Pt-Sn/碳微球催化剂的结构表征及电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属铂是迄今为止发现的最有效的直接甲醇燃料电池(DMFC)电极催化剂。提高催化剂的电化学活性和抗CO中毒的能力是DMFC催化剂性能研究的热点。由于甲醇氧化过程中生成的中间产物CO会使Pt中毒,降低Pt的催化活性,而且铂作为贵金属,成本相对较高,因此研究Pt-M二元催化剂以克服一元催化剂的不足是当前的的研究趋势。Pt-Sn二元催化剂由于金属Sn成本较低,Pt-Sn催化剂的催化活性好而备受关注。但有关Pt-Sn/CMS结构对催化活性的影响机理的报道很少。
     本研究在CVD法制备得到粒径均匀,分散度好的碳微球的基础上,利用浸渍还原法合成了Pt-Sn/CMS,采用X-射线光电子能谱(XPS)、X-射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)等手段对其结构、形貌等进行表征,通过电化学工作站对其电化学性能进行了测试,并与Pt/CMS进行比较,以确定Sn元素对Pt/CMS电催化活性的影响,进一步探索担载型Pt-Sn/CMS结构对催化活性的影响机理。
     实验结果表明:
     1.采用化学气相沉积法制备出粒径均匀,分散性好,尺寸在300nm左右的碳微球。通过浸渍还原法制备了Pt-Sn/CMS,金属颗粒的平均粒径为4.6nm。
     2.Pt-Sn/CMS催化剂中的Sn元素,以PtSn合金和SnO_2的形式存在。XPS、XRD、TEM均表明,随着Sn元素的加入,出现SnO_2,且金属态Pt的含量下降,形成PtSn合金。
     3.采用循环伏安法和交流阻抗法得到的Pt-Sn/CMS催化剂的电催化活性优于Pt /CMS。从结构上分析可知,Sn进入Pt晶格后,改变了Pt的面心立方晶格中的d电子结构,使CO在合金表面的吸附状态有所改变,降低了吸附能,起到了活化吸附态(CO)ads作用,使CO容易被氧化形成CO_2,从而提高Pt的催化活性。同时,生成的SnO_2能够在较低电位下提供OHads,OHads与反应中生成的CO进行反应,使Pt活性位得以释放,最终减轻催化剂的中毒。
Platinum is the most effective catalyst of direct methanol fuel cells (DMFC) electrode so far. The improvement of electrocatalysis activity and CO oxidation are key points for electrocatalysis of DMFC. On one hand, intermediate(CO) will be strongly adsorbed on Pt in methanol oxidation so that the catalytic activity of Pt reduces. On the other hand, Pt is comparatively expensive as noble metal. So many scholars are studying Pt-M binary catalyst in order to overcome insufficiency of monobasic catalyst. The cost of Sn is cheap, and electrochemical activity of Pt-Sn/C is better, so it is a hot topic in research field.
     In this paper, PtSn nanoparticles were loaded on Carbon Microspheres(CMS) with impregnation-reduction method. Compare with Pt/CMS, the composition was characterized by X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), X-ray diffraction (XRD), High resolution transmission electronmicroscopy (HRTEM) and cyclic voltammetry (CV).
     The results show that:
     1.Pt-Sn/CMS catalyst was perpared by impregnation-reduction method. The nanoparticles are well dispersed on the surface of the CMS, and mean particle diameter is 4nm.
     2. XRD, XPS indicated that the addition of Sn was mostly in form of both PtSn alloy and SnO_2 in Pt-Sn/CMS catalyst.
     3. The cyclic voltammetry shows electrocatalysis activity of Pt-Sn/CMS is better than that of Pt/CMS. The results suggest that the presence of Sn, which changes the Pt lattice parameter, allows methanol to be adsorbed and dissociated at lower potentials than that observed on the commercial Pt/CMS catalyst. The Sn sites are always free to adsorb OHads, which prefer to be adsorbed mostly onto Sn sites rather than on Pt sites. Moreover, Sn or Sn oxide are able to form oxygen-containing species at lower overpotentials than Pt. Therefore, Sn or Sn oxide improves the methanol oxidation at lower potentials and increases the reaction rate.
