基于稳态法的高温材料热物性测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热膨胀系数、电阻率和热扩散率是表征材料热物理性能的三个重要参数,对航天航空飞行器和武器装备某些关键部件的结构设计具有重要意义。由于热膨胀系数和电阻率测量理论都是针对均匀温度试样建立的,而实际的高温热物性测量装置很难保证大尺寸试样在高温下的均匀温度分布状态,因此如何测定其高温热膨胀系数和电阻率是一个具有重要意义的研究课题。对于热扩散率参数,现在闪光法理论模型普遍采用背温信号计算,而现有的温度信号测量技术已经很难进一步提高温度测量的分辨率,限制了热扩散率的测量精度。本课题的目的是研制一套大尺寸试样的高温热物性测量装置,满足热膨胀系数和电阻率测量不确定度优于6%、热扩散率测量不确定度优于5%的要求。利用该装置对各种材料在高温条件下的热物性参数进行测量,进而为相关产品的结构设计和性能优化提供可靠的高温热物性数据。
     论文围绕大尺寸试样热物性测量方法的建立,提出了测量不等温体热膨胀系数和电阻率的新方法、建立了测量热扩散率的多光谱闪光法数学模型,研制出了高温热物性参数测量装置并给出了相应的数据分析方法。主要完成了以下几方面的研究工作:
     为了消除稳态法测量热膨胀系数和电阻率时试样温度分布不均匀对测量结果的影响,本文根据热物性参数与温度间的函数关系建立了测量不等温体热膨胀系数和电阻率的数学模型,分析了不等温体试样部分与整体间的内在关系,推导了通过试样表面温度分布计算热膨胀系数和电阻率的数学解析式,给出了相应的数据分析方法。
     为了减小将温度与辐射能量做线性化处理给闪光法热扩散率测量结果带来的误差,本文通过对多光谱闪光法实验过程的理论分析,建立了利用多个光谱辐射能量测量热扩散率的多光谱闪光法数学模型,研究了基于最小二乘法的数据处理方法,实现了对热扩散率的高精度测量。最后对多光谱闪光法和闪光法做了有限元仿真实验,通过对热扩散率测量结果的比较证明了多光谱闪光法理论的正确性和可行性。
     基于上述理论,本文研制了一套集光学、机械、电气于一体的高温多热物性参数测量装置,实现了各项热物性参数的同步测量。在本装置的研制中完成了如下工作:(1)考虑了不同热物性测量实验的要求,设计了可将棒状和圆片状试样均匀加热到高温热平衡状态的高温环境实验箱;(2)设计了可对试样热扩散率和真实温度进行同步测量的多光谱高速高温计;(3)研制了可对棒状试样轴向温度分布快速测量的轴向温度分布扫描测量系统;(4)设计了满足不同材料热扩散率测量实验要求的均匀脉冲加热系统;(5)设计了可对多路数据信号进行高速同步采集和对不同设备进行实时控制的高速数据采集处理系统。(6)通过对不同面积下热扩散率测量结果的比较和分析,确定了本文所建装置的最佳测试面积。
     利用上述测量装置对不同材料的高温热物性参数进行了实验研究。在不同温度范围内研究了某种碳/碳材料热膨胀系数、电阻率和热扩散率随温度变化的规律,在800℃~ 3000℃温度范围内研究了SRM 8424标准试样热扩散率随温度变化的规律,在800℃~ 1000℃温度范围内研究了Pyrocream 9606标准试样热扩散率随温度变化的规律,分析了相应的实验现象。将上述实验测量结果与同类设备或国外同行的测量结果进行了比对,热扩散率测量温度范围、测量温度上限和测量精度三方面都已达到国际同类装置的技术水平。总结了影响测量结果的原因,并对两个代表性温度下的热膨胀系数、电阻率和热扩散率的测量结果做了不确定度分析。
     本论文的研究内容为建立大尺寸试样的高温热膨胀系数、电阻率和热扩散率测量数据库提供了理论依据,构建了技术平台。
Thermal expansion coefficient, electrical resistivity and thermal diffusivity are the three important parameters in evaluating the thermophysical performance of materials, and are of great significance in the structural design of some key parts of astronautical and aeronautical vehicles. It is well-known that thermal expansion coefficient and electrical resistivity measurement theory is established for the uniform temperature specimen. However, the temperature distribution in big-size sample is not uniform in practical measuring instrument under high temperature, so it is an important issue to measure the thermal expansion coefficient and electrical resistivity with high accuracy. Thermal diffusivity is usually measured by using flash method that depends on the transient temperature of the rear surface of the specimen. However, the accuracy of this method can hardly be improved because of the limited spatial resolution in temperature measurement. The objective of this project is to develop a measuring apparatus that can measure thermophysical properties of big-size samples under high temperature. For thermal expansion coefficient and electrical resistivity, the measurement uncertainties are less than 6%, and for thermal diffusivity it is less than 5%. The thermophysical parameters of various materials under high temperature can be determined by this apparatus so as to present reliable information for designing configuration and optimizing performance in some practical applications.
