两株乳酸杆菌对高脂饮食大鼠胆固醇影响及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章降胆固醇益生菌株的体外筛选及菌株鉴定
     目的:
     从体检正常人群的粪便中分离出细菌菌株,从中体外筛选出有较好降胆固醇能力的菌株并予以鉴定,以利于进一步的研究。
     方法:
     以加入胆固醇的MRS培养基为载体,进行降胆固醇菌株的筛选,并对两株分解胆固醇效果好的细菌菌株进行耐酸耐胆汁及16sDNA部分序列测定的鉴定。
     结果:
     筛选出2株降胆固醇能力在30%以上的菌株,降解率是9-41-A36.8%, M1-1631.5%。两株菌均表现出较好的耐酸耐胆汁能力。对9-41-A和M1-16进行鉴定,初步鉴定9-41-A为植物乳杆菌,M1-16为发酵乳杆菌。
     结论:
     菌株9-41-A和M1-16在体外培养基中都有较强的降胆固醇能力和耐酸耐胆盐能力,经初步鉴定分别为植物乳杆菌及发酵乳杆菌。
     第二章两株乳酸杆菌对饮食诱导的高脂血症SD大鼠模型胆固醇代谢影响的研究
     目的:
     观察乳酸杆菌9-41-=A和M1-16对高脂饮食喂养的SD大鼠体内胆固醇代谢的影响,评价其对高脂血症SD大鼠模型降胆固醇作用的有效性,从而为筛选到有利于人体的具备降胆固醇功能的菌株,为进一步了解其在体内的作用机制提供依据。
     方法:
     随机将40只SD大鼠分为初始体重无差异的4组,正常饮食组喂养普通饲料,高脂模型组、L.9-41-A组和L.M1-16组喂养高脂饮食,另外分别给L.9-41-A组和L.M1-16组的大鼠添加植物乳杆菌L.9-41-A或发酵乳杆菌L.M1-16。6周末处死大鼠,检测大鼠血脂指标,血清谷丙转氨酶,肝脂质、粪脂质,体重增加量,Lee指数,肝指数、体脂指数,肝组织病理学检查,小肠内容物菌群分析及粪便水分等指标。
     结果:
     1、高脂模型组的血清TCH,TG,LDL-C水平较之正常对照组均有明显升高(P<0.05),L.9-41-A组和L.M1-16组的血清TCH,TG,LDL-C水平较之高脂模型组明显下降,以L.9-41-A组效果较好。各组大鼠间的HDL-C没有明显差异(P>0.05)。
     2、高脂模型组肝脏胆固醇和甘油三酯均比正常对照组升高,其差异有统计学意义。与高脂模型组比较,益生菌L.9-41-A组和L.M1-16组均可降低肝组织中胆固醇和甘油三酯的含量(P<0.05)。
     3、高脂饮食的各组大鼠粪便胆固醇和胆汁酸排出量均高于正常饮食组,差异有统计学意义(P<0.05)。两组益生菌组大鼠粪便胆固醇和胆汁酸排出量又高于高脂模型组,差异有统计学意义(P<0.05)。
     4、肝脏病理检查,高脂模型组脂肪浸润程度明显高于正常饮食组。两组益生菌可以显著改善肝脂肪浸润。
     5、至第6周末各高脂饲料组体重均比正常饲料组增加明显(P<0.05),差异有统计学意义,以高脂模型组和L.M1-16组增加量最多,L.9-41-A组次之。
     6、第6周末四组SD大鼠中正常组和L.9-41-A组的Lee’s指数最低,相较于模型组具有统计学意义(P<0.05)。正常组、L.9-41-A组和L.M1-16组的肝指数均出现明显下降(P<0.05)。正常组的体脂指数较其他高脂饮食组均小(P<0.05),模型组的体脂指数最高,益生菌组较模型组稍低,但组间比较无统计学意义(P>0.05)。
     7、相较于高脂模型组,两组益生菌组的大肠杆菌菌落计数明显下降(P<0.05)。四组SD大鼠小肠内容物的肠球菌计数无明显差异(P>0.05)。高脂模型组的乳酸杆菌与双歧杆菌的数量要明显低于其他各组,而两组益生菌组可以明显增加小肠乳酸菌与双歧杆菌的数量(P<0.05)。
     8、第6周末,两株乳酸杆菌可增加大鼠粪便水分含量(P<0.05)
     9、四组大鼠间血清谷丙转氨酶无明显差异(P)0.05)。
     结论:
     1、以改良高脂饮食配方连续喂养SD大鼠6周后,可以成功造出大鼠高胆固醇血症模型。
     2、植物乳杆菌L.9-41-A和发酵乳杆菌L.M1-16对SD大鼠高脂血症模型均有降低胆固醇和甘油三酯的作用,以L.9-41-A菌株较好。L.9-41-A菌可能还具有减轻体重的作用。
     3、植物乳杆菌L.9-41-A和发酵乳杆菌L.M1-16增加了高脂饲料大鼠粪便中的胆固醇和胆汁酸排出量。
     4、两株乳酸杆菌能够改善调节SD大鼠肠道内菌群,表现为增加乳酸杆菌和双歧杆菌的菌落数。
     第三章两株乳酸杆菌对高胆固醇血症大鼠胆固醇代谢相关基因表达的影响
     目的:
     探讨植物乳杆菌L.9-41-A和发酵乳杆菌L.M1-16对高脂血症SD大鼠模型胆固醇及胆汁酸代谢途径中部分相关基因mRNA表达的影响,以进一步了解乳酸菌发挥降胆固醇作用的体内可能机制。
     方法:
     第6周末处死大鼠,低温保存各组肝脏及回肠粘膜上皮标本,用实时荧光定量PCR技术检测大鼠肝脏3-羟基-3-甲基戊二酸单酰辅酶A还原酶HMGCR,低密度脂蛋白受体LDL-R,胆固醇7α-羟化酶CYP7A1及回肠法尼酯受体FXR mRNA的相对表达。
     结果:
     1、与正常饲料组的大鼠比较,各高脂饲料组的大鼠肝脏HMGCR表达量都明显降低,各高脂饲料组中以L.9-41-A组最低,而高脂模型组与L.M1-16组之间无显著差异(P>0.05)
     2、较之正常饲料组的大鼠,高脂模型组的大鼠肝脏LDL-R的表达量要明显降低,而两株益生菌组对大鼠肝脏LDL-R mRNA的表达有着极为明显的上调作用(P<0.05)。
     3、较之正常饲料组的大鼠,高脂模型组和两株益生菌组的大鼠肝脏CYP7A1的表达量均明显上升,以益生菌L.9-41-A组上升幅度最大(P<0.05)。
     4、与正常饮食组的大鼠比较,高脂模型组大鼠回肠CYP7A1表达量明显上升,益生菌L.9-41-A组和益生菌L.M1-16组的表达量上升幅度更大,差异具有统计学意义(P<0.05)。
     结论:
     菌株9-41-A和M1-16可能是通过直接或间接抑制肝脏HMGCR,上调肝脏LDL-R和CYP7A1,以及上调回肠FXR的mRNA表达水平来发挥降胆固醇和甘油三酯的效应的。
Chapter1Screening and Identification of Bacteria strains with Cholesterol-reducing ability in vitro
     Objective:
     To screen bacteria strains with the ability to reduce cholesterol in vitro from bacteria isolated from fecal samples of healthy adults and to give the targeted strains an identification for further study.
     Methods:
     We use modified cholesterol-MRS medium as the model to screen the potential targeted bacteria strains.After screeing,we selected two strains with better ability to reduce cholesterol and identified the two strains.
     Results:
