石墨化沥青基超细炭粉负载Pt基电催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有能量密度高、操作温度低等优点,尤其是使用液体燃料更能够降低DMFC系统装置的复杂性,因此被认为是便携式移动移动电源的首选。DMFC阳极主要是使用炭载铂或炭载铂合金作为电催化剂。但是,由于在阳极催化甲醇氧化脱H的过程会产生CO而吸附在催化剂的表面活性位上,从而降低了甲醇电氧化的速率。因此,制备高活性的阳极电催化剂是提高DMFC性能的关键因素之一。
     沥青基超细炭粉(PCSP)是在碳质中间相的成核和中间相小球体的形成过程中,从含有中间相球体的中间相沥青中分离中间相炭微球(MCMB)的同时获得了大量的粒径小于1.0μm的小的碳质颗粒,是碳质中间相球体形成和长大的构筑单元。除我们课题组外,还没有发现其它的关于对此类炭材料研究方面的相关报道。由于缺少对PCSP性质的深刻认识和实际应用方面的基础研究,MCMB工业化生产过程中生成了大量的PCSP副产品目前没有任何应用的价值。为了能够将PCSP加以有效利用、降低DMFC的成本、提高DMFC阳极电催化剂性能,本文采用石墨化沥青基超细炭粉(GPCSP)作为一种新型的Pt基电催化剂的载体进行了基础性研究,并期望GPCSP的特殊性质能够提高Pt基电催化剂的甲醇电氧化性能。
     首先利用KOH活化、HNO3氧化、空气氧化和高温N2处理等方式对GPCSP进行了前处理。KOH活化、HNO3氧化和空气氧化处理后,GPCSP的比表面积均有不同程度的增加,并且在GPCSP表面形成了一定数量的含氧官能团;高温N2处理后,GPCSP比表面积变化不大,石墨化程度得到增加,表面含氧官能团的数量明显降低。
     10 wt% Pt/GPCSP电催化剂的甲醇电氧化实验结果显示,未经过前处理的GPCSP为载体的Pt/S0电催化剂的活性比以Vulcan XC-72炭黑为载体的Pt/CB电催化剂的活性高出30 %,达到850 mA·mgPt-1。Pt/GPCSP电催化剂显示更高甲醇电氧化活性的原因是由于GPCSP载体具有特殊的性能,如高的导电性能和石墨化程度等。同时,载体的前处理对Pt/GPCSP电催化剂的的活性都有不同程度的影响,其中Pt/SKN系列电催化剂的活性最高。Pt/GPCSP电催化剂经过300℃处理后,活性稍微有些降低;而经过900℃处理后,活性降低一倍以上。10 wt(Pt+Ru)% Pt-Ru/GPCSP合金电催化剂中Pt:Ru原子比都接近85:15,Pt-Ru合金相中Ru的含量为1-2 %左右,大量的Ru是以非晶态Ru氧化物的形式存在。甲醇电氧化实验结果显示,Pt-Ru/S0合金电催化剂的活性比Pt-Ru/CB合金电催化剂高23 %,比Pt/S0电催化剂高110 %,达到1790 mA·mgPt-1。Pt-Ru/SKN系列电催化剂具有最高的活性。Pt-Ru/GPCSP合金电催化剂经过300℃处理后,活性有所增加;经过900℃处理后,活性明显降低。
     10 wt(Pt+Co)% Pt-Co/GPCSP合金电催化剂中Pt:Co原子比都接近80:20,Pt-Co合金相中Co的含量为3-4 %左右,大量的Co是以非晶态Co氧化物的形式存在。甲醇电氧化实验结果显示,Pt-Co/S0合金电催化剂的活性比Pt-Co/CB合金电催化剂高20 %,比Pt/S0电催化剂高136 %,达到2010 mA·mgPt-1。Pt-Co/SKN系列电催化剂具有最高的活性。Pt-Co/GPCSP合金电催化剂经过300℃处理后,活性有所增加;经过900℃处理后,活性明显降低。
Direct methanol fuel cells (DMFC) are the most suitable for mobile and portable electronic applications because of their high energy density, relatively low operating temperature, and the convenience of a liquid fuel that, thereby, enables a greatly simplified system design. Carbon supported platinum is commonly used as the anode electrocatalyst. However, one of the problems is sluggish methanol oxidation kinetics at the anode, which is made worse by the progressive loss of catalytically active sites by CO-like reaction intermediates that are generated during the stepwise dehydrogenation of methanol. Therefore, the efforts to icrease the efficiency of DMFC still focused on improvement in the performance of anode electrocatalyts.
     Pitch-based carbon submicron-particles (PCSP) was small carbonanous particles with the size <1.0μm, and separated from mesocarbon mcirobeads (MCMB), which was obtained during the formation and development process of carbonaceous mesophase. PCSP was considered as the basic units of the formation and development of MCMB. However, a large amount of PCSP, which was the byproduct produced during the industrial manufacture of MCMB, is of no use for application due to lacking of profound knowledge of its properties and of the basic research of its application. In order to utilize PCSP effectively, reduce the cost of DMFC and improve the anode electrocatalyst performance, in this paper, exploratory researches were done by using the graphitic PCSP (GPCSP) as the novel supports for Pt-based electrocataysts, and it is expected for GPCSP supported Pt-based electrocatalysts to obtain high performance of methanol electro-oxidation.
     First, GPCSP was treated by KOH activation, HNO3 oxidation, air oxidation, and thermal treatment in N2 flow, respectively. After KOH activation, HNO3 and air oxidation, the specific surface area of GPCSP increased, and oxygen-contained groups were formed on the surface of GPCSP. After thermal treatment, the specific surface area of GPCSP changed slightly, and the amount of oxygen-contained groups decreased obviously.