     In order to establish the measuring methods of thermophysical properties of big-size samples under high temperature, the principle and technique for measuring the thermal expansion coefficient, electrical resistivity, and thermal diffusivity were systemically investigated in this dissertation. A new apparatus, which can simultaneously measure the three thermophysical properties, was developed, and the data processing methods in this measurement were also discussed. This work can be categorized as follows:
     In order to eliminate the effects of nonuniform temperature distribution on the steady state measurement, a mathematical model was established for measuring the thermal expansion coefficient and electrical resistivity of nonuniform temperature body according to the temperature dependence of thermophysical properties. The relationship between the whole and parts of the nonuniform temperature body was discussed. The mathematical formula and corresponding data processing methods for calculating thermal expansion coefficient and electrical resistivity were presented.
     A multi-spectral flash method mathematical model that can measure thermal diffusivity by multiple spectral radiation energy was established based on the experimental process of multi-spectral method. This model decreases the errors induced by the linearization of the relationship between temperature and radiation energy. The least square method was used in the data processing, and the high-precision measurement of thermal diffusion was realized. The finite element simulation of multi-spectral flash method and flash method was carried out. Compared with the measuring results of thermal diffusivity, the correctness and feasibility of the multi-spectral flash theory was justified.
     An apparatus combing optical, mechanical, electrical measurement for high temperature thermophysical properties parameters, which can measure simultaneously these three parameters, is developed according to the above principles. The work for designing this apparatus is studied as follows: (1) Considering the different heating requirements for different sized samples, we designed a special experiment chamber that can heats rod- or circle-shaped samples to thermal equilibrium state under high temperature; (2) A high-speed multi-spectral pyrometer that can simultaneously measure the thermal diffusivity and temperature of the specimen was developed; (3) A scanning and measuring system that can rapidly measure the rod-like axial temperature distribution was developed; (4) An even pulse heating system that can meet the needs of different measurement requirements for material thermal diffusivity was designed; (5) A high-speed data acquisition and processing system that realizes multi-channel high-speed acquisition and the real-time control of different instruments was improved. (6) The optimum testing area of the instrument was decided through the analysis and comparison of measuring results of thermal diffusivity in different areas.
     The high temperature thermal properties were measured for different materials by this apparatus. Temperature dependence on the thermal expansion coefficient, electrical resistivity, and thermal diffusivity of a carbon / carbon materials were investigated. The temperature dependence on thermal diffusivity of the SRM 8424 and Pyrocream 9606 standard samples were studied in the temperature range of 800℃~3000℃and 800℃~ 1000℃, respectively. The scope and upper limit of the measuring temperature as well as the precision of the thermal diffusivity measurement compared fairly well with those obtained from the similar equipments in the world. The reasons that impact the measurement results were summarized, and the uncertainty in measuring the thermal expansion coefficient, electrical resistivity, and thermal diffusivity under two typical temperatures were discussed.
     This work presented the theoretical foundation and established the measurement techniques for building the database of thermal expansion coefficient, electrical resistivity and thermal diffusivity of big sized samples under high temperature.