     We screened out two strains with the cholesterol-reducing rate above30%,the detail rate is9-41-A36.8%and M1-1631.5%respectively. By preliminary identification we identified9-41-A as Lactobacillus plantarum strain and M1-16as Lactobacillus fermentum stain.
     Conclusion:
     9-41-A and M1-16had strong cholesterol-reducing,acid and bile acid tolerance abilities in vitro. Results of identification showed that 9-41-A and M2-1were Lactobacillus plantarum and Lactobacillus fermentum respectively.We plan to apply them in animal models to tset their cholesterol-lowering ability in vivo.
     Chapter2Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora of rats fed on a high-cholesterol diet
     Objective:
     To evaluate the effects of Lactobacillus plantarum9-41-A and Lactobacillus fermentum M1-16on body weight gain,lipid metabolism intestinal microflora and fecal water content of rats fed on high-cholesterol diet.
     Methods:
     Fourty Sprague Dawley rats were randomly divided into four groups.Control group received normal diet,model group received high-cholesterol diet,and intervention groups received high-cholesterol diet added with Lactobacillus plantarum9-41-A and Lactobacillus fermentum M1-16respectively. After a six-weeks feeding period,all rats were executed.Body weight (BW), Lee's index,liver index and fat index,cholesterol and lipid levels of serum and liver,fecal cholesterol and bile acid concentrations,intestinal microflora and fecal water content were measured.Liver lipid deposition was also classified pathologically.
     Results:
     In lactic acid bacteria (LAB) treated groups:(1)serum total cholesterol,low-density lipoprotein and triglycerides greatly reduced than rats in model group, while high-density lipoprotein appeared almost the same. Atherogenic indexes were improved.(2) hepatic cholesterol and triglycerides were also reduced obviously and liver lipid deposition was ameliorated after a high-cholesterol diet.(3) the level of fecal cholesterol and bile acid were significantly higher than control groups.(4) both strains of lactobacilli were able to increase Lactobacillus colony and Bifidobacterium colony and decrease Escherichia coli populations in intestine compared to rats fed with high-cholesterol diet only.Moreover, LAB treated groups excreted feces with more water. Besides,compared with the model group, L.9-41-A induced a decrease in BW gain.
     Conclusion:
     Hypocholesterolemic effect of LAB may differ among strains.The two local strains may have the ability to exert hypocholesterol effect, increase lactobacillus colony and Bifidobacterium colony count and fecal water content,thus beneficially affect the host.Moreover, L.9-41-A might act in controlling body weight.
     Chapter3Effects of Administration of two Lactobacillus strains on mRNA levels of cholesterol metabolism related genes in SD Rats
     Objective:
     In order to furtherly understand the possible mechanisms in vivo,we investigate the Effects of Administration of two Lactobacillus strains on mRNA levels of cholesterol metabolism genes involved in cholesterol homeostasis in SD Rats.
     Methods:
     mRNA expression of3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR),LDL-receptor (LDL-R),cytochrome P4507α-1(CYP7A1) and farnesoid receptor (FXR) of SD rats were measured by real-time PCR.