     The analysis of methanol oxidation showed that the mass specific activity of 10 wt% Pt/S0 electrocatalyst was 850 mA·mgPt-1, with a 30 % increase than that of 10wt% Pt/CB electrocatalyst. This increase in the activity of methanol oxidation for Pt/GPCSP electrocatalysts was attributed to the characteristics of the support, such as the high conductivity and graphitized degree. The performance of the Pt/GPCSP electrocatalysts was affected by using the different pre-treated supports. Among the all electrocatalysts, the Pt/SKN electrocatalysts showed the most highly catalytic activity for the oxidation of methanol. The activity of Pt/GPCSP electrocatalysts decreased slightly after the thermal treatment in N2 flow at 300℃; and after thermal treatment at 900℃, its activity decreased obviously.
     The atomic compostions for 10 wt(Pt+Ru)% Pt-Ru/GPCSP electrocatalysts were nearly 85:15. But there was a large excess of unalloyed amorphous Ru oxide, with only about 1-2 % of the Ru alloyed with Pt. The analysis of methanol oxidation showed that the mass specific activity of Pt-Ru/S0 electrocatalyst was 1790 mA·mgPt-1, with a 23 % increase than that of Pt-Ru/CB electrocatalyst and a 110 % increase than that of Pt/S0 electrocatalyt. Among the all electrocatalysts, the Pt-Ru/SKN electrocatalysts showed the most highly catalytic activity for the oxidation of methanol. The activity of Pt-Ru/GPCSP electrocatalysts increased slightly after the thermal treatment at 300℃; while after thermal treatment at 900℃, its activity decreased obviously.
     The atomic compostions for 10 wt(Pt+Co)% Pt-Co/GPCSP electrocatalysts were nearly 80:20. But there was a large excess of unalloyed amorphous Co oxide, with only about 3-4 % of the Co alloyed with Pt. The analysis of methanol oxidation showed that the mass specific activity of Pt-Co/S0 electrocatalyst was 2010 mA·mgPt-1, with a 20 % increase than that of Pt-Co/CB electrocatalyst and a 136 % increase than that of Pt/S0 electrocatalyt. Among the all electrocatalysts, the Pt-Co/SKN electrocatalysts showed the most highly catalytic activity for the oxidation of methanol. The activity of Pt-Co/GPCSP electrocatalysts increased slightly after the thermal treatment at 300℃; while after thermal treatment at 900℃, its activity decreased obviously.
引文
[1] 黄倬,屠海令,张冀强,詹锋著,质子交换膜燃料电池的研究开发与应用,北京:冶金工业出版社,2000,1-100
    [2] 张国朝,张毅,邵廷杰,周绍英,氢能与环境,全国第二届氢能学术会议论文集,北京,1992,11-12
    [3] 衣宝廉著,燃料电池——原理·技术·应用,北京:化学工业出版社,2003,1-337
    [4] Grove W. R., On voltaic series and the combination of gases by platinum, Philos. Mag., 1839, 14(3): 127-130
    [5] 麦克杜格尔著,燃料电池(江船等译),北京:国防工业出版社,1984,2-157
    [6] Hari P. D., On solid polymer fuel cell, J. Electroanal. Chem., 1993, 357: 237-250
    [7] 顾登平,童汝亭著,化学电源,北京:高等教育出版社,1993,99-100
    [8] Antropov L. I.著,理论电化学(吴中达等译),北京:高等教育出版社,1982,1-100
    [9] 石井弘毅著,图说燃料电池原理与应用(白彦华,杨晓辉译),北京:科学出版社,2003,32-33
    [10] Joon K., Fuel cells-a 21st century power system, J. Power Sources, 1998, 71: 12-18
    [11] 李瑛,王林山著,燃料电池,北京:冶金工业出版社,2002,9-245
    [12] 林维明著,燃料电池系统,北京:化学工业出版社,1996, 1-163
    [13] Leger J. M., Lamy C., The direct oxidation of methanol at platinum based catalytic electrodes: what is new since ten years, Ber. Bunsenges. Phys. Chem., 1990, 94: 1021-1025
    [14] 贾荣利,王成扬,王素梅,质子交换膜燃料电池关键技术研究进展,化学工业与工程,2004,21:448-451
    [15] 陈延禧,聚合物电解质燃料电池的研究进展,电源技术,1996,20(1):21-27
    [16] 邢丹敏,杜学忠,于景荣,等,燃料电池用质子交换膜研究进展,电源技术,2001,25:171-175
    [17] 于景荣,衣宝廉,刘富强,等,再铸 Nafion 膜的制备与应用,膜科学与技术,2002,22(4):26-30
    [18] Bae J. M., Honma I., Murata M., et al., Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, 2002, 147: 189-194
    [19] Adjemian K. T., Srinivasan S., Benziger J., et al., Investigation of PEMFC operation above 100 degrees C employing perfluorosulfonic acid silicon oxide composite membranes, J. Power Sources, 2002, 109: 356-364
    [20] Honma I., Nakajima H., Nomura S., High temperature proton conducting hybrid polymer electrolyte membranes, Solid State Ionics, 2002, 154-155: 707-712
    [21] Cheng X. L., Yi B. L., Han M., et al., Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells, J. Power Sources, 1999, 79: 75-81
    [22] Wildon M. S., Gottesfeld S., Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem., 1992, 22: 1-7
    [23] Uchida M., Fukuok Y., Sugawara Y., et al., Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells, J. Electrochem. Soc., 1996, 143(7): 2245-2251
    [24] 都君华,李伟善,陈红雨,李红,祝士平,质子交换膜燃料电池催化剂的研究进展,电池工业,2002,7:78-80
    [25] Iyuke S. E., Mohamad A. B., Kadhun A. A. H., Daud W. R. W., Rachid C., Improved membrane and electrode assemblies for proton exchange membrane fuel cells, J. Power Sources, 2003, 114: 195-202
    [26] Xiong L., Manthiram A., High performance membrane-electroede assemblies with ultra-low Pt loading for proton exchange membrane fuel cell, Electrochim. Acta, 2005, 50: 3200-3204