引文
1.奚同庚.固体热物理性质导论——理论和测量.中国计量出版社. 1987: 18~22
    2.姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社. 2003, 1~9
    3.蔡岸,谢华清,奚同庚.航天器用十一种热控材料热物理性质及其与显微组织和工艺因素关系的研究.无机材料学报. 2006, 21 (5): 1173~1178
    4.刘松茂. QJ3074《碳纤维及其复合材料电阻率测试方法》的特点.航天标准化. 1999, (3): 17~18
    5.薛健,张立.激光脉冲法测量热扩散率技术在材料科学中的应用.粉末冶金材料科学与工程. 1997, 2, (3): 163~173
    6.陈洁,熊祥,肖鹏.高导热C/C复合材料的研究.进展材料导报. 2006, 20, (3): 431~435
    7.刘希从,刘春为,孙刚. SiC/Al复合材料的电阻率.宇航学报. 1990, (2): 82~87
    8.奚同庚,无机材料热物性学.上海科学技术出版社. 1981
    9.褚载祥,孙毓星,陈守仁.材料发射率测量技术.红外与毫米波学报. 1986, 3: 231~239
    10. A. I. Korobov, N. I. Odina, I. N. Kokshaiskii, et al. Automated apparatus for measuring thethermal diffusivity of metals by the thermal-wave method. Measurement Techniques. 1996, 39, (4): 423~428
    11. J. M. Laskar, S. Bagavathiappan, M. Sardar, et al. Measurement of thermal diffusivity of solids using infrared thermography. Materials Letters. 2008, 62, (17-18): 2740~2742
    12. R. Medina-Esquivel, J. M. Yá?ex-Limón, J. J. Alvarado-Gil. Photothermal measurement of thermal diffusivity in carbonyl iron powder suspensions. The Europeam Physical Journal-Special Topics. 2008, 153, (1): 75~77
    13. W. Poessnecker, U. Gross. A quasi-steady cylinder method for simultaneous thermophysical property measurements up to 2000K. Journal of Thermal Analysis and Calorimetry. 2006, 86, (3): 809~817
    14. Y. Taguchi, Y. Nagasaka. Thermal diffusivity measurement of high-conductivity materials by dynamic grating radiometry. Int. J. Thermo.. 2001, 22, (1): 289~299
    15. F. Righini. Evaluation of a pulse-heating reflectometric technique. Int. J. Thermo.. 2006, 27, (1): 1~12
    16.何小瓦,黄丽萍.瞬态平面热源法热物理性能测量准确度和适用范围的标定——常温下标准Pyrocream9606材料热物理性能测量.宇航计测技术. 2006, 26,(4): 31~42, 51
    17.于帆,张欣欣,何小瓦.材料热物理性能非稳态测量方法综述.宇航计测技术. 2006, 26, (4): 23~30
    18. D. P. Bentz. Transient plane source measurements of the thermal properties of hydrating cement pastes. Materials and Structures. 2007, 40, (10): 1073~1080
    19. S. A. Al-jjlan. Measurements of thermal properties of insulation materials by using transient plane source technique. Applied Thermal Engineering. 2006, 26: 2184~2191
    20.王强,戴景民,张虎. Hot disk建模及模型精度分析.中国计量学院学报. 2008, 19, (4): 309~313
    21. S. Brohez, C. Delvosalle. Carbon dioxide generation calorimetry- errors induced by the simplifying assumptions in the standard test methods. Fire Mater.. 2009, 33: 89~97
    22.金属材料热膨胀特征参数的测定.中华人民共和国国家标准(GB / T 4339-1999),国家质量技术监督局分布, 2000年8月1日实施
    23.杨新园,孙建平,张金涛.材料线热膨胀系数测量的近代发展与方法比对介绍.计量技术. 2008, (7): 33~36
    24. M. Okji, N. Yamada. Versatile interferometric dilatometer for room - temperature operation: measurements on some stadard reference materials. High Temp. - High Press.. 1997, 29: 89~95
    25. H. Wang, N. Yamada, M. Okji. Thermal expansion of some silicaglasses in the range from -50 to 250℃by push - rod dilatometry. Japan Joural of Thermophysical Propertier. 1999, 13: 49~57
    26. E. G. Wolff, J. E. Sharp. High temperature thermal expansion measurements by laser diffraction. The 27th International Thermal Conductivity Conference, and 15th International Thermal Expansion ymposium. 2005: 594~604