     Results:
     The hepatic HMGCR levels in LAB treated rats were significantly lower than in rats of control and model groups and the LDLR,CYP7A1and FXR mRNA levels were significantly elevated.
     Conclusion:
     The mechanisms of the hypocholesterolemic effect of our two strains in vivo may related to some key regulate factors in the metabolism of cholesterol and bile acids of SD rats. The hepatic HMGCR levels in LAB treated rats were significantly reduced and the LDLR,CYP7A1and FXR mRNA levels were significantly elevated.
引文
[1]Ballantyne C, Arroll B, Shepherd J. Lipids and CVD management:Towards a global consensus. Eur Heart J 2005; 26(21):2224-2231.
    [2]Meagher EA. Addressing cardiovascular risk beyond low-density lipoprotein cholesterol:The high-density lipoprotein cholesterol story. Curr Cardiol Rep 2004; 6 (6):457-463.
    [3]Ginsberg HN, Stalenhoef AF. The metabolic syndrome:Targeting dyslipidaemia to reduce coronary risk. J Cardiovasc Risk 2003;10(2):121-128.
    [4]Thomas S, Rich MW. Epidemiology, pathophysiology, and prognosis of heart failure in the elderly. Clin Geriatr Med 2007; 23(1):1-10.
    [5]Rich MW. Epidemiology, clinical features, and prognosis of acute myocardial infarction in the elderly. Am J Geriatr Cardiol 2006; 15(1):7-11.
    [6]AHA. Heart disease and stroke statistics-2005 update,2005 ed. Dallas, TX: American Heart Association.
    [7]WHO.CardiovascularDisease;FactsheetN°317,Geneva,Switzerland,september,2009 ;Availableat:http://www.who.int/mediacentre/factsheets/fs317/en/print.html. Acce ssed on 28 July 2010
    [8]Liong MT, Shah NP. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci 2005;88:55-66
    [9]Stacy TA, Egger A. Results of retrospective chart review to determine improvement in lipid goal attainment in patients treated by high-volume prescribers of lipid-modifying drugs. J Manag Care Pharm 2006; 12(9):745-751.
    [10]Ray KK, Cannon CP, Ganz P. Beyond lipid lowering:What have we learned about the benefits of statins from the acute coronary syndromes trials? Am J Cardiol 2006; 98(11A):18P-25P.
    [11]Talbert RL. Safety issues with statin therapy. J Am Pharm Assoc 2003; 46(4): 479-488.
    [12]Parra JL, Reddy KR. Hepatotoxicity of hypolipidemic drugs. Clin Liver Dis 2003; 7(2):415-433.
    [13]Deng R. Food and food supplements with hypocholesterolemic effects. Recent Pat Food Nutr Agric 2009; 1:15-24
    [14]FAO, WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria; Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina,1-4 October,2001.
    [15]Galdeano, C.M.; de LeBlanc, A.; de M.; Vinderola, G.; Bonet, M.E.B.; Perdigon, G Proposed Model:Mechanisms of Immunomodulation Induced by Probiotic Bacteria. Clin. Vaccine Immunol.2007,14,485-492.
    [16]Yeo, S.K.; Liong, M.T. Angiotensin I-Converting Enzyme Inhibitory Activity and Bioconversion of Isoflavones by Probiotics in Soymilk Supplemented with Prebiotics. Int. J. Food Sci. Nutr.2010,61,161-181.
    [17]Hirayama, K.; Rafter, J. The Role Of Probiotic Bacteria in Cancer Prevention. Microbes. Infect.2000,2,681-686.
    [18]Songisepp, E.; Kulisaar, T.; Hutt, P.; Elias, P.; Brilene, T.; Zilmer, M.; Mikelsaar, M. A New Probiotic Cheese with Antioxidative and Antimicrobial. J. Dairy Sci. 2004,87,2017-2023.
    [19]Weston, S.; Halbert, A.; Richmond, P.; Prescott, S.L. Effects of Probiotics on Topic Dermatitis:A Randomised Controlled Trial. Arch. Dis. Child.2005,90, 892-897.
    [20]Scholz-Ahrens, K.E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Asil, Y.; Gluer, C.-C.;Schrezenmeir, J. Prebiotics, Probiotics and Synbiotics Affectmineral Absorption, Bonemineral Content and Bone Structure. J. Nutr.2007,137, 838-846.
    [21]Baharav, E.; Mor, F.; Halpern, M.; Weinberger, A. Lactobacillus GG Bacteria Ameliorate Arthritis in Lewis Rats. J. Nutr.2004,134,1964-1969.
    [22]Ouwehand, A.C. Antiallergic Effects of Probiotics. J. Nutr.2007,137,794-797.
    [23]Falagas, M.E.; Betsi, G.I.; Athanasiou, S. Probiotics for Prevention of Recurrent Vulvovaginal Candidiasis:A Review. J. Antimicrob. Chemother.2006,58, 266-272.