引文
[1]衣宝廉,质子交换膜燃料电池(EPMFC)-国内外状况与主要技术问题[J],电源技术,1997,21(2):80-85
    [2]李文震,直接甲醇燃料电池阴极碳载铂基催化剂的研究(博士学位论文),2003
    [3] Claude Lamy, Alexandre Lima, Recent advances in the development of direct alcohol fuel cells[J], J Power Sources, 2002, 105(2): 283-296
    [4] McNicol B D, Rand D A J, Williams K R. Direct methanol-air fuel cells for road transportation[J]. Journal of Power Sources,1999,83:15-31
    [5] Antonucci V. Direct methanol fuel cells for mobile applications:A strategy for the future[J]. Fuel Cells Bulletin,1999,2:6-8
    [6] Ren X M, Zelenay P, Thomas S, et al. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory[J]. Journal of Power Sources,2000,86: 111-116
    [7] Blum A, Duvdevani T, Philosoph M, et al. Water-neutral micro direct-methanol fuel cell(DMFC)for portable applications[J].Journal of Power Sources, 2003, 117: 22-25
    [8] Kordesch K, Hacker W, Bachhiesl U. Direct methanol-air fuel cells with membranes plus circulating electrolyte[J].Journal of Power Sources, 2001,96: 200-203
    [9]王凤娥.直接甲醇燃料电池的研究现状及技术进展[J].稀有金属,2002,26: 497-501
    [10]张兵,钟起玲,章磊等.乙醇电氧化的研究进展[J].江西化工, 2003,2:16-20
    [11] Zhou W J, Zhou Z H, Song S Q, et al. Pt based anode catalysts for direct ethanol fuel cells[J].Applied Catalysis B:Environmental, 2003,46:273-285
    [12] Souza J P I, Queiroz S L, Bergamaski K, et al.Electro-oxidation of ethanol on Pt, Rh,and PtRh electrodes:a study using DEMS and in-situ FTIR techniques[J]. Journal of Physical Chemistry B,2002,106:9825-9830
    [13] Iwasita T, Pastor E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum[J].Electrochimica Acta,1994,39:531-537
    [14] Hamnett A., Mechnaism and electrocatalysis in the direct methanol fuel cell[J], Catalysis Today, 1997,38:445-457.
    [15] Prabhuram J, Manoharna R, Investigation of methnaol oxidation on unsupported platinum electrodes in strong alkal and strong acid[J],J.Power Soucres 1998,74:54-61
    [16] Burstein G. T, Barnett C J, Kucernak A R, et al. Aspects of the Anodic oxidation of methanol[J], Catalysis Today, 1997, 38:425
    [17] J.L. Go′mez de la Fuente, S. Rojas, M.V. Mart?′nez-Huerta et al. Functionalization of carbon support and its in?uence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation[J]. Carbon, 2006,44:1919-1929..
    [18] J. Ribeiro, D. M. dos Anjos, J. -M. Le′ger et al. Effect of W on PtSn/C catalysts for ethanol electrooxidation[J]. J Appl Electrochem ,2008,38:653-662.
    [19] Oetjen H F, Schmidt V M, Stimming U, et al. Performance data of a proton exchange membrance fuel cell using H2/CO as fuel gas[J]. J. Electrochem. Soc,1996, 143:3838-3842.
    [20] Dhar H P, Christner L G and Kush A K. Nature of CO adsorption during H2 oxidation in relation to modeling for CO poisoning of a fuel cell anode[J]. J, Electrochem. Soc.,1987,134:3021-3026.
    [21] Sehinidt T J, GasteigerH A, and Behnl R J. Rotating disk electrode measurements on the CO tolerance of a high-surfure area Pt/Vulcan carbon fuel cell catalyst[J]. J.Electrochem.Soc., 1999, 146(4):1296-1304.
    [22] Markovi? N M, Grgur B N, Lucas C A, et al.Electrooxidation of CO and H2/CO mixtures on Pt(111) in acid solutions[J].J.Phys.Chem., 1999, 103: 487-495.
    [23] Gasteiger H A, Markovi? N M, Philip N Ross Jr. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.l.Rotating disk electrode studies of the puregaes including temperature effects[J].J.Phys.Chem. 1995, 99:8290- 8300.
