微/纳米生物复合纤维的电纺制备及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先用常规的静电纺丝法制备了聚乳酸( PLLA )、聚乳酸/胶原(PLLA/Collagen)、聚乳酸/羟基磷灰石(PLLA/HA)和聚乳酸/胶原/羟基磷灰石(PLLA/Collagen/HA)生物复合纤维。采用SEM、FT-IR、单轴拉力测试、DSC、XRD和水接触角等测试手段对纤维的形貌结构、结晶性能、热力学性能和浸润性进行了分析表征。结果表明,复合纤维膜具有良好的支架结构,纤维形貌较好,平均直径在400~700nm之间。胶原和HA的掺杂可以在一定程度上调节聚乳酸纤维的力学性能,但由于二者的掺杂量较少,热稳定性和亲水性变化不大。
     特殊形貌微/纳米纤维是近几年来逐渐受到重视的纤维材料,本论文利用实验室自制的双电极静电纺丝装置探索了一系列基于热塑性聚酯弹性体(TPEE)和基于聚乳酸的双组分纤维材料。分别将这两种高聚物与PVP、PCL、PEG等具有一定生物活性或亲水性的物质进行组合,制备了具有特殊形貌的纤维材料。通过SEM表征发现,不同高聚物组分的结合以及溶剂体系的选择对纤维形貌有较大影响,经分析可能是由于高聚物收缩性的差异及不同溶剂体系之间的差异造成的。同时,也说明双电极静电纺丝装置可适用于多种不同溶剂的高聚物组分之间的结合,为特殊形貌微/纳米纤维材料的制备和应用提供了新的途径,具有很大的应用前景。
In this paper, PLLA, PLLA/Collagen, PLLA/HA and PLLA/Collagen/HA bio-composite nanofibers were prepared by traditional electrospinning. The fiber morphology, the crystallization behavior, the thermal and mechanical properties and the hydrophilicity were characterized by SEM, FT-IR, uniaxial tensile test, DSC, XRD and water contact angle measurement. The results showed that the composite fiber mats had relatively ideal fiber morphology and scaffold. The average diameters were about 400~700nm. With the addition of collagen and HA, the amount of which was small, the mechanical property of the composite fibers have been enhanced, while the thermal property and the hydrophilicity has not been changed obviously.
     Recently, the micro/nanoscale fibers with special morphologies have attracted increasing attention. In this paper, a series of bicomponent fiber materials separately based on TPEE and PLLA have been prepared by a novel double-electrode electrospinning. Other components coupled with TPEE or PLLA include PVP, PCL, PEG and so on, most of which are biomaterials and hydrophilic materials. SEM images showed that the polymer materials and their solvents have great influence with the morphology of the bicomponent fibers, which was probably due to the different shrinkage of the polymers and the nature of the solvents. Double-electrode electrospinning can be used to prepare bicomponent fibers of large numbers of polymers. It provides a new way to produce fibers with special morphologies and has great application prospects.
引文
[1]刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002:8-19.
    [2]曹茂盛.超微颗粒的制备性质科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1998:12-19.
    [3] Leiter, H.. Nanostructured Materials[J]. Acta Metalurgica Sinica, 1997, 33(2):30-38.
    [4]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
    [5]陈桉,毛宗强,朱宏伟等.平衡压力对碳纳米材料储氢的影响[J].清华大学学报自然科学版,2002,42(5):659-661.
    [6] Wang Z. H., Liu J., Yan L. S., et al. Effect of Porous Interfacial Layer of Carbon Nanotube Modified Electrodes on Electrochemical Dis-crimination of Dopamine from Ascorbic Acid Chemical[J]. Journal of Chinese Universities-Chinese, 2003, 24(2): 236-240.
    [7]安林红.王跃纳米纤维技术的开发及应用[J].当代石油石化,2002,10(1):52-54.
    [8] Schreuder-Gibson H., Gibson P.. Use of Electrospun Nanofibers for Aerosol Filtration in Textile Structures[J]. Fiber Society.Symposium(Abstracts), 2002:52-54.
    [9]山本敏裕.石墨纳米纤维在新一代平面显示屏的应用[J].工业材料,2004,51(9):64.
    [10]罗益锋.纳米纤维及其对未来世界的影响[J].高科技纤维与应用,2004,29(2):1-6.
    [11] Jonh F., Hage Wood. Polymeric Nanofibers Fantasyor Future[J]. International Fibers Journal, 2002, 12:62-63.
    [12] Doshi, Nanofiber-Based Nonwoven Composites: Properties and Applications[J]. Nonwovens World, 2001, 4(10):64-68.
    [13] Doshi J., Mainz M. H., Bhat G. S.. Nanofiber Based Nonwoven Composites: Properties and Applications[J]. Proceedings of the 10th Annual International TANDEC Nonwovens Conference Nov, 2000, 7-10:1-7.
    [14]吴大诚,杜仲良.纳米纤维[M].北京:化学工业出版社,2003:33-37.
    [15] Fomhals A. Process and Apparatus for Preparing Artificial Threads[P]. US patent: 1975504, October 2, 1934.
    [16] Bornat A.. Production of Electrostatically Spun Products. U.S. Patent: 4689186, 1987.
    [17] Doshi J., Reneker D. H.. Electrospinning Process and Applications of Electrospun Fibers[J]. J. Electrostat, 1995, 35:151-160.
    [18]纪明辉,魏平原,孟庆飞.纳米纤维的制备及性能[J].高科技纤维与应用,2002,27(3):11-14.