    [24]Mann GV, Spoerry A. Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr 1974; 27:464-469
    [25]Fukushima M, Nakano M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat-and cholesterol-enriched diet. Br J Nutr 1996;76:857-867
    [26]Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol 1985; 49:377-381
    [27]Nguyen TD, Kang JH, Lee MS. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 2007;113:358-361
    [28]Agerbaek M, Gerdes LU, Richelsen B. Hypocholesterolaemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 1995; 49: 346-352
    [29]Anderson JW, Gilliland SE. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J Am Coll Nutr 1999; 18:43-50
    [30]Keim NL, Marlett JA, Amundson CH. The cholesterolemic effect of skim milk in young men consuming controlled diets. Nutrition Research 1981; 1:29-442
    [31]Xiao JZ, Kondo S, Takahashi N, Miyaji K, Oshida K, Hiramatsu A, Iwatsuki K, Kokubo S, Hosono A. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. J Dairy Sci 2003; 86:2452-2461
    [32]Pereira DI, Gibson GR. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 2002; 68:4689-4693
    [33]Pigeon RM, Cuesta EP, Gililliand SE. Binding of free bile acids by cells of yogurt starter culture bacteria. J Dairy Sci 2002; 85:2705-2710
    [34]Lye H-S, Rahmat-Ali GR, Liong M-T. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal 2010; 20:169-175
    [35]Lye HS, Rusul G, Liong MT. Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci 2010; 93:1383-1392
    [36]Begley M, Hill C, Gahan CG Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 2006; 72:1729-1738
    [37]Cheeke PR. Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. JAnim Sci 2000; 77:1-10
    [38]Klaver FAM, van der Meer R.The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity.Applied and Environmental Microbiology.1993,59(4):1120-1124.
    [39]Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 2006; 72:1729-1738
    [40]Hatakka K, Mutanen M, Holma R, Saxelin M, Korpela R. Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective in lowering serum lipids. J Am Coll Nutr 2008; 27:441-447
    [41]Simons LA, Amansec SG Conway P. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol. Nutr Metab Cardiovasc Dis 2006; 16:531-535
    [42]Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal micro flora of rats fed on high-cholesterol diet. Appl Microbiol Biotechnol 2009; 84:341-347
    [43]刘丽莉,董铁有,杨协力.6种乳酸菌降胆固醇的体外实验.河南科技大学学报(自然科学版),2005}26(6):85-88
    [44]Zeng XQ, Pan DD, Zhou PD. Functional characteristics of Lactobacillus fermentum Fl. Curr Microbiol,62:27-31
    [45]Reddy, K. B., Raghavendra, P., Kumar, B. G, et al. Screening of probiotic properties of lactic acid bacteria isolated from Kanjika, an ayruvediiuc lactic acid fermented product:an in-vitro evaluation. J Gen Appl Microbiol,2007:53, 207-213
    [46]刘长建,刘秋,姜波.类植物乳杆菌的耐酸、耐胆盐及降胆固醇特性.微生物学报,2009,49(9):1176-1179
    [47]Ding WK,Shah NP. Acid,bile,and heat tolerance of free and microencapsulated probiotic bacteria.Food Microbiology and Safety,2007,72(9):446-450.
    [48]韩俊华,盛晓甘,董彩凤等.乳酸菌降胆固醇作用研究现状.中国乳品工业,2002,30(3):16-20
    [49]Greany, K.A.; Bonorden, M.J.L.; Halmiton-Reeves, J.M.; McMullen, M.H.; Wangen, K.E.; Phipps, W.R.; Feirtag, J.; Thomas, W.; Kurzer, M.S. Probiotic Capsules Do Not Lower Plasma Lipid in Young Women and Men. Eur. J. Clin. Nutr.2008,62,232-237.
    [50]Liong, M.T. Probiotics:A Critical Review of Their Potential Role as Antihypertensive, Immune Modulators, Hypocholesterolemics and Perimenopausal Treatments. Nutr. Rev.2007,65,1-13.
    [51]郑建仙.功能性食品.第三卷.北京,中国轻工业出版社,2001:275-289
    [52]Lin, C. Y, Tsai, C. Y Lin, S. H. Effects of soy components on blood and liver lipids in rats fed high-cholesterol diets. World J Gastroenterol,2005,11:5549-5552
    [53]Lepercq P, Relano P, Cayuela C, et al.13ifidobacteria animalis strain DN-173 010 hydrolyses bile salts in the gastrointestinal tract of:pigs. Scand J Gastroenterol. 200439(12):1266-1271.
    [54]石如玲,赵朝贤,朱海暴,等。大鼠胆汁酸合成加强时肝脏双功能蛋白mRNA表达及活性升高.基础医学与临床,2006,26(7):720-723
    [55]Kajiura K, Ohkusa T, Okayasu I. Relationship 'between fecal bile acids and the occurrence of colorectal neoplasia in experimental murine ulcerative colitis.Digestion.1998,59 (1):69-72.
    [56]申瑞玲,董吉林,李文全.燕麦p一葡聚糖对高脂血症大鼠胆固醇代谢的影响.中国食品学报,2009,9(3):14-19
    [57]Fukada Y, Kimura K,Ayaki Y.Effect of chitosan feeding on intestinal bile acid metabolism in rats[J].Lipids,1991:395-399
    [58]薛馄,郭红卫,陈凤麟,中链脂肪酸对营养性肥胖大鼠体重及脂质代谢的作用,卫生研究,200635(2):187190
    [59]Nguyen TD, Kang JH, Lee MS. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 2007;113:358-361
    [60]Fukushima M, Yamada A, Endo T, Nakano M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta6-desaturase activity in the livers of rats fed a fat-and cholesterol-enriched diet. Nutrition 1999; 15: 373-378
    [61]Chiu, C. H., Lu, T. Y., Tseng, Y. Y., and Pan, T. M.2006. The effects of Lactobacillus-fermentedmilk on lipid metabolism in hamsters fed on high-cholesterol diet. Appl Microbiol Biotechnol,71,238-245.