    27. C. Pradere, J. C. Batsale, J. M. Goyheneche, et al. Estimation of the transverse coefficient of thermal expansion on carbon fibers at very high temperature. Inverse Problems in Science and Engineering. 2007, 15: 77~89
    28.张秀华,李丹,田志宏,等.热膨胀仪DIL402PC的测控技术.工程试验. 2008, (3): 46~48
    29.薛凯.传感器与微机相结合测量固体的热膨胀系数.大学物理. 1994, 13, (3): 33~35
    30.刘永东.零件材料精确热膨胀系数的测定.计量学报. 1998, 19, (3): 216~219
    31.刘晓,周瑛玮.金属线膨胀系数的计算机检测系统的研制与应用.中国仪器仪表. 1997, (1): 17~18
    32. Chi Hsiang Pan. A simple method for in situ determination of linear thermal expansion coefficients of thin films. Dynamic Systems and Control Division. 2000, 1: 105~112
    33.王培吉,范素华.光声法测量材料热膨胀系数的实验研究.实验力学. 2001, 16, (1): 56~60
    34.费业泰,赵静.材料热膨胀系数的发展与未来分析.中国计量学院学报. 2002, 13, (4): 259~263
    35.苗恩铭.精密零件热膨胀及材料精确热膨胀系数研究.合肥工业大学博士论文. 2004, 9: 65~85
    36.吕勇,王正道.一种低维材料热膨胀系数的测试系统.工具技术. 2004, 38, (7): 44~46
    37.王青,戴剑锋,李维学.测定金属热膨胀系数的新方法研究.大学物理实验. 2003, 16, (6): 9~11
    38.黄力群,黄卫平,王里,简水生.用光纤光栅测量材料的热膨胀系数.光电子·激光. 2003, 14, (10): 1121~1123
    39.陈杨.智能化热膨胀检测系统的实现与应用.南京理工大学硕士学位论文. 2004, 6: 8~9, 63~64
    40.陈思颖,黄晨光,陈捷,等.用电子散斑干涉法测量材料热膨胀系数.强激光与粒子束. 2004, 16, (6): 681~684
    41.王静.数字散斑相关方法及微/纳米尺度热力学测试研究.天津大学博士学位论文. 2005, 12: 90~91
    42.孙建平,范开果,荆卓寅,等.激光干涉法测量材料线膨胀系数的实验研究.计量技术. 2007, (5): 13~16
    43.范开果.激光干涉法测量材料线膨胀系数的实验研究.北京工业大学硕士学位论文. 2007, 5: 13~16
    44.葛山,李楠,尹玉成,等.大试样热膨胀仪的研制与应用.耐火材料. 2008, 42, (5): 397~398
    45. R. E. Taylor. Survey on direct heating methods for high-temperature thermophysical property measurements of solids. High Temp.– High Press.. 1972, 4, 523~531
    46. C. Cagran, B. Wilthan, G. Pottlacher. Enthalpy, heat of susion and specific electrical resistivity of pure silver, pure copper and the binary Ag-28Cu alloy. Thermochimica Acta. 2006, 445: 104~110
    47.刘良元,谭真,郭广文.在激光热导仪上测量材料α和Cp同时用范德堡法测电阻率ρ的研究.测试技术. 1984, (3): 28~40
    48. R. E. Taylor, H. Groot. Apparatus for electrical resisivity measurements on flashdiffusivity samples. High Temp.– High Press.. 1974, 6: 123~126
    49. S. C. Jain, N K Bansal, V. Sinha. The temperature distribution along thin thin rods kept at constant high temperature at both ends:Ⅱ. A comparison with experiment and a new method for the determination of thermal conductivity. J. Phys. D: Appl.Phys.. 1975, 8, (4): 354~367
    50.姚隆卿,贺履平,郝玉才,等.金属材料的高温热物理性能测试.工程热物理学报. 1981, 2, (2): 185~187
    51. M. Adachi, H. Shioyama, M. Narisawa, et al. The temperature dependence of electrical resistivity of polycrystalline graphite in the range of 900K~2800K. Carbon. 1991, (146): 33~35
    52.李华昌.碳纤维及其复合材料电阻率测试方法.宇航材料工艺, 1996, (3): 44~48
    53. G. V. Narasimha Rao, V. S. Sastry, T. S. Radhakrishnan. A simple apparatus for measuring electrical resistance of materials at high temperatures. Rev. Sci. Instrum.. 1996, 67, (1): 333~334
    54.田守信,尹惠明,季永业,等.导电耐火材料及其常温电阻率测试仪的研制.耐火材料. 2001, 35, (1): 37~39
    55.王锦程,胡燕.电力电缆半导电屏蔽电阻率测试仪.电力自动化设备. 2007, 27, (7): 90~92, 112
    56.郭蕾蕾. Zn系列合金熔体电阻率的研究及熔体结构变化对Bi-Sb20%合金凝固组织的影响.合肥工业大学硕士学位论文. 2008, 3: 12~14
    57. J. Bourgoin, S. Doiron, M. Deveaux, and A. Haché. Single laser beam measurement of thermal diffusivity. Appl. Opt.. 2008, 47: 6530~6534