    [27] Springer T. E., Wilson M. S., Gottesfeld S., Modeling and experimental diagnostics in polymer electrolyte fuel cells, J. Electrochem. Soc., 1993, 140: 3513-3526
    [28] Shibli S. M. A., Noel M., Development and evaluation of platinum-ruthenium bimetal catalyst-based carbon electrodes for hydrogen/oxygen fuel cells in NaOH media, J. Power Sources, 1993, 45(2): 139-152
    [29] Mosdale R., Srinivasan S., Analysis of performance and of water and thermal management in proton exchange membrane fuel cells, Electrochim. Acta, 1995, 40(4): 413-421
    [30] Yang T. H., Yoon Y. G., Kim C. S., Kwak S. H., Yoon K. H., A novel preparation method for a self-humidifying polymer eletrolyte membrane, J. Power Sources, 2002, 106: 328-332
    [31] Kwak S., Yang H., T. H., Kim C. S., Yoon K. H., The effect of platinum loading in the self-humidifying polymer electrolyte membrane on water uptake, J. Power Sources, 2002, 108: 200-204
    [32] Shukla A. K., Ravikumar M. K., Arico A. S., Methanol electrooxidation on carbon-supported Pt-WO3-x electrodes in sulphuric acid electrolyte, J. Appl. Electrochem., 1995, 26: 528-532
    [33] Munk J., Chrstensen P. A., Hamnet A., Skou E., Electrochemical oxidation of methanol on platinum and platinum+ruthenium particulate electrodes studies yb in-situ FTIR spectroscopy and electrochemical mass spectrometry, J. Electroanal. Chem., 1996, 401: 215-222
    [34] Parson R., Vandernoot T., The oxidation of small organic molecules: asurvey of recent fuel cell related research, J. Electroanal. Chem., 1988, 257: 9-45
    [35] Iwasita T., Vielstich W., On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions, J. Electroanal. Chem., 1985, 185: 403-408
    [36] Ota K., Nakagawa Y., Takahashi M., Reaction products of anodic oxidation of methanol in sulfuric acid solution, J. Electroanal. Chem., 1984, 179: 179-186
    [37] Beden B., Leger J. M., Lamy C., in Moder aspects of electrochemistry Vol. 22 (eds Bochris J. O'. M., Bonway B. C., White R.), New York: Plenum, 1992: 97-99
    [38] Chadrasekaran K., Wass J. C., Bockris J. O'M., The potential dependence of intermediates in methanol oixdation observed in the steady state by FTIR spectroscopy, J. Electrochem. Soc., 1990, 137: 518-523
    [39] 陈延禧,黄成德,孙燕宝,聚合物燃料电池的研究与开发,电池,1999,29(6):243-248
    [40] 黄成德,韩佐青,李晓婷,陈延禧,PEMFC 用 Pt/C 电催化剂的制备,电源技术,2000,24(4):243-245
    [41] Tian J. H., Wang F. B., Shan Z. Q., Wang R. J., Zhang J. Y., Effect of preparation conditions of Pt/C catalysts on oxygen electrode performance in proton exchange membrane fuel cells, J. Appl. Electrochem., 2004, 34: 461-467
    [42] Yi B. L., Yu H. M., Hou Z. J., Lin Z. Y., Zhang J. X., Ming P. W., Zhang H. M., Electrocatalysts for proton exchange membrane fuel cells in Dalian Institute of Chemical Physics, Chinese Academy of Sciences-Study on the Pt/C electrocatalyst, Precious Metals, 2002, 23(3): 1-7
    [43] Pozio A., Silva R. F., Francesco de M., Cardellini F., Giorgi L., Anovel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell. Electrochim. Acta, 2002, 48: 255-262
    [44] Boehm H. P., Surface oxides on carbon and their analysis: a critical assessment, Carbon, 2002, 40: 145-149
    [45] Figueiredo J. F., Pereira M. F. R., Freitas M. M. A., órf?o J. J. M., Modification of the surface chemistry of activated carbons, Carbon, 1999, 37: 1379-1389
    [46] Fuente A. M., Pulgar G., González F., Pesquera C., Blanco C., Activated carbon supported Pt catalysts: effect of support texture and metal precursor on activity of acetone hydrogenation, Appl. Catal. A: General, 2001, 208: 35-46
    [47] Amine K., Mizuhata M., Oguro K., Takenaka H., Catalytic activity of platinum after exchange with surface active functional groups of carbon blacks, J. Chem. Soc. Faraday Trans., 1995, 91(24): 4451-4458
    [48] Amine K., Yasuda K., Takenaka H., New process for loading highly active platinum on carbon black surface for application in polymer electrolyte fuel cell, Ann. Chim. Sci. Mat., 1998, 23: 331-335
    [49] Yasuda K., Nishimura Y., The deposition of ultrafine platinum particles on carbon black by surface ion exchange-increase in loading amount, Materials Chem. Phys., 2003, 82: 921-928
    [50] B?nnemann H., Bruour W., Brinkmann R., et al., Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates, J. Mol. Catal., 1994, 86: 129-177
    [51] Schmidt T. J., Noeske M., Gasteiger H. A., et al., PtRu alloy colloids as precursors for fuel cell catalysts, J. Electrochem. Soc., 1998, 145(3): 925-931
    [52] Faubert G., Guay D., Dodelet J. P., Pt inclusion compounds as oxygen reduction catalysts in polymer-electrolyte fuel cell, J. Electrochem. Soc., 1998, 145(9): 2985-2991