    [62]St-Onge MP, Farnworth ER, Savard T, Chabot D, Mafu A, Jones PJ. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men:a randomized controlled trial. BMC Complement Altern Med 2002; 2:1-7
    [63]Hashimoto H, Yamazaki K, He F, Kawase M, Hosoda M, Hosono A. Hypocholesterolemic effects of Lactobacillus casei subsp. casei TMC 0409 strain observed in rats fed cholesterol contained diets. Anim Sci J 1999; 70:90-97
    [64]Park, Y. H., Kim, J. G., Shin, Y. W., Kim, S. H., and Whang, K. Y. 2007. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol,17,655-662.
    [65]Liong, M. T., and Shah, N. P.2006. Effects of a Lactobacillus casei synbiotic on serum lipoprotein, intestinal micro flora, and organic acids in rats. J Dairy Sci,89, 1390-1399.
    [66]Hamad, E. M., Sato, M., Uzu, K., Yoshida, T., Higashi, S., Kawakami, H., Kadooka, Y, Matsuyama, H., Abd El-Gawad, I. A., and Imaizumi, K.2009. Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr,101,716-724.
    [67]Ikemoto, S., Takahashi, M., Tsunoda, N., Maruyama, K., Itakura, H., Kawanaka, K., Tabata, I., Higuchi, M., Tange, T., Yamamoto, T. T., and Ezaki, O.1997. Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. Am JPhysiol,273, E37-45.
    [68]Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., Messaddeq, N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C., and Auwerx, J.2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormoneactivation. Nature,439,484-489.
    [69]Mai V, Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol 2009; 15:81-85
    [70]Fuller, R.1989. Probiotics in man and animals. JAppl Bacteriol,66,365-378.
    [71]Van Winsen RL, Keuzenkamp D, Urlings BA, Lipman LJ, Snijders JA, Verheijden JH, van Knapen F. Effect of fermented feed on shedding of Enterobacteriaceae by fattening pigs. Vet Microbiol 2002; 87:267-276
    [72]Cani PD, Delzenne NM. Interplay between obesity and associated metabolic disorders:new insights into the gut microbiota. Curr Opin Pharmacol 2009; 9: 737-743
    [73]Scarpellini E, Campanale M, Leone D, Purchiaroni F, Vitale G, Lauritano EC, Gasbarrini A. Gut microbiota and obesity. Intern Emerg Med 2010; 5:S53-56
    [74]Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, McCartney AL, Gibson GR, Nicholson JK. Top-down systems biology modeling of host metabotype-microbiome associations
    [75]任邦哲等.生物化学与临床医学.长沙,湖南科学技术出版社,1992:202-206
    [76]Goldstein, J. L. and M. S. Brown.1990. Regulation of the mevalonate pathway. Nature 343:425-428.
    [77]Chiang JY. Bile acids:regulation of synthesis. J Lipid Res 2009; 50:1955-1966
    [78]Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res 2009;50:1509-1520.
    [79]江维,童坦君.胆固醇合成途径的关键酶:HMG辅酶A还原酶和疾病[J].生理科学进展,1999 30(1):5-9
    [80]Mayes, P. A. and K. M. Botham.2003. Cholesterol synthesis, transport, and excretion, pp.219-230. In P. K.Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds.), Harper's Illustrated Biochemistry,26thEd. Mc-Graw-Hill Companies, New York, NY.
    [81]Brookes ZL, McGown CC, Reilly CS. Statins for all:the new premed? Br J Anaesth 2009; 103:99-107
    [82]Garcia-Mediavilla V, Villares C, Culebras JM, Bayon JE, Gonzalez-Gallego J. Effects of dietary beta-cyclodextrin in hypercholesterolaemic rats. Pharmacol Toxicol 2003; 92:94-99
    [83]Han KH, Iijuka M, Shimada K, Sekikawa M, Kuramochi K, Ohba K, Ruvini L, Chiji H, Fukushima M. Adzuki resistant starch lowered serum cholesterol and hepatic 3-hydroxy-3-methylglutaryl-CoA mRNA levels and increased hepatic LDL-receptor and cholesterol 7alpha-hydroxylase mRNA levels in rats fed a cholesterol diet. Br J Nutr 2005; 94:902-908
    [84]Huang X, Tang J, Zhou Q, Lu H, Wu Y, Wu W. Polysaccharide from fuzi (FPS) prevents hypercholesterolemia in rats. Lipids Health Dis 9:9
    [85]Parks, D. J., S. G. Blanchard, R. K. Bledsoe, G. Chandra,T. G. Consler, S. A. Kliewer, J. B. Stimmel, T. M. Willson, A. M. Zavacki, D. D. Moore, and J. M. Lehmann.1999. Bile acids:Natural ligands for an orphan nuclear receptor.Science 284:1365-1368.
    [86]Goldstein JL & Brown MS (1990) Regulation of the mevalonate pathway.Nature 343,425-430.
    [87]Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K:Hepatic LDL receptor mRNA in rats is increased by dietary mushroom(Agaricus bisporus) fiber and sugar beet fiber. J Nutr 2000,130:2151-2156.