    58. J. Blumm, E. Kaisersberger. Accurate measurement of transformation energetics and specific heat by DSC in the high-temperature region. J. Therm. Anal. Cal.. 2001, 64: 385~391
    59. S. V. Stankus, I. V. Savchenko, A. V. Baginskii, et al. Thermal conductivity and thermal diffusivity coefficients of 12Kh18N10T stainless steel in a wide temperature range. High Temp.. 2008, 46, (5): 731~733
    60. R. E. Taylor. Heat-pulse thermal diffusivity measurements. High Temp.-High Press.. 1979, 11: 43~58
    61. D. L. Balageas. Thermal diffusivity measurement by pulsed methods. High Temp.-High Press.. 1989, 21: 85~96
    62. L. Vozár. Flash method of measuring the thermal diffusivity– a review. High Temp.-High Press.. 2003/2004, 35/36: 253~264
    63. F. Cernuschi, P. G. Bison, A. Figari, et al. thermal diffusivity measurements by photothermal and thermographic techniques. Int. J. Thermo.. 2004, 25, (2): 439~457
    64. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys.. 1961, 32, (9): 1679~1684
    65. R. D. Cowan. Pulse method of measuring thermal diffusivity at high temperatures. J. Appl. Phys.. 1963, 34, (4, Patr 1): 926~927
    66. L. M. Clark, R. E. Taylor. Radiation loss in the flash method for thermal diffusivity. J. Appl. Phys.. 1975, 46, (2): 714~719
    67. Y. Takahashi, T. Azumi, and M. Kanno. Improvement of laser flash method for thermal diffusivity measurements. Calorim. Thermal Anal.. 1981, 8: 62~66
    68.薛健.导温系数测量的一个改进.中南矿冶学院学报. 1984, 16, (3): 1~8
    69.孙建平,刘建庆,邱萍,李晓苇.激光闪光法测量材料热扩散率的漏热修正.计量技术. 2008, (1): 23~25
    70. J. A. Cape, G. W. Lehman. Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J. of Appl. Phys., 1963, 34, (7): 1909~1913
    71. D. A. Watt. Theory of thermal diffusivity by pulse technique. Brit. J. Appl. Phys.. 1966, 17: 231~240
    72. László. Dusza. Combined solution of the simultaneous heat loss and finite pulse corrections with the laser flash method. High Temp.-High Press.. 1995/1996, 27/28: 467~473
    73. R. C. Heckman. Finite pulse-time and heat-loss effects in pulse thermal diffusivity measurements. J. Appl. Phys.. 1973, 44, (4): 1455~1460
    74. J. xue, X. Liu, Y. Lian, and R. Taylor. The effects of a finite pulse time in the flash thermal diffusivity method. Int. J. Thermo.. 1993, 14, (1): 123~133
    75. J. Xue, R. Taylor. An evaluation of specific heat measurement methods using the laser flash technique. Int. J. Thermo.. 1993, 14, (2): 313~320
    76.刘雄飞,薛健,梁英.闪光法测量热扩散率的有限脉冲效应研究.中南矿冶学院学报. 1994, 25, (3): 353~358
    77. A. Cezairliyan, T. Baba, and R. Taylor. A high-temperature laser-pulse thermal diffusivity apparatus. Int. J. Thermo.. 1994, 15, (2): 317~341
    78. D. Josell, J. Warren, and A. Cezairliyan. Comment on“analysis for determining thermal diffusivity from thermal pulse experiments”. J. Appl. Phys.. 1995, 78, (11): 6867~ 6869
    79. T. Baba. A new data analysis algorithm for laser flash thermal diffusivity measurement——a curve-fitting method. Proc. 17th Japanese Symp.-Thermophysical Properties, Tsukuba, 1996, 379~382
    80. T. Yamane, S. Katayama, and M. Todoki. Experimental investigation of nonuniformheating and heat loss from a specimen for the measurement of thermal diffusivity by the laser pulse heating method. Int. J. Thermo.. 1997, 18, (1): 269~290