    [53] Tilquin Y., Cote R., Veilleux G., Guay D., Dodelet J. P., Denes G., Preparation and chemical reduction of Pt(Ⅳ) choloride-GICs: supported Pt vs Pt inclusion graphite compounds, Carbon, 1995, 33(9): 1265-1278
    [54] L?ffler M. S., Gro? B., Natter H., Hempelmann R., Krajewski T., Divisek J., New preparation technique and characterization of nanostructured catalysts for polymer membrane fuel cells, Scripta Mater., 2001, 44: 2253-2257
    [55] Escudero M. J., Honta?ón E., Schwartz S., Boutonnet M., Daza L., Development and performance characterization of new electrocatalysts for PEMFC, J. Power Sources, 2002, 106: 206-214
    [56] Chu D., Jiang R. Z., Novel electrocatalysts for direct methanol fuel cells, Solid State Ionics, 2002, 148: 591-599
    [57] Tian Z. Q., Xie F. Y., Shen P. K., Preparation of high Pt loading Pt supported on carbon by on-site reduction, J. Mater. Sci., 2004, 39: 1507-1509
    [58] Bensebaa F., Farah A. A., Wang D. S., Bock C., Du X. M., Kung J., Page Le Y., Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell, J. Phys. Chem. B, 2005, 109: 15339-15344
    [59] Lin Y. H., Cui X. L., Yen C., Wai C. M., Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells, J. Phys. Chem. B, 2005, 109: 14410-14415
    [60] 唐致远,宋世栋,刘建华,质子交换膜燃料电池电极催化剂的研究进展,电源技术,2003,27(1):58-63
    [61] 崔梅生,郭耘,黄小卫,等. 质子交换膜燃料电池电极催化材料发展概况[J]. 稀有金属,2002,26(6):487-492
    [62] Taylor E. J., Anderson E. B., Vilambin R. K., Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells, J. Electrochem. Soc., 1992, 139(5): L45-L47
    [63] 邵志刚,衣宝廉,韩明,等. 质子交换膜燃料电池电极的一种新的制备方法, 电化学,2000,6(3):317-322
    [64] Siyu Y., Ashok K. V., Le H. D., A new fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with very low platinum loading, J. Electrochem. Soc., 1996, 143(1): L7-L9
    [65] Cha S. Y., Lee W. M., Performance of PEMFC electrodes prepared by direct depositions of ultrathin platinum on the membranes surface, J. Electrochem. Soc., 1999, 146(11): 4055-4060
    [66] Maloto U., Yuko F., Yasushi S., Improved preparation process of very low-platinum-loading electrodes for polymer electrolyte fuel cell, J. Electrochem. Soc., 1998, 145(1): 3708-3717
    [67] Qi Z. G., Kaufman A., Enhancement of PEM fuel cell performance by steaming or boiling the electrode, J. Power Sources, 2002, 109: 227-229
    [68] Qi Z. G., Kaufman A., Low Pt loading high performance cathodes for PEM fuel cells, J. Power Sources, 2003, 113: 37-43
    [69] Thompson S. D., Jordan L. R., Forsyth M., Platinum electrodeposition for polymer electrolyte membrane fuel cells, Electrochim. Acta, 2001, 46: 1657-1663
    [70] Maruyama J., Abe I., Cathodic oxygen reduction at the catalyst layer formed from Pt/carbon with adsorbed water, J. Electroanal. Chem., 2003, 545: 109-115
    [71] Jung D. H., Lee C. H., Kim C. S., Shin D. R., Dong, Performance of a direct methanol polymer electrolyte fuel cell, J. Power Sources, 1998, 71: 169-173
    [72] Cattaneo C., Sanchez de Pinto M. I., Mishima H., López de Mishima B. A., Lescano D., Cornaglia L., Characterization of platinum-rutheniun electrodeposits using XRD, AES and XPS analysis, J. Electroanal. Chem., 1999, 461: 32-39
    [73] Lin, S. D., Hsiao, T. C., Chang, J. R., Lin, A. S., Morphology of carbon supported Pt-Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells, J. Phys. Chem. B, 1999, 103: 97-103
    [74] Gurau B., Viswanathan R., Liu R. X., Lafrenz T. J., Ley K. L., Smotkin E. S., Reddington E., Sapienza A., Chan B. C., Mallouk T. E., Sarangapani S., Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation, J. Phys. Chem. B, 1998, 102: 9997-10003
    [75] Anderson A. B., Grantscharova E., Seong S., Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance, J. Electrochem. Soc., 1996, 143(6): 2075-2082
    [76] Toda T., Igarashi H., Watanabe M., Enhancement of the electrocatalystic O2 reduction on Pt-Fe alloys, J. Electroanal. Chem., 1999, 460: 258-262
    [77] Aricò A. S., Shukla A. K., Kim H., Park S., Min M., Antonucci V., An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen, Appl. Surf. Sci., 2001, 172: 33-40
    [78] Antolini E., Passos R. R., Ticianelli E. A., Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cell, Electrochim. Acta, 2002, 48: 263-270
    [79] 黄成德,韩佐青,李晓婷,陈延禧,聚合物膜燃料电池用电催化剂研究进展,化学通报,2000,63(12):1-5
    [80] Lalande G., C?téR., Guay D., Dodelet J. P., Weng L. T., Bertrand P., Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells?, Electrochim. Acta, 1997, 42(9): 1379-1388
    [81] Faubert G., C?té R., Guay D., Dodelet J. P., Dénès G., Poleunis C., et al., Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells, Electrochim. Acta, 1998, 43(14~15): 1969-1984
    [82] Biloul A., Gouerec P., Savy M., et al., Oxygen electrocatalysis under fuel cell condition: behavior of cobalt porphyrins and tetraazaannulene analogues, J. Appl. Electrochem., 1996, 26: 1139-1143