    [24] Gasteiger H A, Markovi? N M, Philip N Ross Jr. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru.l.Rotating disk electrode studies of CO/H2 mixtures at 62℃[J]. J.Phys.Chem.,1995,99: 16757-16764.
    [25] Gasteiger H A, Markovi? N M, Philip N Ross Jr, et al. CO electrooxidation on well-characterized Pt-Ru alloys[J].J.Phys.Chem., 1994, 98:617-625.
    [26] Morimoto Y, Yeager E B. CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes[J]. J.Electroanal.Chem., 1998, 441:77-81.
    [27] Iannlello R, Schmidt V M, Stimming U et al. CO adsorption and oxidation on Pt and Ru alloys:dependence on substrate composition[J]. Electrochimica Acta, 1994,39:1863-1869.
    [28] Mariana Ciureanu and Hong Wang. Electrochemical impedance study of electrode membrance assemblies in PEMfuel cells:I.Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes[J].J.Electrochem.Soc.,1999, 146(11):4031-4040.
    [29] Jae dong Kim, YongⅡPark, Koichi Kobayashi et al.Characterization of CO tolerance of PEMFC by ac impedance spectroscopy[J]. Solids stateionies, 2001, 140: 313-325.
    [30] Anderson A B and Grantscharova E. Potential dependence of CO(ads) oxidation by OH(ads) on Platinum anodes.Molecular orbital theoty[J]. J.Phys.Chem.,1995, 99:9143-9148.
    [31] Spinger T, Zawdzinski T and Gottesfeld S. Modeling of polylmer electrolyte fuel cell performance with reformate feed streams:effects of low levels of Co in hydrogen[J]. The electrochemical society proceedings series, Pennington, NJ(1997).
    [32] Spinger T, Rochward T, Zawodzinski T et al. Model for polymer electrolyte fuel cell operation on refomate feed:effect of CO, H2 dilution, and high fuel utilization[J]. J.Electrochem.Soc., 2001, 148:A11-A23.
    [33] Camara G A, Ticianelli E A, Mukerjee S, et al. The CO poisoning mechanism of the hydrogen oxdiation in proton exchange membrance fuel cells[J].J.Electrochem.Soc, 2002, 149:A748-753.
    [34] Divisek J, Oetjen H F, Peineeke V, et al. Components for PEMFC systems using hydrogen and CO containing fuels[J]. Electrochimica Acta, 1998, 43:3811-3815.
    [35] Acres G J K, Frost J C, Hards G A, et al. Electrocata1ysts for fuel cells[J]. Catalysis Today, 1997, 38:393-400.
    [36] Gasteiger H A, Markovic N M, Philip N Ross, Jr..Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface[J]. J.Phys.Chem., 1995, 99:8945-8949.
    [37] Lee S J, Mukerjee S, Tieianelli E A, et al. Electroeatalysis of CO tolerance in hydrogen oxidation reactionin PEMFC[J]. Electrochimica Acta, 1999, 44:3283-3293.
    [38] Rahim M A A, Khalil M W and Hassan H B. Platinum-tinalloy electrodes for directmethanol fuel cells[J]. J.Appl. Electrochem., 2000, 30:1151-1155.
    [39] Grgur B N, Zhuang G, Markovic N M, et al. Electrooxidation of H2/CO mixtures on a well-characterized Pt70Mo30 alloy surface[J]. J.Phys.Chem.B, 1997, 101:3910-3913.
    [40] Gouerec P, Denis M C, Guay D, et al. High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and their tolerance to CO[J]. J. Eleetrochem.Soc., 2000, 147:3989-3996.
    [41] Sarah B, Adsam H, Gregor H, et al. The proton exchange membrane fuel cell performance of a carbon supported PtMo catalyst operating on reformate. Electroehem[J].Solid-State Lett., 2002, 5:A31-A34.
    [42] Shen P K, Tseung A C C. Anodic oxidation of methanol on Pt/WO3 in acidic media[J]. J. Electrochem.Soc., 1994, 141:3082-3090.
    [43] Passalacqua E, Lufrano F, Squadrito G, et al. CO tolerance of Pt-W eleetrocatalysts for polymer electrolyte fuel cells[J]. J.New Mater. for Electrochem Sys., 2000, 3:131-135.