    81. J. A. Mckay, J. T. Schriempt. Corrections for nonuniform surface-heating errors in flash method thermal-diffusivity measurements. J. Appl. Phys.. 1976, 46, (2): 1668~1671
    82. L. Fabbri, E. Scafè. Nonuniform heating effects on thermal diffusivity measurements by the laser-pulse method: influence of detector position. Rev. Sci. Instrum.. 1992, 63, (3): 2008~2013
    83. Hong Lim Lee, D. P. H. Hasselman. Comparison of data for thermal diffusivity obtained by laser-flash method using thermocouple and photodetector. J. Am. Ceram. Soc.. 1985, 68: C12-C13
    84. D. P. H. Hasselman, K. Y. Donaldson. Effects of detector nonlinearity and specimen size on the apparent thermal diffusivity of NIST 8425 graphite. Int. J. Thermo.. 1990, 11, (3): 573~585
    85. K. D. Magli?, N. Perovi?, Z. Zivoti?. Thermal diffusivity measurements on standard reference materials. High Temp.- High Press.. 1980, 12: 555~560
    86. N. D. Milo?evi?, K. D. Magli?. Thermophysical properties of solid phase titanium in a wide temperature range. High Temp.- High Press.. 2008, 37: 187~204
    87.李铁真.热电偶响应时间在脉冲法测量热扩散率中引入的误差.宇航材料工艺. 1988, 6: 56~59
    88. J. J. Hoefler, R. E. Taylor. Effects of infrared detector nonlinearity on thermal diffusivity measurements using the flash method. Int. J. Thermo.. 1990, 11, (6): 1099~1110
    89.谭俊杰,何东明,顾毓沁,朱德忠.热电偶响应对激光脉冲法测量热扩散率的影响.宇航计测技术. 1995, 15, (4): 35~40
    90. N. Araki, D. W. Tang, M. Suzuki, et al. Effect of the response delay of the measuring system on thermal diffusivity measurement using the flash method. Int. J. Thermo.. 2000, 21, (2): 495~502
    91. H. Bauke, C. David R. Optical measurement of the thermal diffusivity of intact thermal barrier coatings. J. Appl. Phys.. 2008, 104, (11): 113119-113119-7
    92. J. B. Moser, O. L. Kruger. Thermal conductivity and heat capacity of the monocarbide, monophosphide, and monosulfide of uranium. J. Appl. Phys.. 1967, 38, (8): 3215~3222
    93. A. B. Donaldson. Radial conduction effects in the pulse method of measuring thermal diffusivity. J. Appl. Phys.. 1972, 43, (10): 4226~4228
    94. H. Ohta, T. Baba, H. Shibata, et al. Evaluation of the effective sample temperatrure in thermal diffusivity measurements using the laser flash method. Int. J. Thermo..2002, 23, (6): 1659~1668
    95. D. E. Stroe, P. S. Gaal. The effect of the surrounding medium and its pressure on data obtained in thermal diffusivity measurements using the flash method. Int. J. Thermo.. 2003, 24, (4): 1137~1144
    96. J. Gembarovic, and J. Gembarovie. Nonlinear effects in laser flash thermal diffusivity measurements. Inter. J. Thermo.. 2004, 25, (4): 1253~1260
    97. M. Akoshima, T. Baba. Thermal diffusivity measurements of candidate reference materials by the laser flash method. Int. J. Thermo.. 2005, 26, (1): 151~163
    98.魏高升,张欣欣,于帆,陈奎.激光脉冲法测量硬硅钙石绝热材料热扩散率.北京科技大学学报. 2006, 28, (8): 778~781
    99. P. Schoderb?ck. H. Klocker. Evaluation of the thermal diffusivity of thin specimens from laser flash data. Int. J. Thermo.. 2009, 11, (3): 573~585
    100.郭一玲,尹克廷,黄丹桂,姚隆卿.激光脉冲法热物理性能的测定(低温部分).稀有金属. 1980, (6): 64~70