    [83] Lalande G., Faubert G., Cote R., et al., Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells, J. Power Sources, 1996, 61: 227-337
    [84] Faubert G., C?té R., Guay D., Dodelet J. P., Dénès G., Bertrand P., Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells, Electrochim. Acta, 1998, 43(3~4): 341-353
    [85] Urban P. M., Funke A., Müller J. T., Himmen M., Docter A., Catalytic processes in solid polymer electrolyte fuel cell systems, Appl. Catal. A: General, 2001, 221: 459-470
    [86] 查全性,燃料电池技术的发展与我国应有的对策,应用化学,1993,10(5):38-42
    [87] Shen P. K., Tseung A. C. C., Anodic oxidation of methanol on Pt/WO3 in acidic media, J. Electrochem. Soc., 1994, 141(11): 3082-3088
    [88] Gasteiger H. A., Markovic N. M., Ross P. N., H2 and CO electrooxidation on well-characterized Pt, Ru and Pt-Ru, J. Phys. Chem., 1995, 99: 8290-8301
    [89] Gasteiger H. A., Markovic N. M., Ross P. N., Electrooxidation of CO and H2/CO mixtures on a well-characterized P3tSn electrode surface, J. Phys. Chem., 1995, 99: 8945-8949
    [90] Grgur B. N., Markovic N. M., Ross P. N., The electro-oxidation of CO and H2/CO mixtures on carbon-supported PtxMox catalysts, J. Electrochem. Soc., 1999, 146(5): 1613-1619
    [91] Antolini E., Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mater. Chem. Phys., 2003, 78: 563-573
    [92] Oetjen H. F., Schmidy V. M., Stimming U., et al., Performance data of a proton exchange membrane fuel cell using H2/CO as fuel cell, J. Electrochem. Soc., 1996, 143(12): 3838-3842
    [93] Ren X. M., Wilson M. S., Gottesfeld S., High performance direct methanol polymer electrolyte fuel cells, J. Electrochem. Soc., 1996, 143(1): L12-L15
    [94] Takasu Y., Fujiwara T., Murakami Y., et al., Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol, J. Electrochem. Soc., 2000, 147(12): 4421-4427
    [95] Schmidt T. J., Gasteuger H. A., Behm R. J., Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst, J. Electrochem. Soc., 1999, 146(4): 1296-1304
    [96] Pozil A., Silva R. F., Francesco M. D., et al., A novel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell, Electrochim. Acta, 2003, 48: 1627-1634
    [97] Machida K., Enyo M., Methanol oxidation characteristics of rare earth tungsten bronze electrodes doped with platinum, J. Electrochm. Soc., 1988, 135(8): 1955-1961
    [98] Christensen P. A., Hamnett A., Troughton G. L., The role of morphology in the methanol electro-oxidation reaction, J. Electroanal. Chem., 1993, 362: 207-218
    [99] Hanner A. N., Ross P. N., Electrochemical oxidation of methanol on tin-modified platinum single-crystal surfaces, J. Phys. Chem., 1991, 95: 3740-3746
    [100] Frelink T., Visscher W., van Veen J. A. R., The effect of Sn on Pt/C catalysts for the methanol electro-oxidation, Electrochim. Acta, 1994, 39(11-12): 1871-1875
    [101] Crab E. M., Marshall R., Tompsett D., Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry, J. Electrochem. Soc., 2000, 147(12): 4440-4447
    [102] Stamenkovic V. R., Arenz M., Blizanac B. B., Mayrhofer K. J. J., Ross P. N., Markovic N. M., In situ CO oxidation on well characterized Pt3Sn(hkl) surfaces: A selective review, Surf. Sci., 2005, 576: 145-157
    [103] Stamenkovic V. R., Arenz M., Lucas C. A., Gallagher M. E., Ross P. N., Markovic N. M., Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111), J. Am. Chem. Soc., 2003, 125: 2736-2745
    [104] Radmilovic V., Richardson T. J., Chen S. J., Ross P. N. Jr., Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures. Part I. Microstructural characterization, J. Catal., 2005, 232: 199-209
    [105] Arenz M., Stamenkovic V., Blizanac B. B., Mayrhofer K. J., Markovic N. M., Ross P. N., Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures.: Part II: The structure–activity relationship, J. Catal., 2005, 232: 402-410
    [106] Lee D., Hwang S., Lee I., A study on composite PtRu(1:1)-PtSn(3:1) anode catalyst for PEMFC, J. Power Sources, 2005, 145: 147-153
    [107] Jiang L. H., Sun G. Q., Zhou Z. H., Zhou W. J., Xin Q., Preparation and characterization of PtSn/C anode electrocatalysts for direct ethanol fuel cell, Catal. Today, 2004, 93-95: 665-670
    [108] Colmati F., Antolini E., Gonzalez E. R., Pt–Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid, Electrochim. Acta, 2005, 50: 5496-5503
    [109] Grgur B. N., Zhuang G., Markovic N. M., et al., Electrooxidation of H2/CO mixtures on a well-characterized Pt75Mo25 alloy surface, J. Phys. Chem. B, 1997, 101: 3910-3913
    [110] Gotz M., Wendt H., Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta, 1998, 43(24): 3737-3744
    [111] Grgur B. N., Markovic N. M., Ross P. N., Electrooxidation of H2, CO, and H2/CO mixture on a well-characterized Pt70Mo30 bulk alloy electrode, J. Phys. Chem. B, 1998, 102: 2494-2501
