acta,2009,55(1):276-280
    [236]Burmeister J, von Kiedrowski G, Ellington A D. Cofactor-assisted self-cleavage in DNA libraries with a 3'-5'-phosphoramidate bond. Angewandte Chemie International Edition in English,1997,36(12):1321-1324
    [237]Lu Y, Liu J. Smart nanomaterials inspired by biology:dynamic assembly of Error-free nanomaterials in response to multiple chemical and biological stimuli. Accounts of Chemical Research,2007,40(5):315-323
    [238]Li T, Dong S, Wang E. Enhanced catalytic DNAzyme for label-free colorimetric detection of DNA. Chemical Communications,2007,2007(41): 4209-4211
    [239]Nakayama S, Sintim H O. Colorimetric split G-quadruplex probes for nucleic acid sensing:improving reconstituted DNAzyme's catalytic efficiency via probe remodeling. Journal of the American Chemical Society,2009,131(29): 10320-10333
    [240]Elbaz J, Moshe M, Shlyahovsky B, et al. Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades:A paradigm for DNA sensors and aptasensors. Chemistry-A European Journal,2009,15(14):3411-3418
    [241]Deng M, Zhang D, Zhou Y, et al. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society,2008,130(39):13095-13102
    [242]Elbaz J, Shlyahovsky B, Willner I. A DNAzyme cascade for the amplified detection of Pb2+ions or 1-histidine. Chemical Communications,2008, 2008(13):1569-1571
    [243]Li T, Dong S, Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) Using Hg2+-modulated G-quadruplex-based DNAzymes. Analytical Chemistry,2009,81(6):2144-2149
    [244]Willner I, Cheglakov Z, Weizmann Y, et al. Analysis of DNA and single-base mutations using magnetic particles for purification, amplification and DNAzyme detection. Analyst,2008,133(7):923-927
    [245]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+Ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie International Edition,2008,47(21):3927-3931
    [246]Weizmann Y, Cheglakov Z, Willner I. A Fok I/DNA machine that duplicates its analyte gene sequence. Journal of the American Chemical Society,2008, 130(51):17224-17225
    [247]Childs RE B W. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochemical Journal,1975,145(1):93-103
    [248]Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Annals of Oncology,2002,13(11):1699-1716
    [249]Brueckner B, Lyko F. DNA methyltransferase inhibitors:old and new drugs for an epigenetic cancer therapy. Trends in Pharmacological Sciences,2004,25(11): 551-554
    [250]Tian Y, Mao C. DNAzyme amplification of molecular beacon signal. Talanta, 2005,67(3):532-537
    [251]Liu M, Zhao H, Chen S, et al. A "turn-on" fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosensors and Bioelectronics,2011,26(10):4111-4116
    [252]Zhang Y, Li B. Reducing background signal of G-quadruplex-hemin DNAzyme sensing platform by single-walled carbon nanotubes. Biosensors and Bioelectronics,2011,27(1):137-140
    [253]Zhu J, Li T, Zhang L, et al. G-quadruplex DNAzyme based molecular catalytic beacon for label-free colorimetric logic gates. Biomaterials,2011,32(30): 7318-7324
    [254]Wang M, Han Y, Nie Z, et al. Development of a novel antioxidant assay technique based on G-quadruplex DNAzyme. Biosensors and Bioelectronics, 2010,26(2):523-529
    [255]Lu Y, Liu J, Bruesehoff P J, et al. New fluorescent and colorimetric DNAzyme biosensors for metal ions. Journal of Inorganic Biochemistry,2003,96(1):30
    [256]Yuan Y, Gou X, Yuan R, et al. Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosensors and Bioelectronics,2011,26(10):4236-4240
    [257]Li Y, Li X, Ji X, et al. Formation of G-quadruplex-hemin DNAzyme based on human telomere elongation and its application in telomerase activity detection. Biosensors and Bioelectronics,2011,26(10):4095-4098
    [258]Zhou X-H, Kong D-M, Shen H-X. G-quadruplex-hemin DNAzyme-amplified colorimetric detection of Ag+ion. Analytica Chimica Acta,2010,678(1): 124-127
    [259]Jia S-M, Liu X-F, Li P, et al. G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+-mediated oligonucleotide switching. Biosensors and Bioelectronics,2011,27(1):148-152
    [260]Kong D-M, Yang W, Wu J, et al. Structure-function study of peroxidase-like G-quadruplex-hemin complexes. Analyst,2010,135(2):321-326