    101.卫锦先.激光脉冲法在低温导热吸收测试中的应用.宇航材料工艺. 1986, (4): 27~33
    102.尤清照,魏丽坤.激光脉冲法测定小试样比热的研究.钢铁研究总院学报. 1982,
    2, (1): 109~112
    103.孟麦,尤清照.利用激光脉冲技术测量材料热物理性能.钢铁研究学报. 2000, 12, (6): 46~49
    104.陈跃飞,张金涛,于帆,等.激光闪光法测量测量热扩散率国际比对的实验研究与分析.计量技术. 2008, (12): 29~32
    105.何冠虎,叶庆和,邸忠起,周本濂.用激光脉冲加热—降温法测量比热(500~1200K).工程热物理学报. 1981, 2, (3): 283~289
    106.T. Baba, A. Cezairliyan. Thermal diffusivity of POCO AXM-AQ1graphite in the range 1500 to 2500 K measured by a laser-pulse technique. Int. J. Thermo.. 1994, 15, (2): 343~364
    107.M. Ogawa, K. Mukai, T. Fukui, and T. Baba. The development of a thermal diffusivity reference material using alumina. Meas. Sci. Technol.. 2001, 12: 2058~2063
    108.N. Araki, T. Baba, H.Ohta, M. Ogawa, et al.. Thermal diffusivity measurements of refractory metals as candidate reference materials by the laser flash method. Int. J. Thermo.. 2005, 26, (6): 1873~1881
    109.K. Shinzato, T. Baba. A laser flash apparatus for thermal diffusivity and specific heat capacity measurements. J. therm. Anal. Cal.. 2001, 64, 413~422
    110.L. Vozár, W. Hohenauer. Uncertainty of thermal diffusivity measurements using thelaser flash method. Int. J. Thermo.. 2005, 26, (6): 1899~1915
    111.K. D. Magli?, N. D. Milo?evi?. Thermal diffusivity measurements of thermographite. Int. J. Thermo.. 2004, 25, (1): 237~247
    112.N. D. Milo?evi?, K. D. Magli?. Thermophysical properties of solid phase zirconium at high temperature. Int. J. Thermo.. 2006, 27, (4): 1140~1159
    113.B. Hay, J-R. Filtz, J. Hameury, and L. Rongione. Uncertainty of thermal diffusivity measurements by laser flash method. Int. J. Thermo.. 2005, 26, (6): 1883~1898
    114.B. Hay, L. Rongione, J-R. Filtz, and J. Hameury. A new reference material for high-temperature thermal transport properties– LNE participation in the certification process of Pyroceram 9606. High Temp.-High Press.. 2008, 37: 13~20
    115.B. Hay, S. Barré, J-R. Filtz, et al. new apparatus for thermal diffusivity and specific heat measurements at very high temperature. Int. J. Thermo.. 2006, 27, (6): 1803~1815
    116.T. Baba, A. Ono. Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas. Sci. Technol.. 2001, 12, 2046~2057
    117.M. Akoshima, T. Baba. Study on a thermal diffusivity standard for laser flash method measurements. Int. J. Thermo.. 2006, 27, (4): 1189~1203
    118.H. Watanabe, T. Baba. Electrical-optical hybrid pulse-heating method for rapid measurement of high-temperature thermal diffusivity. Appl. Phys. Lett.. 2006, 88, (241901): 1~3
    119.F. Righini, R. B. Roberts, A. Rosso, et al. thermal expansion by a pulse-heating method: theory and experimental apparatus. High Temp. - High Press.. 1986, 18, :561~571
    120.M. Kahanal, R. Morrison. Analysis of electrical resistance tomography (ERT) data using least-squares regression modeling in industrial process tomography. Meas. Sci. Technol.. 2009, 20, (045503): 1~8
    121.费业泰.误差理论与数据处理.北京:机械工业出版社(第四版). 2002, 4
    122.丁振良.误差理论与数据处理.哈尔滨:哈尔滨工业大学出版社(第二版). 2002, 5: 98
    123.E. Kaschnitz, and P. Supancic. Three-dimensional finite-element analysis of high-speed (millisecond) measurements. Inter. J. Thermo.. 2004, 26, (4): 957~967