    [112] Gouerec P., Denis M., Guay C. D. et al., High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and their tolerance to CO, J. Electrochem. Soc., 2000, 147(11): 3989-3995
    [113] Grgur B. N., Markovic N. M., Ross P. N., Electrooxidation of H2, CO, and H2/CO mixture on a well-characterized Pt-Re bulk alloy electrode and comparison with other Pt binary alloys, Electrochim. Acta, 1998, 43(24): 3631-3635
    [114] Crabb E. M., Ravikumar M. K., Synthesis and characterisation of carbon-supported PtGe electrocatalysts for CO oxidation, Electrochim. Acta, 2001, 46: 1033-1041
    [115] Hills C. W., Nashner M. S., Frenkel A. I., et al., Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir, 1999, 15(3): 690-700
    [116] Xu X., Polymer/carbon blend electrodes and polyphosphonate membrane for PEM fuel cells, Thesis, State University of New York, NY, 1993
    [117] E-TEC, Inc. 1997/98 Catalogue "Gas Diffusion Electrodes and Catalyst Materials"
    [118] Park G. G., Jung J. H., Jung D. H., Shin D. R., Kim C. S., Preparation of alloy catalysts for air breathing type direct methanol fuel cell, 2000 Fuel Cell Seminar Abstracts, October 30-Novermber 2, Portland, OR, 2000, 167-170
    [119] Bessel C. A., Laubernds K., Rodriguez N. M., et al., Graphite Nanofibers as an Electrode for fuel cell applications, J. Phys. Chem., 2001, 105(6): 1115-1118
    [120] Shukla A. K., Hamnett A., Roy A., et al., An X-ray photoelectron spectroscopic study on platinised carbons with varying functional-group characteristics, J. Electroanal. Chem., 1993, 352: 337-343
    [121] Blurton K. F., The preparation of highly dispersed platinum on carbon, Carbon, 1972, 10: 305-315
    [122] Uchida M, Aoyama Y, Tanabe N, et al., Influences of both carbon supports and heat-treatment of supported catalyst on electrochemical oxidation of methanol, J. Electrochem. Soc., 1995, 142(8): 2572-2576
    [123] Aramata A., Kodera T., Masuda M., Electrooxidation of methanol on platinum bonded to the solid polymer electrolyte, Nafion, J. Appl. Electrochem. 1988, 18(4): 577-572
    [124] Roy S. C., Christensen P. A., Hamnett H., et al., Direct methanol fuel cathodes with sulfur and nitrogen-based carbon functionally, J. Electrochem. Soc. 1996, 143(10): 3073-3079
    [125] Liu W. J., Wu B. L., Cha C. S., Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes, J. Electroanal. Chem., 1999, 476: 101-108
    [126] McNicol B. D., Rand D. A. J., Williams K. R., Direct methanol–air fuel cells for road transportation, J. Power Sources, 1999, 83: 15-31
    [127] Coloma F., Sepúlveda-Escribano A., Fierro J. L. G., et al., Preparation of platinum supported on pregraphitized carbon blacks, Langmuir, 1994, 10: 750-755
    [128] Prado-Burguete C., Linares-Solano A., Rodríguez-Reinoso F., et al., The effect of oxygen surface groups of the support on Platinum dispersion in Pt/carbon catalysts, J. Catal., 1989, 115: 98-106
    [129] Sepúlveda-Escribano A., Coloma F,, Rodríguez-Reinoso F., Platinum catalysts supported on carbon blacks with different surface chemical properties, Appl. Catal. A: General, 1998, 173: 247-257
    [130] Radovic L. R., Ridriguiz-Reinoso F., in Chemistry and Physics of Carbon Vol, 25(de. Thrower, P. A.)243-358 (Marcel-Dekker, New York, 1997)
    [131] Goodenough J. B., Hamnett A., Kennedy B. J., et al., Methanol oxidation on unsupported and carbon supported Pt-Ru anodes, J. Electroanal. Chem. 1988, 240: 133-145
    [132] Shioyama H., Yasuda K., Carbon materials used for electrocatalyst of polymer electrolyte fuel cells, Tanso, 2003, 210: 236-242
    [133] Li X. G., Xing W., Yang H., et al., Effect of properties of active carbon supports on performance of Pt/C catalysts in polymer electrolyte membrane fuel cell, Chinese J. Anal. Chem., 2002, 30(7): 788-791
    [134] Park G. G., Yang T. H., Yoon Y. G., et al., Pore size effect of the DMFC catalyst supported on porous materials, Int. J. Hydrogen Energ., 2003, 28: 645-650
    [135] Lillo-Ródenas M. A., Lozano-Castelló D., Cazorla-Amorós D., et al., Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH, Carbon, 2001, 39: 751-759
    [136] Hayashi J., Kazehaya A., Muroyama K., et al., Preparation of activated carbon from lignin by chemical activation, Carbon, 2000, 38: 1873-1878
    [137] Liu Y. C., Qiu X. P., Huang Y. Q., et al., Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts, Carbon, 2002, 40: 2375-2380
    [138] Liu Y. C., Qiu X. P., Huang Y. Q., et al., Mesocarbon microbeads supported Pt-Ru catalysts for electrochemical oxidation of methanol, J. Power Sources, 2002, 111: 160-164
    [139] Steigerwalt E. S., Deluga G. A., Cliffel D. E., et al., A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst, J. Phys. Chem. B, 2001, 105: 8097-8101