    [19] Watts P., Hsu W. K., Randall D. P., Kotzeva V., Chen G. Z.. Chem. Mater. 2000, 12:4505.
    [20] Reneker D. H., Chun I.. Nanometre Diameter Fibres of Polymer Produced by Electrospinning[J]. Nanotechnology, 1996(7):216-223.
    [21]王世敏,许祖勋,傅晶.纳米材料制备技术[J].化学工业出版社,2002:145-157.
    [22] Shin Y. M., Hohman M. M., Brenner M. P., et al. Experimental Characterization of Electrospinning: the Electrically Forced Jet and Instabilities[J]. Polymer, 2001, 42:9955-9967.
    [23] Fong H., Chun I., Reneker D. H.. Beaded Nanofibers Formed During Electrospinning[J]. Polymer, 1999, 40:4585-4592.
    [24] Chun I., Reneker D. H., Fong H., et al. Carbon nanofibers from polyacrylonitrile and Mesophase Pitch[J]. J. Adv. Mater., 1999, 31(1):36-41.
    [25] Chun I., Reneker D. H., Fong H., et al. Carbon Nanofibers from Polyacrylonitrile and Mesophase Pitch[J]. J Adv Mater, 1999, 31(1):36-41.
    [26] Pawlowski K. J., Belvin H. L., Raney D. L., et al. Polymer, 2003, 44:1309-1314.
    [27] Khil M. S., Cha D., Kim H. Y., et al. Appl. Biomater., 2003, 67B:675-679.
    [28] Satishkumar B. C., Govindaraj A., Vanitha P. V., et al. Chem. Phys. Lett., 2002, 362:301.
    [29]吴大成,杜仲良.纳米纤维[M].北京:化学出版社,2003.
    [30] Huang Z. M., Zhang, Y. Z., Kotakic M., et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003.
    [31] Zong X. H., Bien H., Chung C. Y., et al. Electrospun Fine Textured Scaffolds for Heart Tissue Constructs[J]. Biomaterials, 2005, 26(26):5330-5338.
    [32] Majola A., Vainionpaa S. Absorption, Biocompatibility and Fixation Properties of Polylatic Acid in Bone Tissue: A Experimental Study in Rates[J]. Clin Orthop, 1991(286): 260-261.
    [33]贾承德,玄秀兰,高瑞林.碳纤维织物增强聚乳酸复合材料用于预防和治疗关节的僵直和强直[J].新型碳材料,1997,12(2):38-42.
    [34] Steve T. L.. Development of Bioresorbable Orthopaedic Biomaterials[J]. Wuhan International Synposium on Biomaterials and Fine Polymers, 1994: 50-52.
    [35] Verheyen C. In Vitm Study the Integrity of a Hydroxlapatit Coating When Challenged with Staphylococci[J]. Biomed. Mater. Res., 1993(27):775-781.
    [36]全大萍,江听,李世普.聚合物及其复合材料的研究概况[J].武汉工业大学学报,1996,2(18):114-117.
    [37] Xin Y., Huang Z. H., Yan E. Y., et al. Controlling Poly(p-phenylene vinylene)/ Poly(vinylpyrrolidone) Composite Nanofibers in Different Morphologies by Electrospinning[J]. Applied Physics Letters, 2006, 89(5):531011-0531013.
    [38] Lin T., Wang H. X., Wang X. G.. Self-Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane[J]. Adv. Mater., 2005, 17:2699-2703.
    [39] Han T., Reneker D. H.. Buckling of Jets in Electrospinning[J]. Polymer, 2007, 48:6064-6076.
    [40] Chen S., Hou H., Hu P., et al. Macromol. Mater. Eng., 2009, 294:781-783.
    [41]钱伯章.PBT市场与生产和改性技术[J].塑料工业,2005,33:78-79.
    [42]钱伯章.PBT树脂市场分析[J] .化工新型材料,2006,34(11):8-10.
    [43] Francalanci F. D., Andolf F..新型PBT纤维的进展[J].国际化纤,2004(1):4-6.
    [44]陈翠红,姜润喜,王芳.PBT弹性织物的开发[J].合成技术及应用,2004,19(3):43-45.
    [45]黄娟.纤维级PBT的研制[J] .合成纤维工业,2006,29(5):24-26.
    [46]马新敏,于伟东.PBT/PET复合纤维的结构特征与热收缩率表征[J].东华大学学报(自然科学版),2005,31(5):101-105.
    [47]陈建野,卫晓明,王孝军等.高机械性能无卤阻燃PBT复合材料的制备[J].塑料工业,2010,38(3):53-56.
    [48]王永芝,杨清彪,杜建时等.电纺丝技术——一种高效低耗的纳米纤维制备方法[J].化工新型材料,2005,33(6):12-14.
    [49]李山山,何素文,胡祖明等.静电纺丝的研究进展[J].合成纤维工业,2009,32(4):44-47.
    [50]李文望,孙道恒.静电纺丝纳米纤维在传感器与MEMS中的应用[J].泉州师范学院学报(自然科学),2009,27(6):22-25.
    [51]尹鹏.热塑性聚酯弹性体(TPEE)性能与应用[J].化工新型材料,2006,34(3):76-77.
    [52]何晓东,佘万能.热塑性聚酯弹性体[J].化工新型材料,2002,30(12):6-10.
    [53]祝爱兰,李洪元,吴立明.热塑性聚酯弹性体[J].弹性体,2005,15(1):70-75.
    [54]刘曙光,刘国玉.PBT/OMMT纳米复合材料制备及阻燃性能研究[J].中国矿业,2008,17(12):71-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700