    [261]Li T, Wang E, Dong S. Potassium-lead-switched G-Quadruplexes:A new class of DNA logic gates. Journal of the American Chemical Society,2009,131(42): 15082-15083
    [262]Nakayama S, Wang J, Sintim H O. DNA-based peroxidation catalyst-What is the exact role of topology on catalysis and is there a special binding site for catalysis? Chemistry-A European Journal,2011,17(20):5691-5698
    [263]Kong D-M, Xu J, Shen H-X. Positive effects of ATP on G-Quadruplex-hemin DNAzyme-mediated reactions. Analytical Chemistry,2010,82(14):6148-6153
    [264]Li T, Wang E, Dong S. Base-pairing directed folding of a bimolecular G-Quadruplex:New insights into G-Quadruplex-based DNAzymes. Chemistry A European Journal,2009,15(9):2059-2063
    [265]Li T, Dong S, Wang E. G-Quadruplex aptamers with peroxidase-like DNAzyme functions:Which is the best and how does it work? Chemistry-An Asian Journal,2009,4(6):918-922
    [266]Li T, Wang E, Dong S. A grafting strategy for the design of improved G-quadruplex. PLoS ONE,2009,4(4):e5126
    [267]Kuzmin Y I, Da Costa C P, Cottrell J W, et al. Role of an active site adenine in hairpin ribozyme catalysis. Journal of Molecular Biology,2005,349(5): 989-1010
    [268]Kong D-M, Wu J, Ma Y-E, et al. A new method for the study of G-quadruplex ligands. Analyst,2008,133(9):1158-1160
    [269]Harada F, Dahlberg J E. Specific cleavage of tRNA by nuclease S1. Nucleic Acids Research,1975,2(6):865-872
    [270]Oleson A E, Sasakuma M. S1 nuclease of Aspergillus oryzae:A glycoprotein with an associated nucleotidase activity. Archives of Biochemistry and Biophysics,1980,204(1):361-370
    [271]Liu F, Zhang J, Chen R, et al. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chemistry & Biodiversity,2011,8(2): 311-316
    [272]Reynaldo L, Vologodskii A, Neri B, et al. The kinetics of oligonucleotide replacements. Journal of Molecular Biology,2000,297(2):511-520
    [273]Teller C, Shimron S, Willner I. Aptamer-DNAzyme hairpins for amplified biosensing. Analytical Chemistry,2009,81(21):9114-9119
    [274]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004, 4(9):1683-1687
    [275]Yin B-C, Ye B-C, Tan W, et al. An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). Journal of the American Chemical Society,2009,131(41):14624-14625
    [276]Fu R, Li T, Lee S S, et al. DNAzyme molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids. Analytical Chemistry,2010,83(2):494-500
    [277]Carol P, Sreejith S, Ajayaghosh A. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions. Chemistry-An Asian Journal,2007,2(3):338-348
    [278]McRae R, Bagchi P, Sumalekshmy S, et al. In situ imaging of metals in cells and tissues. Chemical Reviews,2009,109(10):4780-4827
    [279]Onis M, Frongillo E A, Blossner M. Is malnutrition declining? An analysis of changes in levels of child malnutrition since 1980. Bulletin of the World Health Organization,2000,78(10):1222-1233
    [280]Nolan E M, Lippard S J. Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Accounts of Chemical Research,2008,42(1): 193-203
    [281]Xu Z, Baek K-H, Kim H N, et al. Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. Journal of the American Chemical Society,2009,132(2):601-610
    [282]La Pera L, Lo Curto S, Visco A, et al. Derivative potentiometric stripping analysis (dPSA) used for the determination of cadmium, copper, lead, and zinc in sicilian olive oils. Journal of Agricultural and Food Chemistry,2002,50(11): 3090-3093
    [283]Zhang J, Wang L, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small,2008,4(8):1196-1200
    [284]Wei H, Li B, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chemical Communications,2007,2007(36):3735-3737
    [285]Wang H, Wang Y, Jin J, et al. Gold nanoparticle-based colorimetric and 'Turn-On" fluorescent probe for mercury(II) ions in aqueous solution. Analytical Chemistry,2008,80(23):9021-9028
    [286]Giljohann D A S, Dwight S.; Daniel, Weston L.; Massich, Matthew D.; Patel, Pinal C.; Mirkin, Chad A. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition,2010,49(19):3280-3294