    [88]Murakami S, Nitanai I, Uchida S, Kondo-Ohta Y, Asami Y, Kondo K, Sato M,Kawashima A, Hara H, Tomisawa K, Mei HB, Xiang CZ:Up-regulation of low density lipoprotein receptor by a novel isobenzofranone derivative, MD-700. Atherosclerosis 1999,146:281-290.
    [89]Brookes ZL, McGown CC, Reilly CS:Statins for all:the new premed?. Br JAnaesth 2009,103:99-107.
    [90]Garcia-Mediavilla V, Villares C, Culebras JM, Bayon JE, Gonzalez-Gallego J:Effects of dietary beta-cyclodextrin in hypercholesterolaemic rats.Pharmacol Toxicol 2003,92:94-99.
    [91]Li T, Matozel M, Boehme S, Kong B, Nilsson LM, Guo G, Ellis E, Chiang JY. Overexpression of cholesterol 7alpha-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 2011; 53:996-1006
    [92]Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JY. Transgenic expression of cholesterol 7a-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. HEPATOLOGY 2010;52:678-690.
    [93]Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, Verhagen A, Rivera CR, Mulvihill SJ, Malloy MJ, Kane JP. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002; 110:109-117
    [94]De Smet, I., P. De Boever, and W. Verstraete.1998.Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr.79:185-194.
    [95]Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995;81:687-693.
    [96]Repa JJ, Mangelsdorf DJ. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr Opin Biotechnol 1999;10:557-563.
    [97]Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102:731-744
    [98]Song KH, Li T, Owsley E, Strom S, Chiang JY. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 2009; 49:297-305
    [99]Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, Kliewer SA, Gonzalez FJ. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 2007; 48:2664-2672
    [100]Stroeve JH, Brufau G, Stellaard F, Gonzalez FJ, Staels B, Kuipers F. Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Lab Invest 2010; 90:1457-1467
    [101]Duez H, Staels B. Rev-erbalpha gives a time cue to metabolism. FEBS Lett 2008;582:19-25.
    [102]Lavery DJ, Schibler U. Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP.Genes Dev 1993;7:1871-1884.
    [103]Noshiro M, Usui E, Kawamoto T, et al. Multiple mechanisms regulate circadian expression of the gene for cholesterol 7alpha-hydroxylase (Cyp7a), a key enzyme in hepatic bile acid biosynthesis. J BiolRhythms 2007;22:299-311.
    [104]Watanabe M, Houten SM,Wang L,Moschetta A,Mangelsdorf DJ,Heyman RA,Moore DD, Auwerx J. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-lc. J Clin Invest 2004; 113:1408-1418
    [105]Zhang Y,Castellani LW,Sinal CJ,Gonzalez FJ,Edwards PA. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR.Genes Dev 2004; 18:157-169.
    1. WHO.Cardiovascular Disease; Fact sheet N°317,Geneva, Switzerland, September,2009.Availableat:http://www.who.int/mediacentre/factsheets/fs317/en/ print.html (Accessed on 28 July 2010).
    2. Yusuf S,Hawken S,Ounpuu S, et al.Effect of Potentially Modifiable Risk Factors Associated with Myocardial Infarction in 52 Countries (The INTERHEART Study):Case-Control Study. Lancet 2004,364,937-952.
    3. WHO. Diet, Nutrition and Prevention of Chronic Diseases; Report of a Joint WHO/FAO ExpeConsultation, Geneva, Switzerland,2003.
    4. FAO, WHO. Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria; Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina,1-4 October,2001.
    5. Galdeano CM,de LeBlanc A,de M,et al.Proposed Model:Mechanisms of Immunomodulation Induced by Probiotic Bacteria. Clin. Vaccine Immunol.2007, 14,485-492.
    6. Yeo SK,Liong MT. Angiotensin I-Converting Enzyme Inhibitory Activity and Bioconversion of Isoflavones by Probiotics in Soymilk Supplemented with Prebiotics. Int. J. Food Sci. Nutr.2010,61,161-181.
    7. Hirayama K,Rafter J. The Role Of Probiotic Bacteria in Cancer Prevention. Microbes. Infect.2000,2,681-686.
    8. Songisepp E,Kulisaar T,Hiitt P,et al.A New Probiotic Cheese with Antioxidative and Antimicrobial. J. Dairy Sci.2004,87,2017-2023.
    9. Weston S, Halbert A,Richmond P,et al.Effects of Probiotics on Topic Dermatitis:A Randomised Controlled Trial. Arch. Dis. Child.2005,90,892-897.
    10. Scholz-Ahrens KE,Ade P,Marten B,et al. Prebiotics, Probiotics and Synbiotics Affectmineral Absorption, Bonemineral Content and Bone Structure. J. Nutr.2007, 137,838-846.
    11. Baharav E,Mor F,Halpern M,et al.Lactobacillus GG Bacteria Ameliorate Arthritis in Lewis Rats. J. Nutr.2004,134,1964-1969.
    12. Ouwehand AC. Antiallergic Effects of Probiotics. J. Nutr.2007,137,794-797.
    13. Falagas ME, Betsi GI,Athanasiou S.Probiotics for Prevention of Recurrent Vulvovaginal Candidiasis:A Review.J. Antimicrob. Chemother.2006,58, 266-272.