    [44] Zeng J H, Lee J Y. But henium-free carbon-supported cobalt and tungsten containing binary& ternary Pt catalysts for the anodes of direct methanol fuel cells[J].Int J Hydrogen Energy, 2007, 32(17):4389-4396
    [45] M Gotz, H Wendt. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas[J]. Electroehimica Acta, 1998, 43:3637-3644.
    [46] Neburchilov V, Wang H J, Zhang J J, et al. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC[J].Electrochem Commun, 2007, 9(7):1788-1792
    [47] A Lima, C Coutanceau, J M Leger, et al. Ivestigation of ternary catalysts for methanol electrooxidation[J]. J.Appl.Electrochem., 2001, 31:379-386.
    [48] Gotz M, Wend T H. Binary and ternary anode catalyst formulation including the elements W, Sr and Mo for PEMFC separated on methanol for reformat gas[J]. Electrochim Acta, 1998, 43(24):3637-3644
    [49] Arico A S, Poltarzewski Z, Kim H, et al. Investigation of a carbon-supported quatemary Pt-Ru-Sn-W catalyst for direct methanol fuel cell[J]. J.Power Source, 1995, 55:159-166.
    [50] Hayden E B. The promotion of CO electro-oxidation on Platinum-bismuth as a model forsurface mediated oxygen transfer[J]. Catalysis Today, 1997, 38:473-481.
    [51] McKee D W, Niedraeh L W, Paynter J ,et al. Electrochem. Tech., 1967, 5:419.
    [52] McKee D W, Searpellino A J, Electrochem.Teeh., 1969, 6:101.
    [53] Crabb E M, Ravikumar M K. Sythesis and characterization of carbon-supported PtGe electrocatalysts for CO oxidation[J]. Electrochim. Acta, 2001, 46:1033-1041.
    [54] Yimin Z and Carlos R Cabrera. Methanol oxidation at the electrochemical codeposited Pt-Os composite electrode[J]. Electrochem. Solid State Lett., 2001, 4: A45.A48.
    [55] Renxuan L, Hakim I, Qinbai F,et al. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-Phase Pt, PtRu,PtOs, PtRuOs and Ru electrodes[J]. J.Phys.Chem.B, 2000, 104:3518-3531.
    [56]贾荣利,王成扬,炭材料作为电催化剂载体在PEMFC中的应用[J].化工进展, 2004,23:943-947.
    [57] Rajesh B, Karthik V, Karthikeyan S, et al, Pt-WO3 supported on carbon nanotubes as possbile anodes for direct methanol fuel cells[J]. Fuel, 2002, 81: 2177-2190.
    [58]沈曾民.新型碳材料.北京.化学工业出版社,2003. 241.
    [59] Liu Y C, Qiu X P, Huang Y Q, et al. Carbon, 2002, 40 :2375-2380.
    [60] Yang R Z, Qiu X P , Zhang H R , et al. Carbon, 2005, 43 : 11-16.
    [61] Iijima S, Yudasaka M, Yamada R, et al, Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chem Phys Lett, 1999, 309: 165-167.
    [62] Yoshitake T, Shimikawa Y, Kuroshima S, et al, Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application[J]. Physica B, 2002, 323: 124-126.
    [63] Wu D C, Fu R W, D resselhaus M S, et al. Fabrication and nano-structure control of carbon aerogels via a m icroemulsion temp lated solgel polymerization method[J]. Carbon, 2006, 44(4) : 675-681.
    [64] Luo J Z, Gao L Z, Leung Y L, et al, The decomposition of NO on CNTs and 1 wt% Rh/CNTs[J], Catal Lett, 2000, 66: 91-97.
    [65]杜鸿达,李宝华,干林.炭气凝胶负载PtRu纳米颗粒用作甲醇氧化催化剂[J].新型炭材料,2008,23(1):58-62.
    [66] Bessel C A, Laubemds K, Rodriguez N M, et a1. Physic Chem, 2001, 105(6):1115-1118.
    [67]徐洪峰,卢璐,朱少敏.石墨纳米纤维用作质子交换膜燃料电池催化剂载体[J].催化学报2008,29(6):542-546.
    [68] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306:666-669.