    [140] Steigerwalt E. S., Deluga G. A., Lukehart C. M., Pt-Ru/carbon fiber nanocomposite: synthesis, characterization, and performance as anode catalysts of direct methanol full cell. A search for exceptional performance, J. Phys. Chem. B, 2002, 106: 760-766
    [141] Coq B., Planeix J. M., Brontons V., Fullerene-based materials as new support media in heterogeneous catalysis by metals, Appl. Catal., 1998, 173: 175-183
    [142] Li W. Z., Liang C. H., Qiu J. S., Zhou W. J., Han H. M., Wei Z. B., Sun G. Q., Xin Q., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon, 2002, 40: 791-794
    [143] Rajesh B., Karthik V., Karthikeyan S., Thampi K. R., Bonard J. M., Viswanathan B., Pt-WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells, Fuel, 2002, 81: 2177-2190
    [144] Joo S. H., Choi S. J., Oh H., et al., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Natrue, 2001, 412: 169-172
    [145] Li W. Z., Liang C. H., Qiu J. S., et al., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Letters to Editor/Carbon, 2002, 40: 787-803
    [146] Yoshitake T., Shimakawa Y., Kuroshima S., et al., Preparation of fine Platinum catalyst supported on single-wall carbon nanohorns for fuel cell application, Physica, 2002, 323: 124-126
    [147] Wang X., Hsing I. M., Yue P. L., Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells, J. Power Sources. 2001, 96: 282-287
    [148] 李同起,王成扬,郑嘉明,等,非均相成核中间相炭微球的形成过程及其结构演变,新型炭材料,2004,19(4):281-288
    [149] 李同起,王成扬,刘秀军,等,亚微米鳞片石墨存在下碳质中间相的形成机理研究,第六届全国新型炭材料学术研讨会论文集,中国科学院山西煤炭化学研究所《新型炭材料》编辑部,昆明,2003,30-36
    [150] 李同起,碳质中间相结构的形成及其相关材料的应用研究,[博士学位论文],天津,天津大学,2005,66-67
    [151] Stoeckli F., Centeno T. A., On the determination of surface areas in activated carbons, Carbon, 2005, 43(6): 1184-1190
    [152] 吴人洁,现代分析技术——在高聚物中的应用,上海:上海科学技术出版社,1987,140-218
    [153] Gamez A., Richard D., Gallezot P., Gloaguen F., Faure R., Durand R., Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer, Electrochim. Acta, 1996, 41: 307-314
    [154] Kinoshita K., ‘Carbon: Electrochemical and Physicochemical Properties’ (J. Wiley & Sons, New York and Chichester, UK, 1983), 35-37
    [155] Benson J. E., Boudart J., Hydrogen-Oxygen Titration method for the measurement of supported platinum surface areas, J. Catal., 1965, 4: 704-710
    [156] Antolini E., Cardelini F., Formation of carbon supported PtRu alloys: an XRD analysis, J. Alloys. Comp., 2001, 315: 118-122
    [157] Lu Q. Y., Yang B., Zhuang L., Lu J. T., Anodic activation of PtRu/C catalysts for methanol oxidation, J. Phys. Chem., 2005, 109: 1715-1722
    [158] Antolini E., Cardellini F., Giorgi L., Passalacqua E., Effect of Me (Pt+Ru) content in Me/C catalysts on PtRu alloy formation: An XRD analysis, J. Mater. Sci. Lett., 2000, 19: 2099-2103
    [159] Salgado J. R. C., Antolini E., Gonzalez E. R., Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst, J. Power Sources, 2004, 138: 56-60
    [160] Salgado J. R. C., Antolini E., Gonzalez E. R., Carbon supported Pt-Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells, Appl. Catal. B: Environmental, 2005, 57: 283-290
    [161] 韩维屏等著,催化化学导论,北京:科学出版社,2004,164-170
    [162] Yamashita Y., Ouchi K., Influence of alkali on the carbonization process I : Carbonization of 3,5-dimethylphenol-formaldehyde resin with NaOH, Carbon, 1982, 20: 41-45
    [163] Kaneko K., Ishii C., Ruike M., Kuwabara H., Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons, Carbon, 1992, 30: 1075-1088
    [164] Rodríguez-Reinoso F., Molina-Sabio M., Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview, Carbon, 1992, 30: 1111-1118
    [165] Lozano-Castell D., Lillo-Rdenas M. A., Cazorla-Amors D., Linares-Solano A., Preparation of activated carbons from Spanish anthracite: I. Activation by KOH, Carbon, 2001, 39: 741-749
    [166] Shen Z. M., Xue R. S., Preparation of activated mesocarbon microbeads with high mesopore content, Fuel Process. Technol., 2003, 84: 95-103
    [167] 岑可法,姚强,骆仲泱,等,高等燃烧学,杭州:浙江大学出版社,2002,357-358
    [168] Otake Y., Jenkins R. G., Characterization of oxygen-containing surface complexes created on a micrioporous carbon by air and nitric acid treatment, Carbon, 1993, 31(1): 109-121
    [169] Zielke U., Hüttinger K. J., Hoffman W. P., Surface-oxidized carbon fibers: ⅠS urface structure and chemistry. Carbon.1996, 34(8): 983-998
    [170] Zhuang Q. L., Kyotany T., Tomita A., The change of TPD pattern of O2-gasified carbon upon air exposure, Carbon, 1994, 32: 539-540
    [171] Ibarra J. V., Juan R., Structural changes in humic acids during the coalification process, Fuel, 1985, 64: 650-656
    [172] Starsinic M., Otake Y., Rinehart R. W. Jr., et al., Application of FT-IR spectroscopy to the determination of COOH groups in coal, Fuel, 1984, 63: 1002-1007
    [173] Schlyer D. J, Ruth T. J., Wolf A. P., Oxygen content of selected coals as determined by charged particle activation analysis, Fuel, 1979, 58(3): 208-210