    14. Lambert JM,Bongers RS,de Vos WM,et al. Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol.2008,74,4719-4726.
    15. Pereira DIA, Gibson GR. Cholesterol Assimilation by Lactic Acid Bacteria and Bifidobacteria Isolated from the Human Gut. Appl. Environ. Microbiol.2002,68, 4689-4693.
    16. Liong MT,Shah NP. Effects of A Lactobacillus casei Synbiotic on Serum Lipoprotein, Intestinal Microflora, and Organic Acids in Rats. J. Dairy Sci.2006, 89,1390-1399.
    17. Liong MT,Shah NP. Acid and Bile Tolerance and Cholesterol Removal Ability of Lactobacilli Strains. J. Dairy Sci.2005,88,55-66.
    18. Lye HS, Rusul G,Liong MT. Mechanisms of Cholesterol Removal by Lactoballi Under Conditions That Mimic the Human Gastrointestinal Tract. Int. Dairy J. 2010,20,169-175.
    19. Lye HS, Rusul G,Liong MT.Removal of Cholesterol by Lactobacilli via Incorporation of and Conversion to Coprostanol. J. Dairy Sci.2010,93, 1383-1392.
    20. De Preter V,Vanhoutte T,Huys G,et al.Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and Oligofructose-Enriched Inulin on Colonic Nitrogen-Protein Metabolism in Healthy Humans. Am. J. Physiol. Gastrointest. Liver Physiol.2007,292,358-368.
    21. Peret-Filho LA,Penna FJ, Bambirra EA,et al. Dose Effect of Oral Saccharomyces boulardii Treatments on Morbidity and Mortality in Immunosuppressed Mice. J. Med. Microbiol.1998,47,111-116.
    22. Land MH,Rouster-Stevens K,Woods CR,et al. Lactobacillus Sepsis Associated with Probiotic Therapy. Pediatrics 2005,115,178-181.
    23. Huys G,D'Haene K,Swings J.Genetic Basis of Tetracycline and minocycline Resistance in Potentially Probiotic Lactobacillus plantarum Strain CCUG 43738. Antimicrob. Agents Chemother.2006,50,1550-1551.
    24. Shinnick FL,Longacre MJ,Ink, SL,et al. Oat Fiber:Composition Versus Physiological Function in Rats. J. Nutr.1988,118,144-151.
    25. Gallaher CM,Munion J,Hesslink R,et al.Gallaher, D.D. Cholesterol Reduction by Glucomannan and Chitosan is Mediated by Changes in Cholesterol Absorption and Bile Acid and Fat Excretion I in Rats. J. Nutr.2000,130,2753-2759.
    26. Lichtman AH,Clinton SK,Iiyama K,et al.Hyperlipidemia and Atherosclerotic Lesion Development in LDL Receptor-Deficient Mice Fed Defined Semipurified Diets with and without Cholate. Arterioscler. Thromb. Vasc. Biol.1999,19, 1938-1944.
    27. Lin YG,Meijer GW,Vermeer MA,et al. Soy Protein Enhances the Cholesterol-Lowering Effect of Plant Sterol Esters in Cholesterol-Fed Hamsters. J. Nutr.2004,134,143-148.
    28. Patterson JK,Lei XG,Miller DD. The Pig as an Experimental Model for Elucidating the Mechanisms Governing Dietary Influence on mineral Absorption. Exp. Biol. Med.2008,233,651-664.
    29. Fernandez ML,Roy S,Vergara-Jimenez M.Resistant Starch and Cholestyramine Have Distinct Effects on Hepatic Cholesterol Metabolism in Guinea Pigs Fed a Hypercholesterolemic Diet. Nutr. Res.2000,20,837-849.
    30. Nguyen TDT, Kang JH,Lee MS. Characterization of Lactobacillus plantarum PH04, a Potential Probiotic Bacterium with Cholesterol-Lowering Effects. Int. J. Food Microbiol.2007,113,358-361.
    31. Abd El-Gawad IA, El-Sayed EM, Hafez SA,et al. The Hypocholesterolaemic Effect of Milk Yoghurt and Soy-Yoghurt Containing Bifidobacteria in Rats Fed on a Cholesterol-Enriched Diet. Int. Dairy J.2005,15,37-44.
    32. Anderson JW,Gilliland SE. Effect of Fermented Milk (Yogurt) Containing Lactobacillus acidophilus L1 on Serum Cholesterol in Hypercholesterolemic Humans. J. Am. Coll. Nutr.1999,18,43-50.
    33. Xiao JZ,Kondo S,Takahashi N,et al. Effects of Milk Products Fermented by Bifidobacterium longum on Blood Lipids in Rats and Healthy Adult Male Volunteers. J. Dairy Sci.2003,86,2452-2461.
    34. Hatakka K,Mutanen M,Holma R,et al.Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp shermanii JS Administered in Capsules Is Ineffective in Lowering Serum Lipids. J. Am. Coll. Nutr.2008,27, 441-447.
    35. Simons LA,Amansec SG, Conway P. Effect of Lactobacillus fermentum on Serum Lipids in Subjects with Elevated Serum Cholesterol. Nutr. Metabolism Cardiovas. Dis.2006,16,531-535.
    36. Akalin AS, Gone S, Duzel S.Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice. J Dairy Sci 1997 80:2721-2725
    37. Greany KA,Bonorden MJL,Halmiton-Reeves JM,et al.Probiotic Capsules Do Not Lower Plasma Lipid in Young Women and Men. Eur. J. Clin. Nutr.2008,62, 232-237.