    124.M. Kahanal, R. Morrison. Analysis of electrical resistance tomography (ERT) data using least-squares regression modeling in industrial process tomography. Meas. Sci. Technol.. 2009, 20, (045503): 1~8
    125.雷宝灵,易茂中,徐惠娟.炭/炭复合材料制动过程中温度场的仿真.中国有色金属学报. 2008, 18, (3): 377~382
    126.J. Spi?iak, F. Righini, and G. C. Bussolino. Mathematical models for pulse-heatingexperiments. Inter. J. Thermo.. 2001, 22, (4): 1241~1251
    127.张国玉,徐熙平,杨琳,等.材料高温变形激光扫描测量方法.兵工学报. 2003, 24, (1): 118~120
    128.R. Nowka, H. Müller. Direct analysis of solid samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer and D2-background correction system(SS GF-AAS). Fresenius J. Anal Chem.. 1997, (359): 132~137
    129.翟其曙,塗五二,何有昭,林祥钦.石墨管内部形状对石墨炉原子吸收性能的影响.光谱学与光谱分析. 2003, 23, (6): 1180~1182
    130.李建强,宣维康.不同类型石墨管温度分布与分析性能的关系.北京科技大学学报. 1997, 19, (5): 516~519
    131.B. G. Nair, R. M. Ward. An analysis of the use of magnetic source tomography to measure the spatial distribution of electric current during vacuum arc remelting. Meas. Sci. Technol.. 2009, 20, (045701): 1~11
    132.孙晓刚,戴景民,丛大成,褚载祥.多波长辐射温度计最少波长数确定的理论依据.红外技术. 2001, 23, (3): 23~25
    133.戴景民,杨茂华,褚载祥.多波长辐射测温仪及其应用.红外与毫米波学报. 1995, 14, (6): 461~466
    134.吴勃英,王德明.数值计算原理.哈尔滨:哈尔滨工业大学. 2002, 10: 122~126
    135.符泰然,程晓舫,范学良,丁金磊.三波长测温中波长选取原则的理论分析.光谱学与光谱分析. 2005, 25, (2): 166~170
    136.符泰然,程晓舫,钟茂华,杨臧健.基于波段带宽的谱段测温法的测温范围分析.光谱学与光谱分析. 2008, 28, (9): 1994~1997
    137.戴景民.多光谱辐射测温技术研究.哈尔滨工业大学博士论文. 1995: 23~45
    138.刘丽华,王军,新力,等.光纤温度传感器的应用及发展,仪器仪表学报. 2003, 24, (5): 547~550
    139.A. D. Tilly, J. M. M. Sousa. Measurements of instantaneous heat transfer in a two-dimensional T-junction using a multi-thermocouple probe. Meas. Sci. Technol.. 2009, 20, (045106): 1~9
    140.P. Coppa, G. Ruffino, and A. Spena. Pyrometer wavelength function: its determination and error analysis. High Temp. - High Press.. 1988, 20: 479~490
    141.范毅.多参数电流脉冲加热动态热物性测量技术研究.哈尔滨工业大学博士学位论文. 2003: 42~45
    142.戴景民,杨茂华,褚载祥.基于波长函数的辐射温度计一点标定法及其精度的理论估计与实验验证.计量学报. 1999, 20, (1): 53~58
    143.窦建云,浦恩昌.一维扫描型热成像系统扫描器的结构设计.红外技术. 2006, 28(11):625~628
    144.何山林,马跃洲,陈光,等.线扫描X射线数字成像技术在螺旋焊管检测中的应用.焊接. 2006, 11: 56~59
    145.A. Draude, R. Meinhardt, H. Franke, et al..In-situ measurement of the surface temperature during holographic recording. Chinese Optics Letters. 2008, 6, (1): 25~28
    146.李适民,黄维玲,等.激光器件原理与设计(第2版).北京:国防工业出版社. 2005: 161~179
    147.吕百达.固体激光器件.北京:北京邮电大学出版社. 2002: 38~58
    148.陈则韶,莫松平.辐射热力学中光量子的熵和光子气的熵.工程热物理学报. 2007, 28, (2): 193~195
    149.陈则韶,莫松平.光量子等效温度和黑体辐射光谱有效能.自然科学进展. 2007, 17, (5): 687~691
    150.陈则韶,莫松平,胡芃.辐射热力学的新进展——辐射有效能光量子等效温度光量子熵常数.中国科学E辑:技术科学. 2009, 39, (4): 609~617
    151.E. Kaschnitz, M. Küblb?ck. Thermal diffusivity of the aluminum alloy Al-5Mg-2Si-Mn (Magsimal-59) in the solid and liquid states. High Temp. - High Press.. 2008, 37: 221~230
    152.陈玉清,王静环.激光原理.杭州:浙江大学出版社. 1997
    153.俞宽新,江铁良,赵启大.激光原理与激光技术.北京:北京工业大学出版社. 1998: 218~227
    154.M. Grujicic, C. L. Zhao, E. C. Dusel, et al. Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Csi.. 2006, (41): 8244~8256
    155.杨世铭,陶文铨.传热学[M].北京:高等教育出版社(第三版). 2003, 12: 101~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700