    [287]Aili D, Enander K, Rydberg J, et al. Folding induced assembly of polypeptide decorated gold nanoparticles. Journal of the American Chemical Society,2008, 130(17):5780-5788
    [288]Griffin BAA, Stephen R.; Jones, Jay; Tsien, Roger Y. Fluorescent labeling of recombinant proteins in living cells with FlAsH. Methods in Enzymology,2000, 327(1):565-578
    [289]Pomorski A, Otlewski J, Krezel A. The high ZnⅡ affinity of the tetracysteine tag affects its fluorescent labeling with biarsenicals. ChemBioChem,2010, 11(9):1214-1218
    [290]Krezel A, Lesniak W, Jezowska-Bojczuk M, et al. Coordination of heavy metals by dithiothreitol, a commonly used thiol group protectant. Journal of Inorganic Biochemistry,2001,84(1-2):77-88
    [291]Ruedas-Rama M J, Hall E A H. Azamacrocycle activated quantum dot for zinc ion detection. Analytical Chemistry,2008,80(21):8260-8268
    [292]Nguyen D M, Frazer A, Rodriguez L, et al. Selective fluorescence sensing of zinc and mercury ions with hydrophilic 1,2,3-triazolyl fluorene probes. Chemistry of Materials,2010,22(11):3472-3481
    [293]Tan Z-q, Liu J-f, Liu R, et al. Visual and colorimetric detection of Hg2+by cloud point extraction with functionalized gold nanoparticles as a probe. Chemical Communications,2009,2009(45):7030-7032
    [294]Fox B S, Beyer M K, Achatz U, et al. Precipitation reactions in water clusters. The Journal of Physical Chemistry A,2000,104(6):1147-1151
    [295]Yuan M, Zhou W, Liu X, et al. A Multianalyte chemosensor on a single molecule:promising structure for an integrated logic gate. The Journal of Organic Chemistry,2008,73(13):5008-5014
    [296]Credi A, Balzani V, Langford S J, et al. Logic operations at the molecular level. An XOR gate based on a molecular machine. Journal of the American Chemical Society,1997,119(11):2679-2681
    [297]Elbaz J, Wang Z-G, Orbach R, et al. pH-stimulated concurrent mechanical activation of two DNA "tweezers". A "SET-RESET" logic gate system. Nano Letters,2009,9(12):4510-4514
    [298]Montenegro J-M, Perez-Inestrosa E, Collado D, et al. A natural-product-inspired photonic logic gate based on photoinduced electron-transfer-generated dual-channel fluorescence. Organic Letters,2004, 6(14):2353-2355
    [299]Guerra D N, Bulsara A R, Ditto W L, et al. A noise-assisted reprogrammable nanomechanical logic gate. Nano Letters,2010,10(4):1168-1171
    [300]Hod O, Baer R, Rabani E. A parallel electromagnetic molecular logic gate. Journal of the American Chemical Society,2005,127(6):1648-1649
    [301]Mahmoud E A, Sankaranarayanan J, Morachis J M, et al. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjugate Chemistry,2011,22(7):1416-1421
    [302]Xiang Y, Qian X, Zhang Y, et al. A reagentless, disposable and multiplexed electronic biosensing platform:Application to molecular logic gates. Biosensors and Bioelectronics,2011,26(6):3077-3080
    [303]Abraham D, Chelly A, Shappir J, et al. Hybrid optical and electrical reconfigurable logic gates based on silicon on insulator technology. Photonics and Nanostructures-Fundamentals and Applications,2011,9(1):35-41
    [304]de Silva A P, Gunaratne H Q N, McCoy C P. Molecular photoionic AND logic gates with bright fluorescence and "Off-On" digital action. Journal of the American Chemical Society,1997,119(33):7891-7892
    [305]Moshe M, Elbaz J, Willner I. Sensing of UO22+and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Letters,2009,9(3):1196-1200
    [306]Xia F, Zuo X, Yang R, et al. Label-free, dual-analyte electrochemical biosensors:A new class of molecular-electronic logic gates. Journal of the American Chemical Society,2010,132(25):8557-8559
    [307]Tan N H, Rahim Z H A, Khor H T, et al. Chymotrypsin inhibitor activity in winged beans (Psophocarpus tetragonolobus). Journal of Agricultural and Food Chemistry,1984,32(1):163-166
    [308]Caplow M. Chymotrypsin catalysis. Evidence for a new intermediate. Journal of the American Chemical Society,1969,91(13):3639-3645
    [309]Kantrowitz E R, Eisele G. Two spectrophotometric experiments with alpha-chymotrypsin. Journal of Chemical Education,1975,52(6):410-413

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700