    38. Liong MT. Probiotics:A Critical Review of Their Potential Role as Antihypertensive, Immune Modulators, Hypocholesterolemics and Perimenopausal Treatments. Nutr. Rev.2007,65,1-13.
    39. Food and Agriculture Organization of the United Nations and World Health Organization. Probiotics in Food:Health and Nutritional Properties and Guidelines for Evaluation; Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria, Cordoba, Argentina,1-4 October 2001 [and] Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada,30 April-1 May 2002.
    40. Naruszewicz M,Johansson ML,Zapolska-Downar D,et al.Effect of Lactobacillus plantarum 299v on Cardiovascular Disease Risk Factors in Smokers. Am. J. Clin. Nutr.2002,76,1249-1255.
    41.Lubbadeh W,Haddadin MSY,Al-Tamimi MA,et al.Effect on the CholesterolContent of Fresh Lamb of supplementing the Feed of Awassi Ewes and Lambs with Lactobacillus acidophilus. Meat Sci.1999,52,381-385.
    42. Ha CG,Cho JK,Lee CH,et al. Cholesterol Lowering Effect of Lactobacillus plantarum Isolated from Human Feces. J. Mol. Microbiol. Biotechnol.2006, 16,1201-1209.
    43. Greany KA,Nettleton JA,Wangen KE,et al. Probiotic Consumption Does Not Enhance the Cholesterol-Lowering Effect of Soy in Postmenopausal Women. J. Nutr.2004,134,3277-3283.
    44. Begley M, Hill C, Gahan CGM. Bile Salt Hydrolase Activity in Probiotics. Appl. Environ. Microbiol.2006,72,1729-1738.
    45. Jones ML, Chen H, Ouyang W, et al. Microencapsulated Genetically Engineered Lactobacillus plantarum 80 (pCBH1) for Bile Acid Deconjugation and Its Implication in Lowering Cholesterol. J. Biomed. Biotechnol.2004,1,61-69.
    46. Usman HA. Bile Tolerance, Taurocholate Deconjugation, and Binding of Cholesterol by Lactobacillus gasseri Strains. J. Dairy Sci.1999,82,243-248.
    47. Kimoto H, Ohmomo S, Okamoto T. Cholesterol Removal from Media by Lactococci. J. Dairy Sci.2002,85,3182-3188.
    48 Johnson LR,ByrneJH.. Essential medical physiology. San Diego, CA, USA: Academic Press.2003.
    49.Chiang YR,Ismail W, Heintz D,et al. Study of Anoxic and Oxic Cholesterol Metabolism by Sterolibacterium denitrificans. J. Bacteriol.2008,190,905-914.
    50.Esra Tok and Belma Aslim. Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 2010,54,257-264.
    51. Pereira DIA, McCartney AL, Gibson GR.An in vitrostudy of the probiotic potential of a bile-salt-hydrolyzingLactobacillus fermentum strain, and determination of itscholesterol-lowering properties.Applied and Environmental Microbiology.2003,69,8,4743-4752.
    52.Trautwein EA, Rieckhoff D, Erbersdobler HF.Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J Nutr 1998,128,11,1937-1943.
    53. Altmann SW, Davis HR Jr, Zhu LJ, et al.Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption.2004,Science 303,1201-1204.
    54.Huang Y and Zheng YC. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick Cl-like 1 in Caco-2 cells. British Journal of Nutrition 2010,103,473-478.
    55.Huang Y,Wang JF,Cheng Y,et al.The hypocholesterolaemic effects of Lactobacillus acidophilus American Type Culture Collection 4356 in rats are mediated by the down-regulation of Niemann-Pick Cl-Like 1. British Journal of Nutrition 2010, 1-6.
    56.Park YH, Kim JG, Shin YW,et al. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 2007,17,655-662.
    57.Olano A, Chua J,Schroeder S,et al. Weissella confusa (Basonym:Lactobacillus confusus) Bacteremia:A Case Report. J. Clin. Microbiol.2001,39,1604-1607.
    58.d'Escrivan T,Meybeck A,Legout L,et al. Severe Sepsis Due to Lactobacillus helvetica Bacteremia. Med. Maladies Infect.2003,33,356-357.
    59.Ze'-Ze'L,Tenreiro R,Duarte A,et al. Case of Aortic Endocarditis Caused by Lactobacillus casei. J. Med. Microbiol.2004,53,451-453.
    60. Rautio M, Jousimies-Somer H, Kauma H, et al. Liver Abscess Due to a Lactobacillus rhamnosus Indistinguishable from L. rhamnosus Strain GG. Clin. Infect. Dis.1999,28,1159-1160.
    61. Tan KP, Yang M, Ito S. Activation of Nuclear Factor (Erythroid-2 Like) Factor 2 by Toxic Bile Acids Provokes Adaptive Defense Responses to Enhance Cell Survival at the Emergence of Oxidative Stress. Mol. Pharmacol.2007,72, 1380-1390.
    62.Miettinen M, Vuopio-Varkila J, Varkila K. Production of Human Necrosis Factor Alpha, Interleukin 6, and Interleukin 10 Is Induced by Lactic Acid Bacteria. Infect. Immun.1996,64,5403-5405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700