    [69]尾崎萃,田丸谦二等.催化剂手册.化学工业出版社.1982:703
    [70] He Z, Chen J, Liu D, Tang H, Deng W, Kuang Y. Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation. Mater[J].Chem.phys., 2004,85(2-3):396-401
    [71] Frelink T, Visscher W, Van J A R. Partlcle size effect of carbon-supported platimun catalysts for the electrooxidation of methanol[J]. J.Elecrtonaly. Chem.,1995, 385(l2):65-71
    [72] Tang Y W, Yang H, Lu T H.Preparation of Pt/C Catalyst with Solid Phase Reaction Method Chin[J].Chem.Letts, 2002, 13(5):478-482
    [73] Yang H, Alonso V N, Léger J M,et al. Structure, and Activity of Carbon- Supported Nanosized Pt-Cr Alloy Electrocatalysts for oxygen Reduction in Pure and Methanol-Containing Electrolytes[J]. J.Phys.Chem.B, 2004, 108(6):1938-1947
    [74] Parmigiani F, Kay E, Bagus P S, J ElectronSpectrose.Relat.Phenom, 1990, 50:39.
    [75] Tskasu Y, Fujii Y, Yasuda K, et al. Electrochim Acta, 1989, 34:453
    [76] Cha S Y, W M Lee. Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathim Platinim on the Membrane Surface[J]. J. Electrochem. Soc.1999,146(11):4055.
    [77] Morimoto Y, Yeager E. Cooxidation on smooth and high area Pt, Pt- Ru, Pt-Sn electrodes[J]. J. Electroanal Chem., 1998, 441:77.
    [78]李杞秀,化学气相沉积法由煤气制备炭纳米材料的研究(硕士学位论文)大连,大连理工大学, 2006.
    [79] Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J].Science, 2004, 304: 276-278
    [80] Ajayan P M, Ichihashi T, Iijima S, Distribution of pentagons and shapes in carbon nanotubes and nanoparticles[J], Chem Phys Lett, 1993, 202: 384-388
    [81] Tsiakaras P E .PtM/C (M= Sn, Ru, Pd, W) based anode direct ethanol–PEMFC:Structural characteristics and cell performance[J]. Journal of Power Sources, 2007, 171:107–112.
    [82] Oliveira M B D, Profeti L P R, Olivi P. Electrooxidation of methanol on PtM (M=Sn,Mo,Os or W) electrodes[J]. J. Electrochem. Commu., 2005, 7: 703-709.
    [83] Qin K, Songfei L, Zhaoxiong X, et al. Controllable fabrication of SnO2-coated multiwalled carbonnanotubes by chemical vapor deposition[J]. Carbon, 2006, 44:1166-1172.
    [84] Dong-Ha Lim, Dong-Hyeok Choi,Weon-Doo Lee et al. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability[J]. Applied Catalysis B:Environmental (2009), doi:10.1016/j. apcatb. 2009.01. 011.
    [85] Radmilovic V, Richardson T J, Chen S J, et al. Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures. Part I. Microstructural characterization[J].J. Catal.,2005,232 :199.
    [86] Radmilovic V, Gasteiger H A , Ross P N, et al. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation[J]. J. Catal. ,1995,154 : 98.
    [87] Roth C, Goetz M, Fuess H. Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods[J]. J. Appl. Electrochem, 2001, 31: 793-797.
    [88] Arico A S, Shukla A K, Kim H, et al. Applied surface Science, 2001, 172: 33.
    [89] A.V.Tripkovic′,K.Dj.Popovic′,J.D.Lovic′, et al. Promotional effect of Snad on the ethanol oxidation at Pt3Sn/C catalyst[J]. Electrochemistry Communications, 2009, 11: 1030-1033.
    [90] Xiangzhi C, Fangming C, Qianjun H et al. Graphitized mesoporous carbon supported Pt-SnO2 nanoparticles as a catalyst for methanol oxidation[J]. Fuel,2009, doi:10.1016/j.fuel.2009.09.006.
    [91] Wilde C P, Zhang M.Chemisorption and oxidation of methanol at Polycrystalline Pt in acid solutions[J]. Eletrochimica Acta, 1994, 39:347-354.
    [92] Yongyan Mu, Hanpu Liang, Jinsong Hu, et al. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells[J].J Physchem,2005;109(47):22212-22216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700