    [174] Dementjev A. P., Petukhov M. N., Baranov A. M., The unique capability of X-ray photon spectroscopy and X-ray excited Auger electron spectroscopy in identifying the sp2/sp3 ratio on the surface of growing carbon films, Diam. Rekat. Mater., 1998, 7: 1534-1538
    [175] Takahagi T., Ishitani A., XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber, Carbon,1984, 22(1): 43-46
    [176] Horita K., Nishibori Y., Ohshima T., Surface modification of carbon black by anodic oxidation and electrochemical characerization, Carbon, 1996, 34(2): 217-222
    [177] Wang Y. G., Korai Y., Mochida I., Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon, 1999, 37: 1049-1057
    [178] 吕永根,凌立成,刘朗,等,由中间相炭微球制备高密度各向同性炭,炭素,1998,4:9-14
    [179] Honda H., Mesophase pitch and meso-carbon microbeads, Mol. Cryst. Liq. Cryst., 1983, 94: 97-108
    [180] Kim, Y. J., Horie Y., Matsuzawa Y., et al., Structural features mecessary to obtain a high specific capacitance in electric double layer capacitors, Carbon, 2003, 42(12-13): 2423-2432
    [181] Hu Y. H., Ruchenstein E., The catalytic reaction of NO over Cu supported meso-carbon microbeads of ultrahigh surface area, J. Catal., 1997, 172: 110-117
    [182] Zhang Z. G., Zhang X. G., MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells, Electrochim. Acta, 2004, 49: 873-877
    [183] 李宝华,吕永根,凌立成,等,中间相炭微球用作锂离子电池阳极的充放电性能研究,新型炭材料,1999,14(4):28-33
    [184] Tokumitsu K., Fujimoto H., Mabuchi A., et al., High capacity carbon anode for Li-ion battery/A theoretical explanation, Carbon, 1999, 37: 1599-1605
    [185] Takasu Y., Kawaguchi T., Sugimoto W., Murakami Y., Effect of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru Particles as catalysts for methanol oxidation, Electrochim. Acta, 2003, 48: 3861-3868
    [186] Fraga M. A., Jord?o E., Mendes M. J., Freitas M. M. A., Faria J. L., Figueiredo J. L., Properties of carbon-supported platinum catalysts: role of carbon surface sites, J. Catal., 2002, 209: 355-364
    [187] Román-Martínez M. C., Cazorla-Amorós, Linares-Solano D. A., Salinas-Martínez de Lecea C., Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor, Carbon, 1995, 33(1): 3-13
    [188] Frelink T., Visscher W., van Veen J. A. R., Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol, J. Electroanal. Chem., 1995, 382: 65-72
    [189] Shiyama H., Yamada Y., Ueda A., Kobayashi T., Screening of carbon supports for DMFC electrode catalysts by infrared thermography, Carbon, 2003, 41: 607-609
    [190] Casado-Rivera E., Volpe D. J., Alden L., Lind C., Downie C., Vázquez-Alvarez T., Angelo A. C. D., Disalvo F. J., Abru?a H. D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, 126(12): 4043-4049
    [191] Lee S. A., Park K. W., Choi J. H., Kwon B. K., Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells, J. Electrochem. Soc., 2002, 149(10): A1229-A1304
    [192] Gangeri M., Centi G., La Malfa A., Perathoner S., Vieira R., Pham-Huu C., Ledoux M. J., Electrocatalytic performances of nanostructured platinum-carbon materials, Catal. Today, 2005, 102-103: 50-57
    [193] Camara G. A., Giz M. J., Paganin V. A., Ticianelli E. A., Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells, J. Electroanal. Chem., 2002, 537: 21-29
    [194] Zhou W. J., Zhou B., Li W. Z., Zhou Z. H., Song S. Q., Sun G. Q., Xin Q., Douvartdes S., Goula M., Tsiakaras P., Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts, J. Power Sources, 2004, 126(1-2): 16-22
    [195] Wakabayashi N., Takeichi M., Uchida H., Watanabe M., Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes, J. Phys. Chem. B., 2005, 109(12): 5836-5841
    [196] Salgado J. R. C., Antolini E., Gonzalez E. R., Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction, J. Phys. Chem. B., 2004, 108(46): 17767-17774
    [197] Salgado J. R. C., Antolini E., Gonzalez E. R., Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells, J. Power Sources, 2005, 141: 13-18
    [198] Yu P., Pemberton M. Plasse P., PtCo/C cathode catalyst for improved durability in PEMFCs, J. Power Sources, 2005, 144: 11–20
    [199] Zhang X., Chan K. Y., Microemulsion synthesis and electrocatalytic properties of platinum–cobalt nanoparticles, J. Mater. Chem., 2002, 12: 1203-1206
    [200] Okada T., Suzuki Y., Hirose T., Ozawa T., Novel system of electro-catalysts for methanol oxidation based on platinum and organic metal complexes, Electrochim. Acta, 2004, 49: 385-395
    [201] Zeng J. H., Lee J. Y., Effect of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions, J. Power Sources, 2005, 140: 268-273
    [202] Page T., ohnsonR. J, Hormes J., Noding S., Rambabu B., A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS, J. Electroanal. Chem., 2000, 485: 34-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700